Skip to main content

Tag: scaling

Solar powered dryers boost peanut production in Togo

Solar powered peanut dryers in Togo are helping women-run cooperatives reduce their workload and increase their profits.

A number of West African countries have climate and soil well-suited to groundnut cultivation. In the second half of the twentieth century, the region became a world leader in peanut production. In Togo, peanuts do well, but problems with postharvest processing have kept this crop performing well below its potential.

However, the introduction of the solar powered dryers has had a significant positive impact on the production and preservation of a vital crop for the local population.

From peanut stews and sauces that are staples of national cuisine to overseas export of peanut products, there is no shortage of uses for this groundnut in Togo. However, smallholding farmers struggle to preserve their entire crop in large part because of aflatoxins, which thrive when conditions are too moist and ruin peanuts.

“Peanuts are a very perishable commodity and they can spoil if not stored properly for processing,” said Aïssetou Koura, president of the peanut farmer cooperative in Koumonde.

This is particularly true for smallholding peanut farmers, which in Togo includes many women. The established method for drying peanuts is to lay them out in the open air, which is a labor-intensive process that leaves the crop exposed to unexpected rains and contamination by pests. “In the past, we suffered huge losses,” Aïssetou explained.

Aicha Gaba from the N’kani N’kana cooperative works with a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

A better way to dry

In 2021, the introduction of solar dryers began to change things dramatically for peanut farmers in cooperatives from Tovegan to Dapaong. In collaboration with the United Nations Food and Agriculture Organization (FAO), the Green Innovation Centers for the Agriculture and Food Sector (GIC) in Togo helped a local manufacturer, Guema Concept, develop solar dryer technology for local peanut farmers from plans made by the University of Hohenheim.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

The dryers are equipped with a ventilation system and a power kit that includes solar panels and a battery so they can operate during periods of reduced sunlight. They have a capacity of 12 kilograms and can complete a drying cycle in as little as two hours, which is about one quarter of the time a manual drying cycle takes. Depending on the solar exposure, cooperatives like the one in Koumonde can perform three or four cycles in a day.

“We have found a solution by preserving our products with the solar dryer,” Aïssetou said.

GIC has helped five smallholding farmer cooperatives procure solar dyers across Togo, and more than 50 women farmers are members of these groups whose work is benefitting from this technology.

Farmers like Aicha Gaba are also increasing their profit because the solar dryers allow them to do more work with fewer laborers.

“Our cooperative dries peanuts with only two people via the solar dryer, unlike conventional open drying, which requires five people to spread, turn, monitor and collect the peanuts,” Gaba said.

“This process reduces the workers’ wages and then saves us the money of three workers, which is a good thing for us.”

The new technology is producing better peanuts thanks to consistent moisture and temperature levels and faster processing speeds, said Djéri Bossa, a member of the cooperative in Bassar.

“Thanks to the solar dryers offered by GIC Togo, we can freely dry our products in good conditions,” Bossa explained.

“The products derived from the processing of peanuts are of improved quality, unlike the conventional open-drying method we used.”

All is not sunny

Despite the initial success of the solar dryers, there are challenges that remain for scaling up this innovation. The dyers are quite heavy and, for smallholding women, it can be difficult to maneuver the machines by themselves. At the same time, farmers say that – even with the greater volume the dryers have helped them achieve – they would still like a higher-capacity machine.

But even with the need for lighter, harder-working dryers, there is enormous potential for this innovation to spread to new areas, bring additional production and income to smallholding farmers (including many women), and help make groundnuts a bigger piece of the economic pie in Togo.

Cover photo: Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

Thank you to our partners, Laré B. Penn (University of Lomé) and Johanna Steinkuehler (GIZ Togo).

Scaling Scan website launched

The Scaling Scan website has been launched offering the latest news, manuals, videos, trainings, a directory of consultants, and a forum to engage with peers and experts on how to use the Scaling Scan tool to support scaling processes.

The website, which was developed by Lennart Woltering, scaling advisor with the International Maize and Wheat Improvement Center (CIMMYT), and the Scaling team in CIMMYT, builds on the success of the Scaling Scan, a user-friendly tool designed for anyone to learn about scaling: appreciate that context is king, that innovations don’t scale alone, and that collaboration is key for success

“The idea behind the Scaling Scan has always been to make it accessible to users of all levels, to bring the discussion on scaling to the ground and therefore, just like the tool, the materials on the site are available in English, French, and Spanish,” said Woltering.

It features materials used in training programs and workshops by CIMMYT’s scaling team over the past five years, repurposing them neatly for users around the world to assess the scalability of their own pilot projects and innovations. The website also includes a forum where users can engage in conversations, exchange information, and ask experts and other users questions and advice related to scaling. The platform also acts as a conversation space, allowing users around the world to share their experiences with the Scaling Scan, ask questions, and learn from each other. This has the added benefit of helping the Scaling Scan team understand on the ground needs so that they can create more user-friendly content.

