Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Improve rural women’s financial access to help solve hunger

Women represent approximately 43 percent of the world’s agricultural labor. Despite making up less than half of the labor force, women account for 60 to 80 percent of food production in developing countries. Often, official statistics ignore unpaid work – whether in the field, at a home garden or preparing food in the household – thus misrepresenting women’s real contribution to agricultural work and production.

According to the United Nations Food and Agriculture Organization (FAO), if the world’s women farmers had the same access to resources and agricultural financing as men, 150 million people could be lifted out of poverty.

There is no way that we will be able to reach zero hunger if the public and private sectors do not get involved in gender-sensitive programming that addresses women’s access to finance and other resources and opportunities.

A new study supported by the Walmart Foundation, which has been working steadily on this issue, found that smallholder farmers in Mexico must overcome considerable obstacles to access financing – but the barriers to credit are significantly higher for women.

The International Maize and Wheat Improvement Center (CIMMYT) has conducted interventions in the field to support this finding. A multidisciplinary CIMMYT team offered advice on financial inclusion to a group of 1,425 farmers in southern Mexico from 2018 to 2020. The team found that while 331 men received credit, only six women of the same target group did.

Similarly, only three women were able to take out agricultural insurance and 29 opened a savings account after two years of intervention, compared to 110 and 171 men, respectively.

However, there is some hope: an increasing number of farmers, both women and men, is progressively acquiring the basic information and skills to formally request financial products.

CIMMYT obtained funding from the Walmart Foundation in 2018 to implement a project aimed at improving smallholder farmers’ access to markets through collective action, crop diversification, and enhanced access to finance in Mexico’s southern states of Campeche, Chiapas and Oaxaca. The project’s solid results in validation and adoption of sustainable and inclusive technologies were key factors enabling the continuation of activities through 2021.

According to VĂ­ctor LĂłpez, senior manager of partnerships for access to markets at CIMMYT, women farmers are less likely than men to default on loans but seldom have the necessary collateral to be considered as potential clients by standard financial institutions. Without this financial support, they are unable to obtain land, insurance or other critical agricultural inputs, trapping them in a cycle of poverty.

CIMMYT and its partners are working toward a more inclusive approach. With the support of the Walmart Foundation, CIMMYT is strengthening the capacity of farmers – particularly smallholders – and farmer organizations to mitigate production risks and incorporate market-sound considerations into their cropping plans.

These and similar rural development ventures with an inclusive business model perspective can help smallholder farmers, particularly women, combat hunger and food insecurity in Mexico and beyond.

The challenge is to bridge the financial services divide between agriculture and almost every other sector. As economic activity resumes and Mexico gradually recovers from the pandemic crisis, we have a big opportunity to create new credit products and financial services for women farmers that prioritize innovation and sustainable production over ownership rights.

This op-ed by CIMMYT Director General Martin Kropff was originally published in the Mexican Business Review.

New integrated methodology supports inclusive and resilient global food systems transformation

A multi-disciplinary team of agricultural researchers and development practitioners is proposing a new approach to tackle the shortcomings of global food production systems that degrade the environment, greatly contribute to climate change and fail to deliver healthy diets for a growing population.

The new methodology developed by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) aims to transform national food systems by achieving consensus between multiple stakeholders and building on successful participatory agricultural research experiences.

According to a peer-reviewed paper published today in the journal PLOS ONE, the Integrated Agri-food System Initiative (IASI) “is designed to generate strategies, actions, and quantitative, [Sustainable Development Goals] SDGs-aligned targets that have [a significant] likelihood of supportive public and private investment”.

The IASI methodology is based on successful integrated development projects implemented by CIMMYT in Mexico and Colombia, the latter in partnership with the Alliance Bioversity-CIAT, which engaged multiple public, private and civil sector collaborators in local maize systems enhancement. These initiatives took advantage of sociopolitical “windows of opportunity” that helped build multiple stakeholder consensus around health, nutrition, food security and development aspirations in both countries.

“CIMMYT’s integrated development approach to maize systems transformation in Mexico and Colombia laid the foundations of the IASI methodology by overcoming government transitions, annual budget constraints and win-or-lose rivalry between stakeholders in favor of equity, profitability, resilience and sustainability,” said Bram Govaerts, chief operating officer and Integrated Development Program director at CIMMYT.

Ultimately, the IASI methodology offers public officials and development practitioners the possibility to transform food systems by scaling out innovative farming practices and technologies that lead to sustainably managed natural resources and improved nutrition and food security.

The main steps to implement the IASI methodology are:

  1. Diverse experts examine the current status and the business-as-usual scenario based on analysis of the socioeconomic, political, and sectoral context and model-based projections;
  2. Stakeholders determine a preferred future scenario based on assessment of national implications, and define drivers of change toward a desired scenario;
  3. Defined criteria are applied to stakeholder and expert inputs to validate drivers of change and to identify strategies and actions — for example, public policies, value chain and market interventions, and biotechnology applications — that can steer toward the preferred future scenario, which are then reviewed and prioritized by high-level decision makers;
  4. Stakeholders agree on measurable targets and tangible, time-bound actions toward the preferred future scenario;
  5. Stakeholders build shared commitment to a tactical implementation plan among traditional, non-traditional, and new partners;
  6. Ongoing stakeholder engagement is organized around an online dashboard that tracks actions and progress toward targets and supports course correction and coordinated investment.

