Skip to main content

Tag: scaling

From CGIAR Research to Action: Strengthening Science-Policy Linkages

CGIAR is the world’s largest agricultural innovation network and a global leader in research for development. Over the past five decades, its investments have delivered tenfold returns—yielding more abundant and affordable food while reducing hunger, poverty, and land use (1). Today’s food systems face multiple, interconnected challenges – ranging from production inefficiencies and nutritional disparities to social exclusion and environmental degradation. These issues are further intensified by climate change, geopolitical instability, and systemic inequality. Tackling them demands coordinated, multisectoral responses and stronger collaboration with the public sector, particularly policymakers (2). There is a well-recognized gap between science and policy, driven in part by the technical complexity of research outputs. Policymakers often face challenges in interpreting and applying scientific findings, which hinders the uptake of evidence-based solutions. Therefore, there is a need for simplified and tailored research communication to broader audiences, particularly for policymakers in target countries.

“To truly make a difference, research must speak the language of policy: Science without policy is just academia; policy without science is just guesswork.”

For research and innovation to effectively influence and inform policy, researchers must go beyond simply presenting evidence and engage deeply with the policy-making context. By understanding the multiple factors policymakers consider and by building genuine and trust-based partnerships, researchers can significantly improve the chances that their work will shape and inform effective, actionable policy (3).

What a researcher should know for effective science-policy communication

To communicate effectively with policymakers, researchers must understand the broader policymaking context and constraints faced by decision-makers responsible for crafting and implementing policy in a target country. Policymakers weigh multiple dimensions – political, economic, social, and logistical – before adopting innovations. Successful research-to-policy translation hinges on addressing these dimensions holistically.

Key dimensions policymakers consider

Political Acceptability: Innovations must align with current political agendas and priorities to secure regulatory and financial support. Political will and leadership are often decisive enablers – without them, even the most technically sound innovations may stall.

Social Desirability: Policies are more likely to succeed when they address pressing societal needs, resonate with public values, and enhance quality of life. Public support and broad adoption are essential for long-term sustained impact.

Technical Feasibility: Innovations should be practical, scalable, and implementable with available technologies and systems. If an innovation is too complex, unreliable, or difficult to implement, it risks being unsustainable or rejected.

Financial Viability: Policymakers assess whether innovations are economically feasible, offer a clear return on investment, and align with existing budgetary constraints. Financial sustainability encourages both public and private sector participation.

Administrative Doability: For policy innovations to succeed, they must be implementable within current administrative systems. Clear procedures for implementation and monitoring are essential. Administrative complexity can be a significant barrier.

Judicial Tenability: Innovations must comply with existing legal frameworks. If legal adaptation is required, there must be a strong, evidence-based justification to support such changes and ensure alignment with constitutional or regulatory standards.

Emotional Relatability: Innovations that resonate emotionally by addressing people’s concerns, fears, and aspirations are more likely to gain public acceptance.

Environmental Sustainability: Minimizing environmental impact and promoting resource efficiency are increasingly important, as policymakers face mounting pressure to support long-term ecological balance.

Challenges in Research-Policy Engagement

  • Limited interactions and weak personal engagement between researchers and policymakers result in infrequent use of empirical evidence in policymaking.
  • Significant differences exist in decision-making processes, norms, and cultures between researchers and policymakers.
  • Additional barriers include differing institutional cultures, and a lack of incentives or training for effective policy engagement.