“The demand for Scaling Scan workshops has been overwhelming, within CIMMYT, the CGIAR, but also with development organizations like Catholic Relief Services and GIZ and the private sector and we realized that we should bank much more on its biggest asset: accessibility. So, in 2022 we started with trainings for facilitators and the website serves as the platform for them to draw inspiration, materials, and methodologies how to apply the Scaling Scan in their context,” said Woltering.

Scaling is a process that aims to achieve sustainable change at scale. This means that not only should many people benefit from a new technology, but the results of a particular project should carry over beyond its immediate context and transform communities for the better.

It’s a complex process, and there is no one single recipe or blueprint. The Scaling Scan can, however, give direction to scaling new projects and highlight key factors scaling teams need to look out for

“The Scaling Scan aims to provide a framework for people to understand how much they should scale, and what else should be taken into consideration, in addition to the technology, for the next steps in their scaling process,” said CIMMYT Scaling Coordinator Eva Marina Valencia Leñero. “It also intends to show that scaling is not only about focusing on where the innovation is ready or mature, but also whether there are enabling conditions – what we call scaling ingredients – surrounding this innovation that managers have to plan for if they want their innovation to last in the long-term.”

“Considering that the core of the tool was developed at a kitchen table with three people over two days with no funding, it is amazing that the tool has served more than 2,000 people in the last five years,” said Woltering. With support from GIZ, the Scaling Scan is now being digitized which allows for the development of different versions, for example one with more emphasis on social inclusion or on climate mitigation for the One CGIAR Low-Emission Food Systems (MITIGATE+) Initiative. The lessons from over five years of applying the Scaling Scan from rural areas in Honduras to Bangladesh are currently being written up.

The democratization of innovation

When the Norwegian Red Cross hired Kristian Wengen and his consulting firm Tinkr to launch a “Scaling for Success” initiative, he found himself at a crossroads. From international aid projects aiming to address the UN Sustainable Development Goals (SDGs) to private companies seeking to expand their market, everyone was talking about the challenges of scaling up – expanding and sustaining successful programs to reach a greater number of people – but there were few clear paths to solutions.

Wengen worked with CIMMYT to adapt the Scaling Scan. (Photo: Kristian Wengen)

The Scaling Scan has solutions to offer

But when Wengen came across a project using a tool called the Scaling Scan that identifies and analyzes 10 critical elements for assessing the scalability of any pilot project, he knew he had found a way forward. He was excited, but also worried because the project using the Scaling Scan had concluded.

Concerned he would lose access to the best tool he had found by far, Wengen connected with Lennart Woltering, who created the Scaling Scan for the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with a Dutch-supported project on private-public partnerships called the PPPLab. Woltering and Wengen began a dialogue regarding repurposing the Scaling Scan for Wengen’s context.

“What I like about the Scaling Scan is that it works on a very detailed level to produce systemic results,” said Wengen. “It brings a simple approach to the complex problems of scalability, which allow organizations to achieve efficient solutions, regardless of their geographic or demographic context.”

The Scaling Scan focuses attention on discrete components – from finance and business cases to technology and skills – which are necessary to successfully scale an innovation. But it also spurs insight into how each of these necessary ingredients complement each other as a project prepares to successfully transition, reproduce, and expand.

Wengen believes the most effective work of the Scaling Scan happens in team conversations, and it helps deliver clear feedback that can form the basis of discussions that go straight to the heart of the matter. While the challenges of scaling an innovation are complex, the Scaling Scan cuts through the noise and focuses attention on solving the most important problems, whether related to leadership, collaboration, or public sector governance.

Scaling the Scaling Scan

In their conversations, Wengen and Woltering identified opportunities for improving the Scaling Scan. For example, Wengen is building a digitized, web-based version that, like the original Scaling Scan, will be freely available. He calls it a scorecard, a smaller version which capitalizes on the ability of the Scan to promote productive dialogue that moves a project forward. “I am thrilled to help broaden the reach of the Scaling Scan, as making it available for a much wider audience will democratize innovation,” Wengen said.

“Kristian’s adaptations are exactly how I designed the Scaling Scan to work,” said Woltering. “I wanted it to be straightforward enough to be useful across a broad range of business and development applications and flexible enough to be tailored to the specific needs of a particular region, culture, or marketplace.” Seeing how Wengen has utilized the Scaling Scan across a variety of markets has spurred Wennart to develop the Scaling Scan website, where other interested practitioners can download the tool and share their own innovations. “The Scaling Scan truly has utility across the broadest geographies and socioeconomic ranges,” said Wennart.

Wengen is hoping his scaling scorecard will help drive success in a new collaboration he is undertaking with Innovation Norway, a state-owned organization that helps Norwegian businesses grow and export promising products and services. Wengen believes his scorecard will add immense value to a diverse set of projects ranging from business management software helping bakeries reduce waste and increase profits to zero-carbon ocean-going ships and virtual medical training systems.

