Skip to main content

Tag: scaling

More than machines

Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)

It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.

Over the past seven years, the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.

Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.

Training the trainers

As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.

The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.

The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.

Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)

What will scale up in Ethiopia?

In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.

To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.

The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.

Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.

An unexpected outcome

What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.

About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.

The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.

This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.

The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.

Scaling up the future

Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.

And there’s more to come from the Scaling Scan as well.

Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.

Are solar powered irrigation systems scalable?

A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)
A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)

Climate change is a major challenge for India, which faces large-scale climate variability and is exposed to high risk. The country’s current development model reiterates the focus on sustainable growth and aims to exploit the benefits of addressing climate change alongside promoting economic growth.

The government has been heavily emphasizing the importance of solar power in India, and the Ministry of New and Renewable Energy (MNRE) recently launched an ambitious initiative to further this cause. The Pradhan Mantri-Kisan Urja Suraksha evam Utthaan Mahabhiyan (PM-KUSUM) scheme aims to support the installation of off-grid solar pumps in rural areas, and reduce dependence on the grid in grid-connected areas.

However, there has been a knowledge gap about the potential use of solar energy interventions in the context of climate change and their scalability. In an effort to bridge this gap, scientists from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) have comprehensively synthesized existing pilot initiatives on the deployment of solar powered irrigation systems (SPIS) across different agro-climatic zones in India and tried to assess their scalability. This in turn has led to the identification of efficient and effective models for sustainable development in accordance with the region’s socioeconomic and geopolitical situation.

Solar powered irrigation systems in India

A compendium has been developed as part of the research carried out by CCAFS, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ) and the International Water Management Institute (IWMI).

The main objectives for bringing forth this compendium are: to qualitatively document various deployment models of SPIS and to understand the factors impacting the scalability of SPIS in India. The authors collected detailed information about the process of installing SPIS, their use and maintenance, and documented the different approaches in the form of case studies developed through primary and secondary research. They aimed to capture the key technical, social, institutional and financial attributes of the deployment approaches to enable comparative analysis and synthesis.

In total, 16 case studies from across India were documented — 1 case for centralized SPIS, 2 distributed SPIS and 13 examples for decentralized systems.  Though each of these was designed with unique objectives, detailed analysis reveals that all the cases revolve around the improvement of the three factors: accessibility, affordability and sustainability — the trinity against which all cases have been described. Grid-connected areas such as Gujarat and Maharashtra offer an immense scope of selling surplus energy being produced by SPIS, to energy-deficient electricity suppliers while areas such as Bihar and Jharkhand offer the potential for scaling the decentralized model of SPIS.

Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)
Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)

Assessing scalability

For inclusive and sustainable growth, it is important to consider the farm-level potential of solar energy use with multiple usages of energy. The compendium documents examples of the potential of solar irrigation systems in India for adaptation and mitigation benefits. It also assesses on the scalability of different deployment approaches such as solar pump fitted boats in Samastipur, Bihar, or the decentralized solar powered irrigation systems in Gujrat and West Bengal. Through the compendium, the authors study the five key stages of the scaling-up process to assess whether these initiatives are scalable and could reduce or replace fossil fuel dependence in agriculture.

While some of the documented cases are designed exclusively to address a very specific problem in a particular context, others are primarily designed as a proof-of-concept for wider applicability and policy implications — with or without suitable modifications at the time of scaling. In this compendium, both types of cases are included and assessed to understand their relevance and the potential contribution they can make in advancing the goal of solarizing irrigation and agriculture in a sustainable and effective way.

The authors conclude that all the cases have different technical, financial, and institutional aspects which complement each other, have been designed based on community needs and are in line with the larger objective of the intervention integrating three factors — accessibility, affordability and sustainability — to ensure secured availability of resources and to facilitate scalability.

Given that India is a diverse country with varied socioeconomic and geopolitical conditions, it is important to have set guidelines that lay out a plan for scaling while allowing agencies to adapt the SPIS model based on local context and realities in the field.