Effective Strategies for Bridging the Gap

  • Training researchers to understand the policymaking process, improve communication, and build relationships with policymakers.
  • Combining direct instruction (didactic training) and experiential learning (hands-on engagement) to reinforce both knowledge and practical engagement is most effective.
  • A structured approach designed to build researchers’ policy competencies and support policy engagement through iterative phases, including policy priority identification, network development, training, and ongoing collaboration.
  • Prioritize continuous feedback, relationship building, and responsiveness to current policy needs.
  • Research institutions should adjust incentive structures (such as tenure and promotion criteria) to recognize and encourage policy engagement.
  • Institutions should support research activities that directly align with policy priorities and opportunities.
  • Effectively translating research into policy is an interactive and collaborative process. Building trust, keeping communication open, and forming strong relationships with policymakers are key to success. Engaging early, particularly during the agenda-setting stage, helps ensure that research tackles relevant policy issues and anticipates potential implementation challenges.
  • Involving policymakers and stakeholders through co-design enhances the relevance and utility of research findings. This approach helps identify potential barriers, align expectations, and build shared ownership of both the research and the resulting policies.
  • Researchers must tailor their communication for policy audiences by turning complex evidence into clear, practical messages. Using data alongside compelling stories can build trust and encourage engagement, making the case for innovation more convincing.
  • Understanding the broader policy environment is critical. Researchers should understand the institutional, legal, and administrative context in which policy decisions occur. Identifying key policy actors and knowing their roles, motivations, and limitations is essential for effective engagement.

Practical Strategies for Researchers

  • Engage policymakers early and regularly to co-create research agendas and ensure the work remains relevant.
  • Build long-term relationships grounded in trust and mutual understanding.
  • Communicate findings clearly in policy-relevant terms, combining data with compelling narratives.
  • Show how the innovation tackles pressing local issues and has the potential to scale effectively.
  • Identify and address possible barriers – political, financial, administrative, legal, and social – before recommending policy adoption.

CIMMYT in Bangladesh is actively engaging with policymakers. As part of the ongoing research project Transforming Smallholder Food Systems in South Asia (RUPANTAR), we explored the political economy of policies for sustainable agriculture in Bangladesh. The findings were published in an international peer-reviewed journal to share insights with policymakers. The article attracted only around 80 readers – mostly researchers. In contrast, a simplified policy brief based on the same findings reached over 1,800 readers in a few months, the majority of whom were based in Bangladesh. This highlights the importance of making research more accessible and actionable.

CGIAR is well-positioned to address these challenges. In response, CGIAR has launched its unique Scaling for Impact (S4I) program to better align research with real-world needs (4). It emphasizes demand signaling, building partnerships, understanding the policy landscape, and supporting structured scaling. In particular, S4I’s focus areas include identifying stakeholder needs and shaping enabling policies that support CGIAR’s broader impact goals.

  1. Thornton P, Dijkman J, Herrero M, Szilagyi L, Cramer L. Aligning vision and reality in publicly funded agricultural research for development: A case study of CGIAR. Food Policy. 2022 [cited 2025 May 11];107:102196. https://doi.org/10.1016/j.foodpol.2021.102196 
  2. UNEP. Strengthening the Science-Policy Interface: a Gap Analysis. United Nations Environment Programme Nairobi; 2017.
  3. Ruhl JB, Posner SM, Ricketts TH. Engaging policy in science writing: Patterns and strategies. Plos One.2019 [cited 2025 May 11];14(8):e0220497. https://doi.org/10.1371/journal.pone.0220497
  4. CGIAR. 2024. Scaling for Impact Program: Full design document. Agenda item SC21-05a, 21st CGIAR System Council meeting, Berlin, Germany, 11-12 December 2024. Montpellier: CGIAR

Decades of on-station conservation agriculture trials reveal key farming insights for Zambia’s changing climate

Aerial view of one of the long-term, on-station trials on conservation agriculture, CIMMYT (Photo: CIMMYT).

Long-term research rarely offers quick fixes. More often, it is a patient pursuit, marked by seasons of uncertainty, occasional setbacks, and gradual, hard-won insights. Yet, when carefully managed, its outcomes can redefine farming systems and adaptation strategies to long-term climate trends.  

This is the story of CIMMYT‘s persistence, working alongside Zambia’s Ministry of Agriculture to maintain some of Southern Africa’s most critical long-term Conservation Agriculture (CA) experiments for over two decades. 