This kind of transfer and growth shows that even the Scaling Scan itself can be scaled up from the tropics to the Arctic Circle, and Woltering can’t wait to see where the next successful adaptation will spring up.

Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is one of the ways in which Feed the Future, the U.S. government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. It’s a two-year rapid response effort that connects farmers to innovative tools and information they need to manage the high costs and input supply disruptions over the next several cropping seasons.

AID-I provides targeted assistance to up to three million African smallholder farmers by improving soil health and fertilizer management; strengthening local seed systems; connecting farmers to financial products and services; and delivering extension and advisory services. AID-I Delivery Hubs focus on areas where the need and potential is greatest: Malawi, Tanzania, and Zambia.

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub is establishing agile, networked rural innovation hubs to enhance the adaptation of technology, co-ownership, and sustainable inputs and outputs for value chains development. The project is fostering diversification through the scaling of productive and resilient agronomic practices and seed systems for cereals, legumes, vegetables and feed/fodder products, and strengthens rural-urban linkages to enable national capacity for cross-network management.

It is being implemented in close consultation with One CGIAR programs and integrates both CGIAR and non-CGIAR innovation partners to support scaling by last-mile delivery partners.

This work contributes to six of the United Nations Sustainable Development Goals (SDGs):

  1. Zero Hunger
  2. Good Health and Well-Being for People
  3. Gender Equality
  4. Decent Work and Economic Growth
  5. Responsible Consumption and Production
  6. Climate Action.

What are the project’s primary objectives?

  • Improve soil health and fertilizer management to grow more, more profitably and with less waste.
  • Strengthen local seed systems so agribusinesses can reach smallholder farmer customers with a diversity of crop seeds, including climate-resilient and more nutritious varieties.
  • Connect to financial products and services designed to overcome the unique needs smallholder farmers and small and medium agribusinesses face; and,
  • Deliver extension and advisory services on good agricultural practices, soil and water management practices, and post-harvest storage solutions so smallholder farmers and small and medium agribusiness owners are more productive and keep more of what they grow.

Video 

Deputy Assistant Administrator, USAID Resilience Environment and Food Security Bureau, Ann Vaughan, visits an AID-I demonstration plot of drought-tolerant maize varieties in Zambia.

Reports

Buffering the effects of extreme drought in Zambia: New crops and Advisories are helping farmers

Sustainable Agrifood Systems Approach for Sudan (SASAS)

Sustainable Agrifood Systems Approach for Sudan (SASAS) takes a modular and multi-crop approach, implementing an integrated agrifood system that supports food security, employment, and equity. The project focuses on soil fertility management integrated with agrifood systems based on smallholder farmer productivity gains, leveraging both One CGIAR and non-CGIAR innovation partners to support scaling on the ground by last-mile partners.

SASAS moves beyond humanitarian response and resilience to inclusive agriculture-led economic growth and enables landless and under resourced people to participate in functional and gender-sensitive high-production value chains.

This work contributes to six of the United Nations Sustainable Development Goals (SDGs): Zero Hunger; Good Health and Well-Being for People; Gender Equality; Decent Work and Economic Growth; Responsible Consumption and Production; and Climate Action.

SASAS Feature Film 

Technical Overview: Interventions and Food Security Initiative

Abdelrahman Kheir, chief of party for SASAS, highlights the project’s rapid deployment of agricultural technologies across Sudan.

Imtithal Ali Atta Allah from the El-Harram Cooperative

Ali Atta Allah, a farmer, talks about her recent financial gains from selling vegetables cultivated with SASAS-provided seeds.

Aziza Haroun from the El-Harram Cooperative

Aziza Haroun shares her story working with Mercy Corps and SASAS who have provided her with improved seed, doubling her crop yields compared to previous years.

From silver bullets to transition science in the CGIAR: reflections on the scalingXchange Call to Action

The origins of the CGIAR, the world’s largest publicly funded agricultural research consortium for the poor, are closely related to the Green Revolution; a revolution mostly told as the work of one Northern hero with a superior technology that saved the world from starvation. Only recently has the notion that the introduction of that superior technology was one of many investments and innovations that kicked off as the Revolution started to gain ground – and that these investments and innovations came from both the North and South. Scaling of innovation happens in a larger system, often one that feels resistant to whatever we try to scale or, like in the case of the Green Revolution, aligned with what was being scaled and thus led to a tipping point and a completely new way agriculture is produced. The Revolution changed our relation to food, from which there was no going back.

In my ten years at the CGIAR – from 2005 to 2010 at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and then from 2017 to now at the International Maize and Wheat Improvement Center (CIMMYT) – major shifts can be observed in how scaling is approached.