This article was originally published on the CCAFS website.

The beginning of a beautiful partnership

In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.

“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”

In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.

As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.

“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”

This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.

A catalyst for South-South learning and cooperation

Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.

CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.

Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.

However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.

Fostering solutions

By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.

To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.

Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)

Development Partners Explore Scaling Up Food Systems Transformation in Africa Post-COVID-19

The COVID-19 crisis is highlighting many fragilities in contemporary food systems. But the pandemic has also created opportunities for local organizations and technologies to quickly mitigate these fragilities while showcasing the resilience, innovation and adaptation of African food and agricultural systems.

African Green Revolution Forum (AGRF) panel discussed solutions to food security challenges.

Read more here: https://allafrica.com/stories/202009100823.html

Study proposes alternative to conventional technology adoption research in smallholder agriculture

Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)
Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)

The development community is introducing increasingly complex and systemic technological designs for sustainable improvements to agriculture. Yet, a systemic perspective is hard to find in “adoption-outcome” focused analyses of technological change processes. In order to improve development interventions, it is necessary not only to analyze both successes and failures, but also the process and impacts of technological change.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Institute of Development Studies (IDS) recently published a paper on rethinking technological change in smallholder agriculture, arguing against the conventional approach to studying technology adoption.

The problem with the concept of technology adoption

While the adoption rate of newly introduced technologies is still used in the evaluation of agricultural research and development, the theory of technology adoption is an insufficient framework for understanding technological change. It is too linear, too binary, too focused on individual decisions and gives an inaccurate and misleading picture to researchers.

The theory of adoption treats technology like a “black box” that is transferred smoothly from one setting to another, following a linear progression of old and inferior tools and methods to new improved ones. This theory is too simplistic to align with the complex realities of the capabilities and agency of multiple actors. In addition, in cases of participatory technology development, where intended users are involved in the creation of innovations, adoption rates are often limited due to the relatively small scale of the project.

Using adoption rate as the only indicator of success or failure can lead researchers to ignore wider impacts of the introduction of a new technology. Adoption rates could go up, but use of a new technology could cause harm to social relations, the local environment, or its resilience. Low adoption rates could classify a program as a failure, while farmers benefited substantially in undetected ways, for example forming networks or acquiring new skills and knowledge. A singular focus on adoption rates thus limits our understanding of what happens in processes of technological change.

Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT).
Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT)

An alternative conceptual framework

In addition to the introduction of a new technology to small-scale farming systems, technological change involves the agency of many social actors. The agency of farmers, scientists, project managers and extension officers is key to understand whether a new technology is perceived to be useful, accessible or realistic, as well as how it is adjusted and changing social relations.

A new framework is needed to capture this reconfiguration of social and technological components that result from the introduction of a new technology to a community.

The authors of this paper propose an alternative conceptual framework with an agent-, practice- and process-oriented approach to better understand technological change. The framework is composed of four key components: propositions, encounters, dispositions and responses.

Propositions are composed of artefacts, methods, techniques and practices and a proposed mode of engagement in agricultural production. Encounters can be deliberately organized, for example a field day, or spontaneous, when a farmer sees a neighbor using a new tool. Intended users of technology may be disposed to respond in a variety of different ways, and dispositions may change over time. Finally, responses are a process or pathway that is likely to involve adjustment or recalibration to make the new technology work for the farmer.

Further work to operationalize this framework is needed. The authors suggest a next step of developing indicators to measure learning, experimentation and behavioral change as part of analyzing technological change processes.

Scaling up mechanization in Bangladesh through partnerships

Over the last two decades, a significant number of rural Bangladeshis – especially youth – have migrated to urban centers, looking for higher paying jobs and an escape from agricultural labor. Reaper-DemoConor Riggs is the Global Director of Markets and Entrepreneurship at iDE. He says smallholder farmers in Southern Bangladesh are increasingly struggling to find and afford farm labor to help harvest crops and perform a variety of other on-farm activities.