Following these steps, the authors of the IASI methodology propose to build a “global food systems transformation network” to co-design and co-implement agricultural development projects that bring together multiple partners and donors for global agricultural systems transformation.

As the approach is refined and further applications are built, it is expected that this network will harness efforts to initiate a new field of research and global practice on “integrated methodologies for food system transformation and innovation” — analogous to the fields of business administration and organizational development.

IASI serves as the backbone of new CGIAR Regional Integrated Initiatives, which draw on capacities from regional international agricultural research centers and programs to deliver global agri-food system transformation.

Beneficial bioactives

Popular starchy staples maize and wheat provide more than simple dietary energy, but they are often found at the center of debates around the excessive consumption of carbohydrates.

While the nutrient contribution of whole grains is commonly emphasized in dietary guidelines, the milling and subsequent processing of cereal products tends to reduce or remove much of the important protein, fat, vitamin and mineral content, and in recent years there has been increasing concern about the ultra-processing of cereal-based food products containing noxious dietary components that exacerbate the occurrence of non-communicable diseases.

For these reasons — and because of the focus on energy content — maize and wheat are not often considered to be among the categories of “nutrient-rich” foods that can contribute to reducing micronutrient malnutrition. Consequently, it is unsurprising that a popular perception that cereals make a limited contribution to nutritious diets persists. This view has not been successfully challenged by a necessarily nuanced understanding of the complex role of cereals, and particularly the carbohydrate fractions, in human nutrition.

“In addition to the hidden micronutrients, there is sound scientific and popular awareness of the importance of some dietary components such as dietary fiber,” says Nigel Poole, Emeritus Professor of International Development at the School of Oriental and African Studies (SOAS).

“Though there is as yet imperfect scientific understanding and public awareness of the carbohydrates which make up dietary fiber,” he explains, “biomedical research continues to highlight the importance of carbohydrates in health and well-being. Moreover, there is a need for further knowledge on the nature and roles of many other bioactive food components that are not usually considered to be nutrients.”

These bioactives are substances such as carotenoids, flavonoids, and polyphenols. Most of the beneficial effects of the consumption of whole grain cereals on non-communicable diseases are currently attributed to the bioactive components of dietary fiber and the wide variety of phytochemicals.

A growing body of evidence from cereal chemistry, food science and metabolic studies shows that the bioactives in cereals are important for nutrition, health and well-being. In a new working paper authored in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), Poole demonstrates that there is considerable potential for plant breeding strategies to improve these elements of grain composition. This could be done through exploiting natural variation, genetic and genomic selection methods, and mutagenesis and transgenesis in order to modify cell wall polysaccharides, and specifically to improve the starch composition and structure in breeding material through natural and induced mutations.

Rebalancing the agri-nutrition research agenda, Poole argues, is necessary in order to explore, explain and exploit the contribution to diets of hitherto less-researched nutrient-dense crops and other foods. Nevertheless, because of the quantities in which cereals are consumed, the nutritional contribution of cereals in addition to energy complements the consumption of micronutrient-rich fruits, vegetables, nuts and pulses in diverse diets.

To leverage the bioactive content of cereals — including dietary fiber — as well as the macro- and micronutrient content, a comprehensive approach to food and nutrition systems from farm to metabolism is needed, spanning research disciplines and food systems’ stakeholders throughout the agri-food industries, and embracing policy makers, nutrition advocacy, and consumer education and behavior change.

Read the full working paper: Food security, nutrition and health: Implications for maize and wheat research and development

Nigel Poole conducted research for this paper during a year-long Visiting Fellowship at CIMMYT, with support from scientists at the institution.

Buying into new seed

Mary Nzau enters a mock agrodealer shop set up on a field on the outskirts of Tala town in Machakos County, Kenya. On display are nine 2kg bags of hybrid maize seed. She picks one. By the look of it, her mind is made up. After a quick scan of the shelf, she has in her hand the variety that she has been purchasing for years.

Regina Mbaika Mutua is less lucky. The variety she always buys is not on display in the mock shop. As part of the experiment, the research team has removed from the shelf the variety she indicated she usually buys. The team’s goal is to observe what factors influence her seed purchase decision in the absence of the variety she was expecting to purchase.

“Although I did not find the variety I was looking for, I picked an alternative as I have seen it perform well on a neighboring farm,” Mutua says, adding that she will plant it this season alongside recycled (farm-saved) seed on her one-acre farm.

Michael Mutua passes up the popular variety he has been planting for the previous two years. He picks one that has been advertised extensively on local radio. “I have heard about it severally on radio. I would like to experiment with this new seed and see how it performs on my farm. Should I like the results, I will give it a chance in ensuing seasons,” he says.

Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)

The big adoption conundrum

The goal of the out-of-stock study is to improve an understanding of how farmers make their maize seed choices, says Pieter Rutsaert, Markets and Value Chain Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

“We do this by inviting farmers to a mock agrodealer store that we set up in their villages and give them a small budget to purchase a bag of seed. However, not all farmers walk into the same store: some will find their preferred variety, others won’t. Some will have access to additional trait information or see some varieties with price promotions while others don’t.”

Rutsaert acknowledges that breeding programs and their partner seed companies have done a great job at giving farmers access to maize hybrids with priority traits such as drought tolerance and high yield. CIMMYT then works closely with local seed companies to get varieties into the hands of farmers. “We want to extend that support by providing insights to companies and public breeding programs on how to get new varieties more quickly into the hands of farmers,” he says.

Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)
Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)

The hybrid maize seed sector in Kenya is highly competitive. Amid intensifying competition, new varieties face a daunting task breaking into the market, independent of their quality. While farmers now have more options to pick from, a major challenge has been how to get them to adopt new varieties.

“Moving farmers from something they know to something they don’t is not easy. They tend to stick with what they know and have been growing for years,” Rutsaert says.

Pauline Muindi, gender research associate with CIMMYT, acted as the stand-in clerk at the mock store. She noticed that farmers tend to spend very little time in the shop when their preferred variety is available. However, this all changes in the out-of-stock situation, pushing farmers to step out of their comfort zone and explore new options.

The first step to overcoming this challenge is to entice maize farmers to try a new seed variety, even just once, Rutsaert observes. If it is a good variety, farmers will see that and then the market will work in its favor: farmers will come back to that variety in subsequent years and tell others about it.

“The good news is that many of the varieties we are currently seeing on the market have performed well — that’s why they’re popular. But there are newer varieties that are even better, especially in terms of attributes like drought tolerance. We would like to understand how farmers can be convinced to try out these newer varieties. Is it about the need for more awareness on varietal traits? Can we use price promotions? Or are there other factors?” he says.

A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)
A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)

Does seed price matter?

“With today’s climate uncertainty, it is better to stick to a variety that is adapted to such climate rather than banking on a variety one is oblivious of. The risk is not worth it,” Nzau says. She adds that she would rather buy a higher-priced seed packet she knows and trusts than a lower-priced one that she has not used in the past. Radio promotions of new or other varieties have limited sway over her decision to make the switch.

Faith Voni, another farmer, agrees. “It is better to purchase a higher-priced variety whose quality I can vouch for than risk purchasing a lower-priced one that I know little about. I do not wish to take such a risk.” Voni says she would also be more inclined to experiment with another variety that she had seen perform well on a neighbor’s farm.

Michael Mutua holds a different view. “If there is an option of an equally good but new variety that is lower-priced than the variety I prefer, my wallet decides,” he says.

Vivian Hoffmann, an economist at the International Food Policy Research Institute (IFPRI) and collaborator on the study, says price can be key for convincing consumers to try a new product. “Our previous research on maize flour choice found that a provisional 10 percent discount boosted sales tremendously,” Hoffmann says. “Of course, that only gets your foot in the door; after that, a new variety will need to win farmers over based on its merits.”

Hoffmann is interested in the extent to which drawing farmers’ attention to key varietal attributes influences their seed choice. “This information is generally already available on seed packets, but we live in a world of information overload. Promoting certain attributes through in-store signage is an approach that is widely used to help consumers make more healthier food choices. Doing the same for new seed varieties makes a lot of sense.”

Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)

The value of drought tolerance

Situated on Kenya’s eastern region, Machakos is characterized by persistent water stress. Climate change induced erratic rainfall has pushed traits that can tolerate the unfavorable weather conditions in the favorite’s corner. While other traits such as high yield and disease resistance are equally important, the seed, when planted, must first withstand the effects of droughts or water stress in some seasons and germinate. This is the most crucial step in the long journey to either a decent, bare minimum or no yield. A lot of farmers still plant recycled seed alongside hybrid varieties. But these are no match to water stress conditions, which decimate fields planted with farmer-saved seed.

“If a variety is not climate resilient, I will likely not harvest anything at all,” says Nzau. She has planted a drought-tolerant variety for ten years now. Prior to that, she had planted about three other varieties as well as recycled seed. “The only advantage with recycled seed is that given the right amount of rainfall, they mature fast — typically within two months. This provides my family with an opportunity to eat boiled or roast maize,” she notes.

However, varieties need to do more than just survive harsh weather conditions. Breeders face a daunting task of incorporating as many traits as possible to cater to the overarching and the specific interests of multiple farmers. As Murenga Mwimali, a maize breeder at the Kenya Agricultural and Livestock Research Organization (KALRO) and collaborator in this research says, innovations in breeding technologies are making breeding more efficient.

“It is better to have a diversity of product profiles as different market niches are captured within a particular agroecological zones. This is such that farmers may not just benefit from the minimum traits like drought tolerance, but also more specific traits they are looking for,” Mwimali says.

Smallholder farmers continue to play a central role in the seed development process. Capturing what happens at the point of purchase, for instance, at the agrodealer, and understanding how they purchase seed offers valuable insights on the traits that are deemed essential in the breeding process. This work contributes to CIMMYT’s focus on fast-tracking varietal turnover by turning the levers towards a demand-driven seed system.