First, scaling equals large adoption during the project, stemming from strong confidence that “if we build it, they will come”, or we just show how good our innovation is and others will scale it. From my own experience developing scale-appropriate drip irrigation in the Sahel, North Africa, I can say that approach hardly worked. When I re-joined the CGIAR in 2017, there was much more attention to the context in which the intervention is being scaled – we need to “create an enabling environment” for the innovation, and multiple innovations need to scale alongside “our”, mostly technical, innovation. It was very interesting to see up close how more and more colleagues have started to question whether scaling is “good” in the first place and whether it should be about “our” innovations.

COVID-19 and the major energy transitions that are going on in Europe and some states in the United States of America (USA) seem to have awoken a much stronger systems view, the realization that change takes decades, and that there are winners and losers in that process. I think we did a great job in questioning the “silver bullet” and “transfer of technology” mindset and see the achievement of the UN Sustainable Development Goals (SDGs) as a transition process that requires radically different approaches and addresses multiple leverage points.

Scaling at One CGIAR

The major reform from 15 CGIAR centers to One CGIAR was the perfect opportunity to take scaling seriously as a science and an art. A range of methodologies have been developed, and informal networks of like-minded people have worked together a lot to push for a new paradigm on scaling. It is great that scaling is now well embedded in the One CGIAR strategy for the future. The big One CGIAR Initiatives have all reserved about 5 percent of their budgets to integrate scaling expertise. Also, scaling is very much recognized as a topic that requires a culture and mindset change within the organization to be much more effective.

Not surprisingly, the Call to Action from the Global South and its eight action points resonated a lot with me, especially since the following principles match really well:

  • It is not about reaching a target as fast as possible but about the whole environment for sustainability – more is not always better. Scaling can help us understand whether project outputs have contributed to something good (Action 1).
  • We need to reflect better on the viability of some innovations to go to scale – rather than promoting or selling our own solutions, supporting Southern solutions could increase viability (Action 7).
  • Problem owners should be in charge of scaling – scaling should be a locally owned process where those on the ground negotiate what is good and enough, and we, the research and development organizations, facilitate and support (Action 2).
  • The way projects are designed and implement set us up for failure. We create fake, highly controlled environments designed to prove that our innovation works – the gap with the reality on the ground could not be larger. The development community, with donors, need to rethink our approach (Action 5).
  • We need to invest in learning and the science of scaling. Organizations in the Global North need modesty in understanding that our role is not neutral and realize that there is so much we don’t know (Action 8).
  • Within organizations, scaling is a cultural issue tightly connected to change management. We need to shift mindsets and behaviors to allow better scaling to happen.

That this Call comes from researchers in the Global South is so powerful. It shows us that the current ways of working are not delivering and paints a picture of a better way of doing things, but at the moment, we are in uncertain limbo between the two. The guidance in the Call can help to incite momentum and change. I believe we are coming to a critical mass of people that can tip the scale and that the actions in the Call can become the new normal – so that the stories we tell in the future focus not just on external (Northern) innovations that lead to big change, but on the interplay between what is going in the South and how external “solutions” fit in.

Cover photo: Lead farmer Santa Bhandari harvests green maize for her buffaloes
Neulapur, Bardiya, Nepal. (Photo: Peter Lowe/CIMMYT)

CM holds parleys with experts of BISA to give major push to crop diversification in the state

Punjab Chief Minister Bhagwant Mann met with experts from the International Maize and Wheat Improvement Center (CIMMYT) to promote crop diversification and use of Direct Sowing Rice (DSR) Basmati as part of the Borlaug Institute for South Asia (BISA) project.

In a meeting with CIMMYT Director General Bram Govaerts, water shortages were an integral part of the discussion. Mann encouraged use of BISA models across the state that require less water consumption than other methods, without impacting farmers’ income.

Mann also highlighted the potential of crops like maize, pulses, oilseeds, vegetables, bamboo, popular, and fruit such as guava and kinoo.

Read more: CM holds parleys with experts of BISA to give major push to crop diversification in the state

More than machines

Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)

It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.

Over the past seven years, the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.

Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.

Training the trainers

As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.

The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.

The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.

Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)

What will scale up in Ethiopia?

In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.

To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.

The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.

Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.

An unexpected outcome

What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.

About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.

The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.

This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.

The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.

Scaling up the future

Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.

And there’s more to come from the Scaling Scan as well.

Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.

Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar)

The Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar) project aims to define the processes and practices (technical options, scaling interventions, policy settings and implementation) that can be applied to achieve sustainable, efficient, diversified food systems at scale in the Eastern Gangetic Plains of Bangladesh, India and Nepal.

Home to 450 million people, this region has the world’s highest concentration of rural poverty and strong dependence on agriculture for food and livelihoods. Productivity remains low and diversification is limited due to poorly developed markets, sparse agricultural knowledge and service networks, inadequate development of available water resources, and low adoption of improved, sustainable production practices.

Rupantar builds on existing work and partnership networks to link research outputs and development goals through the demonstration of inclusive diversification pathways, definition of processes for scaling to the millions of smallholder farmers in the region, and generating a better understanding of the policies that support diversification.