Riggs says small-scale mechanization, such as two-wheeled tractors fitted with intensification machinery and surface irrigation pumps, can help farmers make up for this labor gap and increase productivity, while boosting the local economy by supporting micro- and small enterprises.

But as Riggs discussed at the recent Scale Up Conference at Purdue University, designing the perfect machine or technology is not enough to create sustainable, far-reaching impact. On the International Day for the Eradication of Poverty, we’re following up with him to learn more about the role of markets and partnerships in bringing small-scale mechanization to rural Bangladesh.

Q: Five years ago, CIMMYT and iDE co-designed and began implementing the USAID Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. What were the goals when you began?

Our goal was to establish a new industry for attachments in two-wheel tractors in agricultural mechanization, technologies like seeders, reapers and high-volume irrigation pumps for surface water. We wanted to help farmers access services through a fee-for-service model – small entrepreneurs buy machines and rent out those machines to farmers or directly provide that service themselves. There wasn’t really a market naturally growing for these machines in ways that included smallholders while being commercially viable, so we aimed to build it as best we could.

The results of this effort to date have been strong: 191,000 farmers can now access machinery services from a growing network of nearly 3,000 local microenterprise service providers, representing improved cultivation across 92,000 hectares in Southern Bangladesh. And we see abundant evidence that this market is scaling organically now that it’s established a model that works for both firms and farms.

Q: How did you create a market?

We incentivized several large conglomerates in the agri-business space to co-invest with us on several container-loads of these machines, which we imported from Thailand and China. We helped them find some early adopter dealers and local service providers who would actually buy them. Then we developed short-term smart subsidies to drive down the costs of supply chain development, accelerated customer adoption of the machines, and overall market growth.

An important aspect of our strategy is that we did not present these accelerating investments as typical subsidies; rather, we worked with our private partners to offer commercial discounts so that service providers and farmers Md Lalchan Shardar is a farmer and local service provider. The axial flow pump cuts the amount of irrigation time in halfwould recognize the true value of the product and the short-term opportunity to adopt the technology in its initial commercialization phase.

We first implemented this strategy with two leading firms in the market who concurrently launched a very proactive marketing campaign. Then we started pulling back those discounts overtime, year by year, as the initial partner firms found the market opportunity, and redirected this acceleration process with an additional group of interested companies that also wanted to enter the market in an inclusive manner.

Q: So the companies were benefiting from the discount?

Yes, but we created a lot of conditions. Essentially, the more project investment that was committed by the project to discount the cost of the machinery, the more we expected to see both cash and in-kind investment from those companies. In the end, about a dozen companies come into the game with about five that have really driven a lot of heavy investment.

Partnerships have been key throughout this project. What were the different strengths iDE and CIMMYT brought to the table?

iDE is a market development organization. We focus on market-based solutions, technology commercialization, last mile distribution, and market access. Fundamentally, we see our job as de-risking the market for companies to invest in lower income areas and empower the farmer and their family as both consumers and suppliers in the formal economy. To do this, we employ a lot of supply chain development, product re-design and most importantly, we develop networks of micro-entrepreneurs to serve the ‘missing middle’ between the formal and informal economies.

CIMMYT brings leading capabilities in linking science and practice, with an un-paralleled strength in understanding the agronomic rationale and the agronomic and economic combinations of the technologies as they’re applied on the ground.

CIMMYT knew what technologies were needed on the ground in Southern Bangladesh to genuinely improve productivity and efficiency in the face of changing economic circumstances, and understood how to apply them to real world conditions in alignment with market-based diffusion mechanisms. CIMMYT was also instrumental in working closely with the Bangladesh Agriculture Research Institute (BARI) and extension services, key government partners that helped us ensure market development was in alignment with public and social policy.