Scattered across Zambia’s contrasting agro-ecological zones, from the high rainfall Northern province to the drought-prone Southern Province, and the tropical savanna climate in the Eastern province, the Misamfu Research Station, Monze Farmer Training Centre, and Msekera Research Station have hosted these long-term trials, with Monze being established in 2005, Msekera in 2011, and Misamfu in 2016. Through searing droughts, erratic rainfall, floods, pest outbreaks and changing policy landscapes, these stations have systematically tested CA principles over multiple seasons, focusing on crop productivity, economic viability, and soil health, pest and disease dynamics, soil moisture and climate resilience among other aspects, to adapt CA to local farming conditions. More importantly, they have adapted these principles to Zambia’s diverse socio-economic realities and contexts. 

 

Testing CA under Zambia’s climate gradients

At the core of these trials is a simple, but essential question: “Can CA systems be adapted to Zambia’s smallholder farmer conditions to improve productivity, soil health, and resilience under climate variability?” 

Each research station offers a unique window into answering this question. For instance, Monze Farmer Training Centre located in Zambia’s Southern Province, hosts one of the oldest CA trials in the region. In addition, originally set up with eight main treatments and 32 trial plots, it has since expanded to 48 plots consisting of 12 treatments, testing CA under no-tillage against conventional plough-based systems with maize, cotton and sun hemp rotations of varying sequences. The plots have accumulated invaluable data, owing to the detailed and precise monitoring of yields, soil moisture, infiltration rates, pest and disease dynamics, soil quality indicators, and soil organic matter, year after year. 

Christian Thierfelder, CIMMYT’s Principal Cropping Systems Agronomist and founder of all long-term experiments reflects, “When we started, CA was a hot topic in Zambia. We wanted to know its benefits if you persist with these systems under Zambia’s conditions, not just for three or five years, but over decades”. 

Two decades later, key findings from these trials reveal that rotations that include cotton and/or sun hemp consistently outperform others in maize yields due to the nitrogen-fixing and soil-improving effects of the legume and deep-rooting cotton. CA plots, especially those combining minimum tillage, residue retention, and rotations, also demonstrate better soil moisture retention and infiltration, even in drought years. In fact, one striking observation has been that during intense rainfall events, water infiltration under CA plots is dramatically higher than under conventional systems, reducing flooding, erosion, and surface run-off. CA plots absorb and retain more moisture, a significant advantage as rainfall patterns become more erratic. 

However, the trials have also revealed complex trade-offs that researchers alike must accommodate. For example, while the maize-cotton-sun hemp rotation delivers exceptional yields, its economic viability hinges on market dynamics. When sun hemp seed and cotton commanded reasonable prices in the past, the system was highly profitable; in its absence, farmers risk sacrificing income for soil benefits alone. Another surprising insight comes from long-term soil organic carbon (SOC) trends. While CA systems reduce erosion and improve infiltration, the anticipated build-up of SOC has remained elusive, except at one long-term trial site outside Zambia at the Chitedze Research Station in Malawi. Thierfelder notes, “Declining rainfall, declining biomass, and declining soil carbon levels are interconnected. CA alone may not reverse these trends unless combined with complementary practices like manure application or agroforestry species.” 

A snapshot of different trials being implemented at Monze FTC and Misamfu Research station, CIMMYT (Photo: CIMMYT).

Adapting CA for high-rainfall areas

Misamfu Research Station, in Zambia’s wetter Northern Province, has wrestled with another challenge: CA’s performance under high-rainfall conditions. Since 2016, Misamfu has hosted the long-term CA systems trial. Originally designed to conserve moisture, CA systems, especially when planted on the flat, struggle with too much moisture, leading to waterlogging, and here, not drought, is the problem. CA plots without drainage interventions have underperformed in very wet years. Yet, new innovations are emerging. Permanent raised-beds and permanent ridges, two promising CA systems developed under irrigated systems, are showing promise by improving drainage while retaining CA’s soil health benefits. 