Research objectives

  • Defining the processes and practices (technical options, scaling interventions, policy settings and implementation) that can be applied to achieve sustainable, efficient, diversified food systems at scale in the Eastern Gangetic Plains.
  • Understanding the context for diversification in the Eastern Gangetic Plains.
  • Defining and implementing diversification pathways using collaborative and inclusive approaches.
  • Deepening understanding of the trade-offs and synergies associated with diversification pathways.
  • Engaging and communicating with change-makers to ensure outputs are used and integrated into independent programs.

Project outcomes

  • Demonstrated pathways for equitable and sustainable diversified food systems in the EGP.
  • Improved evidence-based policies for planning and development programs that promote diversification.
  • Self-sustaining diversification pathways that are owned by local partners and promoted without ongoing project support.

Are solar powered irrigation systems scalable?

A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)
A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)

Climate change is a major challenge for India, which faces large-scale climate variability and is exposed to high risk. The country’s current development model reiterates the focus on sustainable growth and aims to exploit the benefits of addressing climate change alongside promoting economic growth.

The government has been heavily emphasizing the importance of solar power in India, and the Ministry of New and Renewable Energy (MNRE) recently launched an ambitious initiative to further this cause. The Pradhan Mantri-Kisan Urja Suraksha evam Utthaan Mahabhiyan (PM-KUSUM) scheme aims to support the installation of off-grid solar pumps in rural areas, and reduce dependence on the grid in grid-connected areas.

However, there has been a knowledge gap about the potential use of solar energy interventions in the context of climate change and their scalability. In an effort to bridge this gap, scientists from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) have comprehensively synthesized existing pilot initiatives on the deployment of solar powered irrigation systems (SPIS) across different agro-climatic zones in India and tried to assess their scalability. This in turn has led to the identification of efficient and effective models for sustainable development in accordance with the region’s socioeconomic and geopolitical situation.

Solar powered irrigation systems in India

A compendium has been developed as part of the research carried out by CCAFS, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ) and the International Water Management Institute (IWMI).

The main objectives for bringing forth this compendium are: to qualitatively document various deployment models of SPIS and to understand the factors impacting the scalability of SPIS in India. The authors collected detailed information about the process of installing SPIS, their use and maintenance, and documented the different approaches in the form of case studies developed through primary and secondary research. They aimed to capture the key technical, social, institutional and financial attributes of the deployment approaches to enable comparative analysis and synthesis.

In total, 16 case studies from across India were documented — 1 case for centralized SPIS, 2 distributed SPIS and 13 examples for decentralized systems.  Though each of these was designed with unique objectives, detailed analysis reveals that all the cases revolve around the improvement of the three factors: accessibility, affordability and sustainability — the trinity against which all cases have been described. Grid-connected areas such as Gujarat and Maharashtra offer an immense scope of selling surplus energy being produced by SPIS, to energy-deficient electricity suppliers while areas such as Bihar and Jharkhand offer the potential for scaling the decentralized model of SPIS.

Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)
Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)

Assessing scalability

For inclusive and sustainable growth, it is important to consider the farm-level potential of solar energy use with multiple usages of energy. The compendium documents examples of the potential of solar irrigation systems in India for adaptation and mitigation benefits. It also assesses on the scalability of different deployment approaches such as solar pump fitted boats in Samastipur, Bihar, or the decentralized solar powered irrigation systems in Gujrat and West Bengal. Through the compendium, the authors study the five key stages of the scaling-up process to assess whether these initiatives are scalable and could reduce or replace fossil fuel dependence in agriculture.

While some of the documented cases are designed exclusively to address a very specific problem in a particular context, others are primarily designed as a proof-of-concept for wider applicability and policy implications — with or without suitable modifications at the time of scaling. In this compendium, both types of cases are included and assessed to understand their relevance and the potential contribution they can make in advancing the goal of solarizing irrigation and agriculture in a sustainable and effective way.

The authors conclude that all the cases have different technical, financial, and institutional aspects which complement each other, have been designed based on community needs and are in line with the larger objective of the intervention integrating three factors — accessibility, affordability and sustainability — to ensure secured availability of resources and to facilitate scalability.

Given that India is a diverse country with varied socioeconomic and geopolitical conditions, it is important to have set guidelines that lay out a plan for scaling while allowing agencies to adapt the SPIS model based on local context and realities in the field.

This article was originally published on the CCAFS website.

The beginning of a beautiful partnership

In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.

“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”

In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.

As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.

“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”

This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.

A catalyst for South-South learning and cooperation

Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.

CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.

Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.

However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.

Fostering solutions

By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.

To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.

Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)

Development Partners Explore Scaling Up Food Systems Transformation in Africa Post-COVID-19

The COVID-19 crisis is highlighting many fragilities in contemporary food systems. But the pandemic has also created opportunities for local organizations and technologies to quickly mitigate these fragilities while showcasing the resilience, innovation and adaptation of African food and agricultural systems.

African Green Revolution Forum (AGRF) panel discussed solutions to food security challenges.