It can be difficult finding a synergy between two different organizations. Did you run into any challenges?  

CIMMYT and iDE have different specializations, and at the beginning, we had natural, friendly debates about how to best integrate them and achieve highly ambitious project objectives. But relatively quickly, we figured out how to learn from each other and synthesize our approaches for the best results. Both CIMMYT and iDE approached the partnership with a mission driven focus and a sense of constant, mutual respect for the value each partner brought to the table.

What do you see for the future? 

As for iDE, we’re excited to expand this successful partnership with CIMMYT to figure out how we can further replicate this success in other countries where we both work. While some of the market conditions in Bangladesh have provided us with unique opportunities for technology scaling in mechanization, we’re highly optimistic that the underlying partnership principles and management systems of CSISA-MI can be replicated in other programs and country contexts – even in ostensibly more challenging market environments.

The CSISA-MI project is funded by USAID.

Avoiding the next Aral Sea: Scaling responsibly

The Aral Sea was once the world’s fourth largest inland body of water. But in 1959, Soviet premier Nikita Khruschev unfurled a plan for industrialized agriculture across Central Asia. The government constructed irrigation canals to divert water from the Amu Syr and Amu Darya rivers, the two primary feeders for the Aral Sea, to thirsty cotton fields in Uzbekistan. Today, only about two-fifths of the sea remain. Evaporation exasperated by climate change and pesticide runoff have left the remaining body of water salty and polluted.

MSI's founder and president Larry Cooley presents at the Purdue Scale Up Conference 2018. (Photo: Rachel Cramer/CIMMYT)
MSI’s founder and president Larry Cooley presents at the Purdue Scale Up Conference 2018. (Photo: Rachel Cramer/CIMMYT)

The disappearance of the Aral Sea is a tragic story about scaling gone wrong. Larry Cooley, one of the top scaling experts in the world, describes scaling as the attempt to overcome a gap between the need for something and the extent to which that need is being met. In the case of the Aral Sea, the Soviet Union saw a need for more robust cotton production and decided to overcome the gap through large-scale irrigation.

They were successful in reaching their scaling ambition but at a high and unsustainable cost. Would Kruschev still go ahead with his development scheme if he knew it would cause irreversible ecological damage in the future? Would he still prioritize high cotton yields if he knew it would decimate the local fishing industry and leave thousands unemployed?

At the recent Scale Up Conference at Purdue University, over 200 researchers and practitioners gathered to discuss effective approaches to scaling up agricultural technologies and innovations in the developing world. The tagline read “Innovations in agriculture: Scaling up to reach millions.” Several of the presenters, however, argued development organizations should think about potential tradeoffs before trying to reach the biggest impact.

Finding the optimal scale

CIMMYT’s scaling advisor Lennart Woltering (left) and mechanization specialist Jelle van Loon led a session. (Photo: Rachel Cramer/CIMMYT)
CIMMYT’s scaling advisor Lennart Woltering (left) and mechanization specialist Jelle van Loon led a session. (Photo: Rachel Cramer/CIMMYT)

CIMMYT’s scaling advisor Lennart Woltering and mechanization specialist Jelle van Loon led a session on the opportunities and challenges to scaling two-wheeled tractors in Africa, Asia and Latin America. Van Loon explained how mechanization can decrease labor costs, improve livelihoods and help farmers stay locally and internationally competitive, but he acknowledged a few potential downsides. Small tractors of this kind require fossil fuels and maintenance, and introducing mechanization to a rural community has the potential to displace jobs and shift gender roles.

Woltering explained a new tool can help researchers and development organizations think through these tradeoffs in a systematic way. The Scaling Scan, which he developed in a collaboration with The PPPLab, guides users through a series of questions and prompts them to reflect on what scaling means, what it takes to take a project to scale and what the unintended consequences could be in a particular context.