Cover photo: Pauline Muindi, gender research associate with CIMMYT, at the mock agrodealer shop where she acted as a clerk. (Photo: CIMMYT)

CIMMYT and John Innes Centre announce strategic collaboration on wheat research

CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)
CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre (JIC) have announced a strategic collaboration for joint research, knowledge sharing and communications, to further the global effort to develop the future of wheat.

Wheat, a cornerstone of the human diet that provides 20% of all calories and protein consumed worldwide, is threatened by climate change-related drought and heat, as well as increased frequency and spread of pest and disease outbreaks. The new collaboration, building on a history of successful joint research achievements, aims to harness state-of-the-art technology to find solutions for the world’s wheat farmers and consumers.

“I am pleased to formalize our longstanding partnership in wheat research with this agreement,” said CIMMYT Deputy Director General for Research Kevin Pixley. “Our combined scientific strengths will enhance our impacts on farmers and consumers, and ultimately contribute to global outcomes, such as the Sustainable Development Goal of Zero Hunger.”

Director of the John Innes Centre, Professor Dale Sanders commented, “Recognizing and formalizing this long-standing partnership will enable researchers from both institutes to focus on the future, where the sustainable development of resilient crops will benefit a great many people around the world.”

Thematic areas for collaboration

Scientists from CIMMYT and JIC will work jointly to apply cutting-edge approaches to wheat improvement, including:

  • developing and deploying new molecular markers for yield, resilience and nutritional traits in wheat to facilitate deploying genomic breeding approaches using data on the plant’s genetic makeup to improve breeding speed and accuracy;
  • generating, sharing and exploiting the diversity of wheat genetic material produced during crossing and identified in seed banks;
  • pursuing new technologies and approaches that increase breeding efficiency to introduce improved traits into new wheat varieties; and
  • developing improved technologies for rapid disease diagnostics and surveillance.

Plans for future collaborations include establishing a new laboratory in Norwich, United Kingdom, as part of the Health Plants, Healthy People, Healthy Plant (HP3) initiative.

Bringing innovations to farmers

An important goal of the collaboration between CIMMYT and JIC is to expand the impact of the joint research breakthroughs through knowledge sharing and capacity development. Stakeholder-targeted communications will help expand the reach and impact of these activities.

“A key element of this collaboration will be deploying our innovations to geographically diverse regions and key CIMMYT partner countries that rely on smallholder wheat production for their food security and livelihoods,” said CIMMYT Global Wheat Program Director Alison Bentley.

Capacity development and training will include collaborative research projects, staff and student exchanges and co-supervision of graduate students, exchange of materials and data, joint capacity building programs, and shared connections to the private sector. For example, plans are underway for a wheat improvement summer school for breeders in sub-Saharan African countries and an internship program to work on the Mobile And Real-time PLant disease (MARPLE) portable rust testing project in Ethiopia.


INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

Dale Sanders  – Director, John Innes Centre

OR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE JOHN INNES CENTRE:

The John Innes Centre is an independent, international centre of excellence in plant science, genetics and microbiology. Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature’s diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.

We foster a creative, curiosity-driven approach to fundamental questions in bio-science, with a view to translating that into societal benefits. Over the last 100 years, we have achieved a range of fundamental breakthroughs, resulting in major societal impacts. Our new vision Healthy Plants, Healthy People, Healthy Planet (www.hp3) is a collaborative call to action. Bringing knowledge, skills and innovation together to create a world where we can sustainably feed a growing population, mitigate the effects of climate change and use our understanding of plants and microbes to develop foods and discover compounds to improve public health.

The John Innes Centre is strategically funded by the UKRI-BBSRC (Biotechnology and Biological Sciences Research Council), and is supported by the John Innes Foundation through provision of research accommodation, capital funding and long-term support of the Rotation PhD programme.

For more information about the John Innes Centre visit our website: www.jic.ac.uk.

Breaking Ground: Natalia Palacios gets the most out of maize

It’s often joked that specialists learn more and more about less and less until they know everything about nothing, while for generalists it’s just the opposite.

In the case of Natalia Palacios, neither applies. She may have the word specialist in her title — she is a maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT) — but throughout her career she has had to learn more and more about a growing range of topics.

As leader of the Nutrition Chapter of the Integrated Development Program and head of the Maize Quality Laboratory, Palacios’ job is to coordinate CIMMYT’s efforts to ensure that maize-based agri-food systems in low- and middle-income countries are as healthy and nutritious as possible. The scope of this work spans the breadth of maize-based agri-food systems — from seed to supper.

“What ultimately matters for human health and nutrition is the nutritional quality of the final product,” says Palacios. “High quality, nutritious grain is an important part of the puzzle, but so are the nutritional effects of various post-harvest storage, processing, and cooking techniques.”

Natalia Palacios (front, center) with colleagues on CIMMYT’s Quality Maize team during an Open House event at CIMMYT HQ. (Photo: Alfonso CortĂ©s/CIMMYT)

Seeing the forest and the trees

Originally from Bogota, Colombia, Palacios studied microbiology at the Universidad de los Andes before pursuing a PhD in plant biology at the University of East Anglia and the John Innes Centre in the United Kingdom.