Read more here: https://allafrica.com/stories/202009100823.html

Study proposes alternative to conventional technology adoption research in smallholder agriculture

Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)
Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)

The development community is introducing increasingly complex and systemic technological designs for sustainable improvements to agriculture. Yet, a systemic perspective is hard to find in “adoption-outcome” focused analyses of technological change processes. In order to improve development interventions, it is necessary not only to analyze both successes and failures, but also the process and impacts of technological change.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Institute of Development Studies (IDS) recently published a paper on rethinking technological change in smallholder agriculture, arguing against the conventional approach to studying technology adoption.

The problem with the concept of technology adoption

While the adoption rate of newly introduced technologies is still used in the evaluation of agricultural research and development, the theory of technology adoption is an insufficient framework for understanding technological change. It is too linear, too binary, too focused on individual decisions and gives an inaccurate and misleading picture to researchers.

The theory of adoption treats technology like a “black box” that is transferred smoothly from one setting to another, following a linear progression of old and inferior tools and methods to new improved ones. This theory is too simplistic to align with the complex realities of the capabilities and agency of multiple actors. In addition, in cases of participatory technology development, where intended users are involved in the creation of innovations, adoption rates are often limited due to the relatively small scale of the project.

Using adoption rate as the only indicator of success or failure can lead researchers to ignore wider impacts of the introduction of a new technology. Adoption rates could go up, but use of a new technology could cause harm to social relations, the local environment, or its resilience. Low adoption rates could classify a program as a failure, while farmers benefited substantially in undetected ways, for example forming networks or acquiring new skills and knowledge. A singular focus on adoption rates thus limits our understanding of what happens in processes of technological change.

Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT).
Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT)

An alternative conceptual framework

In addition to the introduction of a new technology to small-scale farming systems, technological change involves the agency of many social actors. The agency of farmers, scientists, project managers and extension officers is key to understand whether a new technology is perceived to be useful, accessible or realistic, as well as how it is adjusted and changing social relations.

A new framework is needed to capture this reconfiguration of social and technological components that result from the introduction of a new technology to a community.

The authors of this paper propose an alternative conceptual framework with an agent-, practice- and process-oriented approach to better understand technological change. The framework is composed of four key components: propositions, encounters, dispositions and responses.

Propositions are composed of artefacts, methods, techniques and practices and a proposed mode of engagement in agricultural production. Encounters can be deliberately organized, for example a field day, or spontaneous, when a farmer sees a neighbor using a new tool. Intended users of technology may be disposed to respond in a variety of different ways, and dispositions may change over time. Finally, responses are a process or pathway that is likely to involve adjustment or recalibration to make the new technology work for the farmer.

Further work to operationalize this framework is needed. The authors suggest a next step of developing indicators to measure learning, experimentation and behavioral change as part of analyzing technological change processes.

Scaling up mechanization in Bangladesh through partnerships

Over the last two decades, a significant number of rural Bangladeshis – especially youth – have migrated to urban centers, looking for higher paying jobs and an escape from agricultural labor. Reaper-DemoConor Riggs is the Global Director of Markets and Entrepreneurship at iDE. He says smallholder farmers in Southern Bangladesh are increasingly struggling to find and afford farm labor to help harvest crops and perform a variety of other on-farm activities.

Riggs says small-scale mechanization, such as two-wheeled tractors fitted with intensification machinery and surface irrigation pumps, can help farmers make up for this labor gap and increase productivity, while boosting the local economy by supporting micro- and small enterprises.

But as Riggs discussed at the recent Scale Up Conference at Purdue University, designing the perfect machine or technology is not enough to create sustainable, far-reaching impact. On the International Day for the Eradication of Poverty, we’re following up with him to learn more about the role of markets and partnerships in bringing small-scale mechanization to rural Bangladesh.

Q: Five years ago, CIMMYT and iDE co-designed and began implementing the USAID Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. What were the goals when you began?

Our goal was to establish a new industry for attachments in two-wheel tractors in agricultural mechanization, technologies like seeders, reapers and high-volume irrigation pumps for surface water. We wanted to help farmers access services through a fee-for-service model – small entrepreneurs buy machines and rent out those machines to farmers or directly provide that service themselves. There wasn’t really a market naturally growing for these machines in ways that included smallholders while being commercially viable, so we aimed to build it as best we could.

The results of this effort to date have been strong: 191,000 farmers can now access machinery services from a growing network of nearly 3,000 local microenterprise service providers, representing improved cultivation across 92,000 hectares in Southern Bangladesh. And we see abundant evidence that this market is scaling organically now that it’s established a model that works for both firms and farms.

Q: How did you create a market?

We incentivized several large conglomerates in the agri-business space to co-invest with us on several container-loads of these machines, which we imported from Thailand and China. We helped them find some early adopter dealers and local service providers who would actually buy them. Then we developed short-term smart subsidies to drive down the costs of supply chain development, accelerated customer adoption of the machines, and overall market growth.