Lennart Woltering (second from left) presents the "ingredients" of the Scaling Scan tools during one of the sessions of the Purdue Scale Up Conference. (Photo: Rachel Cramer/CIMMYT)
Lennart Woltering (second from left) presents the “ingredients” of the Scaling Scan tools during one of the sessions of the Purdue Scale Up Conference. (Photo: Rachel Cramer/CIMMYT)

The first step of the Scaling Scan is “Defining a realistic scaling ambition.” It contains a responsibility check, prompting users to consider how an intervention could affect power equity and natural resources if that scaling ambition is indeed reached. “We tried to make this check as simple as possible, but still have people anticipate what unintended consequences their scaling effort might have ten years down the line,” said Woltering.

The responsibility check includes questions like: Who are the winners and who are the losers when the innovation is adopted at a large scale? Will the scaling of the innovation affect the availability of important natural resources, such as water and land?

Woltering emphasized that development organizations should try to identify the scale that optimizes tradeoffs. “We want people to be aware that bigger is not always better,” he said.

“You might think you’re benefitting the irrigation farmers, but at the same time, the fishermen or other people might be paying the price for that,” Woltering explained. “If you’re only focused on those irrigation farmers and not the whole system, it’s easy to think, ‘Oh, we’re doing a fantastic job,’ when you’re not.”

The reasons to scale up responsibly

At the conference, Tricia Wind and Robert McLean of the International Development Research Center (IDRC) presented some of their lessons learned about responsible scaling.

“If you’re working on the problem at different scales, you need to think about the problem differently and think about the solutions differently,” said Wind. “The first principle is thinking about what scale you are starting with and what the optimal scale would be for the problems that you’re focused on solving.”

The second principle is the justification for scaling. “So stepping back from the how and thinking about the why,” she explained. “What difference would this make?” Similar to the responsibility check in the Scaling Scan, the second principle explores the issue of equity. Who would be reached by this solution, and who would be left out or even negatively affected by it?

The third principle is about coordination. McLean said, “This is about accepting that all scaling happens in a system. Are the alternative solutions? How do you displace solutions that might already exist if you try to scale something? What about the cultural norms and the institutions that exist in the area where you’re scaling, and how do you coordinate to scale responsibly?”

The fourth principle is dynamic evaluation. Maclean said an organization should learn as it scales. “It’s never going to be a 1-2-3 step process that’s going to get you from innovation to impact at scale,” he explained. “Scaling itself is also an intervention. So you have your intervention you’re trying to scale, and as you scale, systems change.”

Participants and panelists of the Scale Up Conference pose for a group photograph. (Photo: Courtesy of Purdue University)
Participants and panelists of the Scale Up Conference pose for a group photograph. (Photo: Courtesy of Purdue University)

Johannes Linn, Nonresident Senior Fellow with the Brookings Institute and another one of the world’s top scaling experts, emphasized, “Scaling is not a linear process. It is iterative with feedback loops to learn and adapt.”

During the opening reception, Woltering and van Loon congratulated Seerp Wigboldus, a senior advisor and researcher with Wageningen University, on his recently completed PhD thesis, published as a book: To scale, or not to scale – that is not the only question.

Someone asked, “What do you do if 40 people are going to be harmed by an intervention while 50 people benefit?” Wigboldus replied, “Well, unfortunately, there’s no formula for this kind of thing. There will always be tradeoffs, but hopefully we can get people to slow down a bit. We need to be transparent and justify our decisions.”

Nearly all of humanity’s greatest challenges originate from the scaling of innovations. The depletion of the Aral Sea in order to scale cotton production is just one example. Climate change and industrialization is another. By adopting a responsible scaling approach, the agricultural development sector can minimize negative impacts and side effects and seek optimal solutions.

The full version of the Scaling Scan contains detailed practical information on how and when to use this tool. A condensed, two-page version is also available. We also recommend the companion Excel sheet, which generates average scores and results automatically.