“I had the opportunity to work as research assistant at the International Center for Tropical Agriculture (CIAT) in Cali, Colombia,” she explains. “The exposure to interdisciplinary and international teams working for agricultural development and the leadership of my boss at that time, Joe Tohme, not only helped convince me to pursue post graduate studies in plant biology, they fostered an excitement around the real-world applications of scientific research.”

When she joined CIMMYT in 2005, Palacios worked on maize biofortification, supporting efforts to breed maize varieties rich in provitamin A and zinc. With time, she found her attention shifting towards the effect of food processing on the nutritional quality of maize-based food products, as well as to the importance of maize safety. For example, for a recent project, Palacios and her team have been analyzing the effect of a traditional thermal alkaline maize treatment known as nixtamalization on the physical composition of the grain and the nutritional quality of end products. Because of its important benefits, they are promoting this ancient technique in other geographies.

For Palacios, shifts such at this are completely in keeping with the overall goal of her work. “The main challenge we face as agricultural researchers is contributing to a nutritious, affordable diet produced within planetary boundaries,” she says. “Tackling any part of this challenge requires us to communicate between disciplines, to look at agri-food systems as a whole, and to link production and consumption.”

At the same time, for Palacios, the beauty of her work lies in going deep into a specific research question before bringing her focus back to the big picture. This movement between the specific and the general keeps her motivated, generates new questions and avenues of research, and keeps her from falling into silver-bullet thinking.

For example, her work on provitamin A biofortified maize led her to ask questions about how much of the vitamin reached consumers depending on how the grain was stored and handled. The vitamin is prone to degradation through oxidation. This led to storage and processing recommendations meant to maximize the crop’s nutritional value, including storing provitamin A maize as grain and milling it as late as possible before consumption. Researchers also worked to identify germplasm with more stable provitamin A carotenoids to be used in the breeding program.

In one study, Palacios and her coauthors found that feeding biofortified maize to hens increased the provitamin A value of their eggs, suggesting that for rural households the nutritional benefits of the improved grain could be spread out across different foodstuffs.

Natalia Palacios extracts carotenoids from maize kernels in a CIMMYT lab in Mexico. (Photo: Alfonso Cortés/CIMMYT)

Bringing it all together

In a paper published last spring, Palacios and her co-authors bring together the insights of these various avenues of research into one comprehensive review. The point, Palacios explains “was to identify opportunities to exploit the nutritional benefits of maize — a grain largely consumed in Africa, Latin America and some parts of Asia as important part of a diet — from understanding how to leverage the its genetic diversity for the development of more nutritious varieties to mapping all the different parts of the food system where nutritional gains can be made.”

The paper encompasses sections on the biochemistry of maize, maize breeding, maize-based foodways and culture, and traditional agronomic practices like milpa intercropping. It exemplifies Palacios’ interdisciplinary approach and her commitment to exploring multiple, interconnected pathways towards more nutritious maize agri-food systems.

As CGIAR’s 2030 Research and Innovation Strategy makes clear with its emphasis on the need for a systems-level transformation of food, land and water systems, this approach is timely and much needed.

In Palacios’ words: “Food security, nutrition and food safety are inextricably linked, and we must address them from the field to the plate and in a sustainable way.”

 

World Health Day 2021

Health has certainly been in the spotlight over the past year. And how could it not be?

The ongoing COVID-19 pandemic has thrown into sharp relief the fact that many groups across the world struggle to make ends meet with little daily income, have poorer housing conditions and education, fewer employment opportunities, and have little or no access to safe environments, clean water and air, food security and health services.

In light of this, the World Health Organization (WHO) is calling on leaders worldwide to ensure that everyone has living and working conditions that are conducive to good health. For many the focus will, understandably, be on access to quality health care services. But there are myriad other factors that influence our ability to lead healthy lives — from how we care for our soil, to what we eat and the air we breathe.

Joining this year’s World Health Day campaign, the International Maize and Wheat Improvement Center (CIMMYT) is highlighting five areas where it pays to think about health, and the solutions we can use to help build a healthier world for everyone.

It starts with soil

Crop yields fall dramatically when soil conditions aren’t right, but digital nutrient management tools providing tailored fertilizer recommendations can boost farmers’ profits and productivity while reducing emissions.

Douglas Mungai holds up soil on his farm in Murang’a county, Kenya. (Photo: Robert Neptune/TNC)
Douglas Mungai holds up soil on his farm in Murang’a county, Kenya. (Photo: Robert Neptune/TNC)

Robust germplasm

How do we ensure that germplasm reserves are not potential vectors of pest and disease transmission? The second instalment in the CGIAR International Year of Plant Health Webinar Series tackles the often-overlooked issue of germplasm health.

A CIMMYT gene bank worker photographs maize accessions for the database for future reference. (Photo: Alfonso Cortés/CIMMYT)

Quality feed

By growing maize simultaneously for both human consumption and quality animal feed, farmers can get the most out of their crops and conserve natural resources like land and water.