An important aspect of our strategy is that we did not present these accelerating investments as typical subsidies; rather, we worked with our private partners to offer commercial discounts so that service providers and farmers Md Lalchan Shardar is a farmer and local service provider. The axial flow pump cuts the amount of irrigation time in halfwould recognize the true value of the product and the short-term opportunity to adopt the technology in its initial commercialization phase.

We first implemented this strategy with two leading firms in the market who concurrently launched a very proactive marketing campaign. Then we started pulling back those discounts overtime, year by year, as the initial partner firms found the market opportunity, and redirected this acceleration process with an additional group of interested companies that also wanted to enter the market in an inclusive manner.

Q: So the companies were benefiting from the discount?

Yes, but we created a lot of conditions. Essentially, the more project investment that was committed by the project to discount the cost of the machinery, the more we expected to see both cash and in-kind investment from those companies. In the end, about a dozen companies come into the game with about five that have really driven a lot of heavy investment.

Partnerships have been key throughout this project. What were the different strengths iDE and CIMMYT brought to the table?

iDE is a market development organization. We focus on market-based solutions, technology commercialization, last mile distribution, and market access. Fundamentally, we see our job as de-risking the market for companies to invest in lower income areas and empower the farmer and their family as both consumers and suppliers in the formal economy. To do this, we employ a lot of supply chain development, product re-design and most importantly, we develop networks of micro-entrepreneurs to serve the ‘missing middle’ between the formal and informal economies.

CIMMYT brings leading capabilities in linking science and practice, with an un-paralleled strength in understanding the agronomic rationale and the agronomic and economic combinations of the technologies as they’re applied on the ground.

CIMMYT knew what technologies were needed on the ground in Southern Bangladesh to genuinely improve productivity and efficiency in the face of changing economic circumstances, and understood how to apply them to real world conditions in alignment with market-based diffusion mechanisms. CIMMYT was also instrumental in working closely with the Bangladesh Agriculture Research Institute (BARI) and extension services, key government partners that helped us ensure market development was in alignment with public and social policy.

It can be difficult finding a synergy between two different organizations. Did you run into any challenges?  

CIMMYT and iDE have different specializations, and at the beginning, we had natural, friendly debates about how to best integrate them and achieve highly ambitious project objectives. But relatively quickly, we figured out how to learn from each other and synthesize our approaches for the best results. Both CIMMYT and iDE approached the partnership with a mission driven focus and a sense of constant, mutual respect for the value each partner brought to the table.

What do you see for the future? 

As for iDE, we’re excited to expand this successful partnership with CIMMYT to figure out how we can further replicate this success in other countries where we both work. While some of the market conditions in Bangladesh have provided us with unique opportunities for technology scaling in mechanization, we’re highly optimistic that the underlying partnership principles and management systems of CSISA-MI can be replicated in other programs and country contexts – even in ostensibly more challenging market environments.

The CSISA-MI project is funded by USAID.

Avoiding the next Aral Sea: Scaling responsibly

The Aral Sea was once the world’s fourth largest inland body of water. But in 1959, Soviet premier Nikita Khruschev unfurled a plan for industrialized agriculture across Central Asia. The government constructed irrigation canals to divert water from the Amu Syr and Amu Darya rivers, the two primary feeders for the Aral Sea, to thirsty cotton fields in Uzbekistan. Today, only about two-fifths of the sea remain. Evaporation exasperated by climate change and pesticide runoff have left the remaining body of water salty and polluted.

MSI's founder and president Larry Cooley presents at the Purdue Scale Up Conference 2018. (Photo: Rachel Cramer/CIMMYT)
MSI’s founder and president Larry Cooley presents at the Purdue Scale Up Conference 2018. (Photo: Rachel Cramer/CIMMYT)

The disappearance of the Aral Sea is a tragic story about scaling gone wrong. Larry Cooley, one of the top scaling experts in the world, describes scaling as the attempt to overcome a gap between the need for something and the extent to which that need is being met. In the case of the Aral Sea, the Soviet Union saw a need for more robust cotton production and decided to overcome the gap through large-scale irrigation.

They were successful in reaching their scaling ambition but at a high and unsustainable cost. Would Kruschev still go ahead with his development scheme if he knew it would cause irreversible ecological damage in the future? Would he still prioritize high cotton yields if he knew it would decimate the local fishing industry and leave thousands unemployed?

At the recent Scale Up Conference at Purdue University, over 200 researchers and practitioners gathered to discuss effective approaches to scaling up agricultural technologies and innovations in the developing world. The tagline read “Innovations in agriculture: Scaling up to reach millions.” Several of the presenters, however, argued development organizations should think about potential tradeoffs before trying to reach the biggest impact.