This work is supported by the German Development Cooperation (GIZ) and led by the International Maize and Wheat Improvement Center (CIMMYT).

Innovations for cross-continent collaborations

Offering a very warm welcome to the Australian High Commissioner and team by Arun Joshi. (Photo: Hardeep/CIMMYT)
Offering a very warm welcome to the Australian High Commissioner and team by Arun Joshi. (Photo: Hardeep/CIMMYT)

Australian High Commissioner to India, Harinder Sidhu, visited the Borlaug Institute for South Asia (BISA) in Ladhowal, Ludhiana, India on February 19.

Arun Joshi, Managing Director for BISA & CIMMYT in India, welcomed her with an introduction about the creation, mission and activities of BISA and the International Maize and Wheat Improvement Center (CIMMYT).

Sidhu also learned about the work CIMMYT and BISA do in conservation agriculture in collaboration with Punjab Agricultural University, machinery manufacturers and farmers. This work focuses on using and scaling the Happy Seeder, which enables direct seeding of wheat into heavy loads of rice residue without burning. This technology has been called “an agricultural solution to air pollution in South Asia,”  as the burning of crop residue is a huge contributor to poor air quality in South Asia. Sidhu learned about recent improvements to the technology, such as the addition of a straw management system to add extra functionality, which has led to the large-scale adoption of the Happy Seeder.

The high commissioner showed keen interest in the Happy Seeder machine, and was highly impressed by the test-wheat-crop planted on 400 acres with the Happy Seeder.

Salwinder Atwal showed Sidhu the experiments using Happy Seeder for commercial seed production, and ML Jat, Principal Researcher at CIMMYT, presented on the innovative research BISA and CIMMYT are doing on precision water, nutrient and genotype management.

Happy Australian High Commissioner riding a tractor at BISA Ludhiana. (Photo: Hardeep/CIMMYT)
Happy Australian High Commissioner riding a tractor at BISA Ludhiana. (Photo: Hardeep/CIMMYT)

Sidhu visited fields with trials of climate resilient wheat as Joshi explained the importance and role of germplasm banks and new approaches such as use of genomic selection in wheat breeding in the modern agriculture to address the current challenges of climate change. He also explained the work CIMMYT does on hybrid wheat for increasing yield potential and breeding higher resistance against wheat rusts and other diseases.

ML Jat, who leads the CIMMYT-CCAFS climate smart agriculture project, explained the concept of climate smart villages and led Sidhu on a visit to the climate smart village of Noorpur Bet, which has been adopted under the CGIAR Research Program on Climate Change, Agriculture and Food Security.

During Sidhu’s visit to Noorpur Bet, a stakeholder consultation was organized on scaling happy seeder technology for promoting no-burning farming. In the stakeholder consultation, stakeholders shared experiences with happy seeder as well as other conservation agriculture amd climate smart agriculture technologies. BS Sidhu, Commissioner of Agriculture for the Government of Punjab chaired the stakeholder consultation and shared his experiences as well as Government of Punjab’s plans and policies for the farmers to promote happy seeder and other climate smart technologies.

“I am very impressed to see all these developments and enthusiasm of the farmers and other stakeholders for scaling conservation agriculture practices for sustaining the food bowl,” said Sidhu. She noted that Punjab and Australia have many things in common and could learn from each other’s experiences. Later she also visited the Punjab Agricultural University and had a meeting with the Vice Chancellor.

This visit and interaction was attended by more than 200 key stakeholders including officers from Govt. of Punjab, ICAR, PAU-KVKs, PACS, BISA- CIMMYT-CCAFS, manufacturers, farmers and custom operators of Happy Seeder.

The Borlaug Institute for South Asia (BISA) is a non-profit international research institute dedicated to food, nutrition and livelihood security as well as environmental rehabilitation in South Asia, which is home to more than 300 million undernourished people. BISA is a collaborative effort involving the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council for Agricultural Research (ICAR).