A Bangladeshi farmer scoops up maize flour, produced from his own maize crop, as he prepares feed for his livestock. (Photo: S. Mojumder/CIMMYT)

Feeding communities

The traditional milpa intercrop — in which maize is grown together with beans, squash or other vegetable crops — can furnish a vital supply of food and nutrients for marginalized, resource-poor communities in the Americas.

A farmer holds a maize ear. (Photo: Cristian Reyna)
A farmer holds a maize ear. (Photo: Cristian Reyna)

A healthy planet

Compared to conventional tillage practices, sowing wheat directly into just-harvested rice fields without burning or removing straw or other residues can reduce severe air pollution while lessening irrigation needs.

Air pollution related to crop residue burning imposes enormous public health and economic burdens in northwestern India. (Photo: CIMMYT)
Burning crop residue pollutes the air in northeastern India. (Photo: CIMMYT)

Interested in learning more about CIMMYT’s health-related work? Check out our archive of health and nutrition content.

Featured image: A farmer inspects a drought-tolerant bean plant on a trial site in Malawi. (Photo: Neil Palmer/CIAT)

Investment in maize for Africa pays off

Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)
Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)

Between 1995-2015, nearly 60% of all maize varieties released in 18 African countries were CGIAR-related. At the end of this period, in 2015, almost half of the maize area in these countries grew CGIAR-related maize varieties. All that was accomplished through modest, maximum yearly investment of about $30 million, which showed high returns: in 2015, the aggregate yearly economic benefits for using CGIAR-related maize varieties released after 1994 were estimated to be between $660 million and $1.05 billion.

These are just some of the key findings of Impacts of CGIAR Maize Improvement in sub-Saharan Africa, 1995-2015 a new, comprehensive review of the two decades of longstanding, CGIAR-led work on improved maize for Africa.

A staple concern

Since its introduction to Africa in the 16th century, maize has become one of the most important food crops in the continent.

It accounts for almost a third of the calories consumed in sub-Saharan Africa. And it’s grown on over 38 million hectares in the region, mostly by rainfall-dependent smallholder farmers.

Climate change poses an existential threat to the millions who depend on the crop for their livelihood or for their next meal. Already 65% of the maize growing areas in sub-Saharan Africa face some level of drought stress.

Long-term commitment

Through the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), CGIAR has been working alongside countless regional partners since 1980s to develop and deploy climate-smart maize varieties in Africa.

This work builds on various investments including Drought-Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA). Support for this game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. Throughout, the determination to strengthen the climate resilience of maize agri-food systems in Africa has remained the same.

To understand the impact of their work — and how to build on it in the coming years — researchers at CIMMYT and IITA took a deep dive into two decades’ worth of this work across 18 countries in sub-Saharan Africa. These findings add to our understanding of the impact of work that today benefits an estimated 8.6 million farmers in the region.

Big challenges remain. But with the right partnerships, know-how and resources we can have an outsize impact on meeting those challenges head on.

How do we sustainably manage transboundary diseases and crop pests?

In our hyper-connected world, it should come as no surprise that recent years have shown a major uptick in the spread of transboundary pests and diseases. Integrated approaches have been effective in sustainably managing these border-jumping threats to farmers’ livelihoods and food security.

But a truly integrated approach accounts for not just the “cure,” but also how it can be sustainably incorporated into the agri-food system and social landscape.  For example, how do we know if the farmers who adopt disease- and pest-resistant seed will be able to derive better incomes? And how do we ensure that incentives are aligning with community norms and values to enable better adoption of integrated disease or pest management approaches?

Experts from across the CGIAR research system and its partners weighed in on this topic in the recent webinar on Integrated Pest and Disease Management, the third in the International Year of Plant Health Webinar series. Panelists shared valuable perspectives on the science of outbreaks, the social dimensions of crop pest and disease control, zoonotic disease risk, and how national, regional and global organizations can better coordinate their responses.

“The combination of science, global partnerships and knowledge helps all of us be better prepared to avoid the losses we’ve seen. . . Today, we’re going to see what this looks like in practice,” said Rob Bertram, chief scientist for the Bureau for Resilience and Food Security at USAID, and moderator of the event.

Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)
Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)

Understanding the sources

Wheat and maize, the key crops studied at the International Maize and Wheat Improvement Center (CIMMYT) are no stranger to destructive  diseases or pests, with fall armyworm, wheat blast, or maize lethal necrosis topping the list. But other staple crops and their respective economies are suffering as well — from infestations of cassava brown streak, potato cyst nematode, taro blight, desert locusts, and fusarium wilt, just to name a few.

What are the reasons for the expansion of these outbreaks? B.M. Prasanna, director of CIMMYT’s Global Maize Program explained that there are several: “Infected seed or planting material, vector movement, strong migratory capacity, contaminated field equipment, improper crop production commercialization practices, and global air and sea traffic” are all major causes.

Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)
Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)

Preventing outbreaks is always better than scrambling to find a cure, but as Prasanna pointed out, this requires a holistic, multi-institutional strategy including surveillance and early warning, quarantine and phytosanitary regulations, and technological solutions. Better access to monitoring and surveillance data, and sensitive, easy-to-use and affordable diagnostic equipment are essential, as is the proactive deployment of resistant crop varieties.

Building awareness about integrated disease and pest management is just as important, he told the attendees. “We must remember that IPM is not just Integrated Pest Management, but also ‘Integrating People’s Mindsets.’ That remains a major challenge. We need to think beyond our narrow disciplines and institutions and really come together to put IPM solutions into farmers’ fields,” Prasanna said.

Not all outbreaks are the same, but lessons can be shared

Regina Eddy, coordinator for the Fall Armyworm Interagency Task Force at USAID, works closely with the complex issue of scaling when it comes to disaster response and the roles of national, regional and global organizations.

“We need to develop inclusive partner stakeholder platforms, not designed ‘for them,’ but ‘with them,’” said Eddy. “We cannot tackle food security issues alone. Full stop.”

Closing the gap between social and biophysical science

Nozomi Kawarazuka, social anthropologist at the International Potato Center (CIP) explained how researchers can improve the uptake of their new seed, innovation, or agronomic practice by involving social scientists to understand the gender norms and social landscape at the beginning of the project — in the initial assessment phase.

Kawarazuka highlighted how involving women experts and extension workers in sectors that are typically male-dominated helps reduce bias and works towards changing perceptions.

“In South Asia, women farmers hesitate to engage with male government extension workers,” she said. “Women experts and extension workers reduce this barrier. Gender and social diversity in the plant health sector is an entry point to develop innovations that are acceptable to women as well as men and helps scale up adoption of innovations in the community.

Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)
Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)

The world is watching agriculture and livestock

Zoonotic diseases, or zoonoses, are caused by pathogens spread between animals and people. Understanding zoonotic disease risk is an essential and timely topic in the discussion of integrated pest management. Poor livestock management practices, lack of general knowledge on diseases and unsafe yet common food handling practices put populations at risk.

“It’s especially timely, [to have this] zoonosis discussion in our COVID-plagued planet. The whole world is going to be looking to the food and agricultural sectors to do better,” Bertram said.

Annet Mulema, a gender and social scientist at the International Livestock Research Institute (ILRI) described results of a study showing how community conversations transformed gender relations and zoonotic disease risk in rural Ethiopia, where 80% of the population depends on agriculture and has direct contact with livestock.

“There were noticeable changes in attitude and practices among men and women regarding unsafe handling of animals and consumption of animal-source foods,” Mulema explained. “Community conversations give men and women involved a voice, it allows for a variety of ideas to be expressed and discussed, leads to community ownership of conclusions and action plans, and opens communication channels among local service providers and community members.”

Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)
Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)

Local to global, and global to local

Panelists agreed that improving capacity is the most powerful lever to advance approaches for integrated pest management and plant health, while connected and inclusive partnerships along the value chain make the whole system more resilient. The amount of scientific knowledge on ways to combat plant pests and diseases is increasing, and we have new tools to connect the global with the local and bring this knowledge to the community level.

The fourth and final CGIAR webinar on plant health is scheduled for March 31 and will focus on a the intersectional health of people, animals, plants and their environments in a “One Health” approach.

Fighting the stress

East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.

Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.

With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Top-notch research trickles down to farmers

Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.

“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.

Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.

As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

The company has contracted large- and small-scale growers across the country to meet its seed production targets.

“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)

Out with the drought

Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids,  HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.

The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.

As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).

To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.

“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.

What is nixtamalization?

For centuries, people across Mexico and Central America have been using a traditional method, known as nixtamalization, to process their maize.

Now carried out both at household and industrial levels, this technique offers a range of nutritional and processing benefits. It could easily be adopted by farmers and consumers in other parts of the world.

What is nixtamalization?

Nixtamalization is a traditional maize preparation process in which dried kernels are cooked and steeped in an alkaline solution, usually water and food-grade lime (calcium hydroxide).

After that, the maize is drained and rinsed to remove the outer kernel cover (pericarp) and milled to produce dough that forms the base of numerous food products, including tortillas and tamales.

How does it work?

Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)
Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)

What happens when maize kernels are nixtamalized?

The cooking (heat treatment) and steeping in the alkaline solution induce changes in the kernel structure, chemical composition, functional properties and nutritional value.

For example, the removal of the pericarp leads to a reduction in soluble fiber, while the lime cooking process leads to an increase in calcium content. The process also leads to partial starch gelatinization, partial protein denaturation — in which proteins present in the kernel become insoluble — and a partial decrease in phytic acid.

What are the benefits of processing maize in this way?

In addition to altering the smell, flavor and color of maize products, nixtamalization provides several nutritional benefits including:

  • Increased bioavailability of vitamin B3 niacin, which reduces the risk of pellagra disease
  • Increased calcium intake, due to its absorption by the kernels during the steeping process
  • Increased resistant starch content in food products, which serves as a source of dietary fiber
  • Significantly reduced presence of mycotoxins such as fumonisins and aflatoxins
  • Increased bioavailability of iron, which decreases the risk of anemia

These nutritional and health benefits are especially important in areas where maize is the dietary staple and the risk of aflatoxins is high, as removal of the pericarp is thought to help reduce aflatoxin contamination levels in maize kernels by up to 60% when a load is not highly contaminated.