Finding the optimal scale

CIMMYT’s scaling advisor Lennart Woltering (left) and mechanization specialist Jelle van Loon led a session. (Photo: Rachel Cramer/CIMMYT)
CIMMYT’s scaling advisor Lennart Woltering (left) and mechanization specialist Jelle van Loon led a session. (Photo: Rachel Cramer/CIMMYT)

CIMMYT’s scaling advisor Lennart Woltering and mechanization specialist Jelle van Loon led a session on the opportunities and challenges to scaling two-wheeled tractors in Africa, Asia and Latin America. Van Loon explained how mechanization can decrease labor costs, improve livelihoods and help farmers stay locally and internationally competitive, but he acknowledged a few potential downsides. Small tractors of this kind require fossil fuels and maintenance, and introducing mechanization to a rural community has the potential to displace jobs and shift gender roles.

Woltering explained a new tool can help researchers and development organizations think through these tradeoffs in a systematic way. The Scaling Scan, which he developed in a collaboration with The PPPLab, guides users through a series of questions and prompts them to reflect on what scaling means, what it takes to take a project to scale and what the unintended consequences could be in a particular context.

Lennart Woltering (second from left) presents the "ingredients" of the Scaling Scan tools during one of the sessions of the Purdue Scale Up Conference. (Photo: Rachel Cramer/CIMMYT)
Lennart Woltering (second from left) presents the “ingredients” of the Scaling Scan tools during one of the sessions of the Purdue Scale Up Conference. (Photo: Rachel Cramer/CIMMYT)

The first step of the Scaling Scan is “Defining a realistic scaling ambition.” It contains a responsibility check, prompting users to consider how an intervention could affect power equity and natural resources if that scaling ambition is indeed reached. “We tried to make this check as simple as possible, but still have people anticipate what unintended consequences their scaling effort might have ten years down the line,” said Woltering.

The responsibility check includes questions like: Who are the winners and who are the losers when the innovation is adopted at a large scale? Will the scaling of the innovation affect the availability of important natural resources, such as water and land?

Woltering emphasized that development organizations should try to identify the scale that optimizes tradeoffs. “We want people to be aware that bigger is not always better,” he said.

“You might think you’re benefitting the irrigation farmers, but at the same time, the fishermen or other people might be paying the price for that,” Woltering explained. “If you’re only focused on those irrigation farmers and not the whole system, it’s easy to think, ‘Oh, we’re doing a fantastic job,’ when you’re not.”

The reasons to scale up responsibly

At the conference, Tricia Wind and Robert McLean of the International Development Research Center (IDRC) presented some of their lessons learned about responsible scaling.

“If you’re working on the problem at different scales, you need to think about the problem differently and think about the solutions differently,” said Wind. “The first principle is thinking about what scale you are starting with and what the optimal scale would be for the problems that you’re focused on solving.”

The second principle is the justification for scaling. “So stepping back from the how and thinking about the why,” she explained. “What difference would this make?” Similar to the responsibility check in the Scaling Scan, the second principle explores the issue of equity. Who would be reached by this solution, and who would be left out or even negatively affected by it?

The third principle is about coordination. McLean said, “This is about accepting that all scaling happens in a system. Are the alternative solutions? How do you displace solutions that might already exist if you try to scale something? What about the cultural norms and the institutions that exist in the area where you’re scaling, and how do you coordinate to scale responsibly?”

The fourth principle is dynamic evaluation. Maclean said an organization should learn as it scales. “It’s never going to be a 1-2-3 step process that’s going to get you from innovation to impact at scale,” he explained. “Scaling itself is also an intervention. So you have your intervention you’re trying to scale, and as you scale, systems change.”

Participants and panelists of the Scale Up Conference pose for a group photograph. (Photo: Courtesy of Purdue University)
Participants and panelists of the Scale Up Conference pose for a group photograph. (Photo: Courtesy of Purdue University)

Johannes Linn, Nonresident Senior Fellow with the Brookings Institute and another one of the world’s top scaling experts, emphasized, “Scaling is not a linear process. It is iterative with feedback loops to learn and adapt.”

During the opening reception, Woltering and van Loon congratulated Seerp Wigboldus, a senior advisor and researcher with Wageningen University, on his recently completed PhD thesis, published as a book: To scale, or not to scale – that is not the only question.

Someone asked, “What do you do if 40 people are going to be harmed by an intervention while 50 people benefit?” Wigboldus replied, “Well, unfortunately, there’s no formula for this kind of thing. There will always be tradeoffs, but hopefully we can get people to slow down a bit. We need to be transparent and justify our decisions.”

Nearly all of humanity’s greatest challenges originate from the scaling of innovations. The depletion of the Aral Sea in order to scale cotton production is just one example. Climate change and industrialization is another. By adopting a responsible scaling approach, the agricultural development sector can minimize negative impacts and side effects and seek optimal solutions.

The full version of the Scaling Scan contains detailed practical information on how and when to use this tool. A condensed, two-page version is also available. We also recommend the companion Excel sheet, which generates average scores and results automatically.

This work is supported by the German Development Cooperation (GIZ) and led by the International Maize and Wheat Improvement Center (CIMMYT).