Additionally, nixtamalization helps to control microbiological activity and thus increases the shelf life of processed maize food products, which generates income and market opportunities for agricultural communities in non-industrialized areas.

Where did the practice originate?

The word itself comes from the Aztec language Nahuatl, in which the word nextli means ashes and tamali means unformed maize dough.

Populations in Mexico and Central America have used this traditional maize processing method for centuries. Although heat treatments and soaking periods may vary between communities, the overall process remains largely unchanged.

Today nixtamalized flour is also produced industrially and it is estimated that more than 300 food products commonly consumed in Mexico alone are derived from nixtamalized maize.

Can farmers and consumers in other regions benefit from nixtamalization?

Nixtamalization can certainly be adapted and adopted by all consumers of maize, bringing nutritional benefits particularly to those living in areas with low dietary diversity.

Additionally, the partial removal of the pericarp can contribute to reduced intake of mycotoxins. Aflatoxin contamination is a problem in maize producing regions across the world, with countries as diverse as China, Guatemala and Kenya all suffering heavy maize production losses as a result. While training farmers in grain drying and storage techniques has a significant impact on reducing post-harvest losses, nixtamalization technology could also have the potential to prevent toxin contamination and significantly increase food safety when used appropriately.

If adapted, modern nixtamalization technology could also help increase the diversity of uses for maize in food products that combine other food sources like vegetables.

Cover photo: Guatemalan corn tortillas. (Photo: Marco Verch, CC BY 2.0 DE)

CIMMYT to dedicate historic wheat experimental station to Sanjaya Rajaram

Drone view of CIMMYT's experimental station in Toluca, State of Mexico, Mexico. A valley located at 2,630 meters above sea level with a cool and humid climate is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rusts. Most of the trials done here are for wheat and triticale, but also include a couple maize plots. (Photo: Alfonso Cortés/CIMMYT)
Drone view of CIMMYT’s experimental station in Toluca, State of Mexico, Mexico. A valley located at 2,630 meters above sea level with a cool and humid climate is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rusts. Most of the trials done here are for wheat and triticale, but also include a couple maize plots. (Photo: Alfonso CortĂ©s/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) will rename one of its most historic and successful wheat experimental stations in honor of Sanjaya Rajaram, a former Wheat Program director, distinguished scientist and World Food Prize laureate.

Rajaram, one of the most successful and influential wheat breeders ever, passed away in Mexico on February 17, 2021. The wheat experimental station managed by CIMMYT in Toluca, Mexico, will be renamed “Centro Experimental Sanjaya Rajaram” in his honor.

Rajaram joined CIMMYT in 1969, working alongside Nobel Prize Laureate and scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYT’s wheat breeding program when he was 29 years old. His career accomplishments include overseeing the development of more than 480 high-yielding, disease-resistant wheat varieties, which are sown today on 58 million hectares in 51 countries.

Norman Borlaug (right) in the field with Sanjaya Rajaram, his successor as head of CIMMYT's wheat program. (Photo: Gene Hettel/CIMMYT)
Norman Borlaug (right) in the field with Sanjaya Rajaram, his successor as head of CIMMYT’s wheat program. (Photo: Gene Hettel/CIMMYT)

The wheat experimental station is located on the outskirts of Mexico’s fifth largest city, Toluca, about 60 kilometers southwest of Mexico City. It is a key testing location in the shuttle breeding process that Borlaug developed in the 1960s in his quest for high-yielding wheat to avert global famine — a breeding process that successfully continues to this day. It is also the site where Borlaug famously received news of his 1970 Nobel Peace Prize win.

“Dr. Rajaram was a world-renowned wheat breeder and scientist and a true hunger fighter. In 2014, he was recognized with one of the highest honors in agriculture, the World Food Prize, in acknowledgement for improving the lives of hundreds of millions of people through his work on high-yielding and disease-resistant wheat varieties grown on more than 58 million hectares throughout the world,” said CIMMYT Director General Martin Kropff. “He was an inspiring and cherished presence at CIMMYT for 40 years. His loss is felt by all of us and I am delighted to be able to honor him this way.”

“It is only fitting that a wheat experimental station crucial to Borlaug’s pioneering work be named for Dr. Rajaram, who followed in his footsteps,” said CIMMYT Chief Operating Officer, Deputy Director General for Research, and Integrated Development Program Director Bram Govaerts.

A virtual event to remember Rajaram and officially dedicate the Toluca station in his honor is tentatively planned for May.

Global malnutrition: Why cereal grains could provide an answer

Nigel Poole, Professor of International Development at SOAS, University of London, writes on The Conversation about the role of cereals in fighting malnutrition. Poole was a Visiting Fellow at the International Maize and Wheat Improvement Center (CIMMYT) in Mexico for a year.

Read more: https://theconversation.com/global-malnutrition-why-cereal-grains-could-provide-an-answer-156786