 “In relatively dry years, CA systems shine,” explains Thierfelder, “but under waterlogged conditions, we now know that permanent raised beds or ridges could be the missing link.” “Over the long-term, CA systems planted on the flat are capable of buffering high rainfall effects, probably due to improved infiltration”, remarked Blessing Mhlanga, CIMMYT’s Cropping Systems Agronomist.  

Capturing cumulative effects over time

Since 2011, the CA long-term experiment at Msekera Research Station in Eastern Zambia has revealed how CA performs beyond short-term seasonal gains. Unlike seasonal experiments, these trials capture the gradual, cumulative effects of CA on soil health, water use, weed and pest dynamics, and crop yields under real-world conditions. With ten treatments, including conventional tillage, ridge and furrow systems, and CA practices- such as direct seeding, residue retention, and crop rotations, the trials provide critical evidence. So far, results from Msekera show that no-tillage systems with crop residue retention, especially when combined with crop rotations, significantly improve soil moisture retention and structure, leading to more stable crop production over time. 

Why long-term matters

Long-term trials are essential to fully understand the benefits and limitations of CA across a full spectrum of climate conditions. Such trials require consistent donor support, strong partnerships with research station managers, and effective field management. Unlike short-term experiments, long-term trials capture the cumulative effects of CA practices across diverse seasons, including droughts and floods.  

These trials also show that CA is not a one-size-fits-all solution — its success hinges on continuous application over time. Since to date, rainfall patterns cannot be predicted precisely, deciding to adopt CA only in dry years is ineffective. Instead, long-term trials reveal how CA builds resilience and improves productivity year after year. 

This body of work is more than just a collection of experiments. It is a living archive, many years of climate, crop, and soil interactions, yielding insights impossible to capture through short-term trials. “We learned, for example, that infiltration rates under CA improved noticeably within just two years,” says Thierfelder. “But understanding yield trends, soil fertility dynamics or the role of rotations takes decades.” Moreover, these trials have shown that CA is not a one-size-fits-all solution. Its benefits are context-specific, often requiring adaptive management depending on rainfall, soil type, and market conditions. 

From plots to farmers’ fields

The value of this long-term work extends beyond research stations. Field days and exposure visits have allowed farmers and extension officers to engage directly with these trials, drawing lessons for their own fields. In some regions, farmers are already adapting lessons, adopting rotations, maintaining residues, experimenting with raised beds and permanent ridges, and tailoring CA to their realities. Importantly, the trials continue to evolve. While core treatments remain unchanged to preserve data integrity, small innovations, such as integrating manure or testing alternative rotations, are helping to sharpen recommendations for the next generation of CA practitioners. 

An aerial view of a mother trial implementer in Zambia, SIFAZ (Photo: CIMMYT).

The road ahead

As climate variability intensifies, the value of long-term research becomes even more critical. These trials offer answers to one of agriculture’s most urgent questions: How can CA be fine-tuned to deliver resilience and productivity? This is not just a scientific quest; it is about securing the future of Zambia’s smallholders, helping them navigate a more uncertain climate future, and ensuring their fields remain productive for the next generations. 

Reinventing mechanization for Southern Zambia’s drylands: The story of Joe Akombaetwa

Joe Akombaetwa shows the improved no-till multi-crop planter fitted with a T-bar and furrow kits (Photo: CIMMYT)

In Dumba Camp, a small farming community in Mazabuka District, Joe Akombaetwa is proving that even in the face of unreliable rains and poor soils, small shifts in how farmers work the land can make all the difference. A farmer since 1992, Joe has lived through the growing impacts of climate change, its frequent shocks to the rain-fed systems, and the high risks it brings to farming families in Zambia’s Southern Province. For the past five years, he has worked as one of the earliest mechanization service providers (SPs) under the European Union-funded Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project. As a SIFAZ service provider, Joe acquired a set of machinery, including a two-wheel tractor, a trailer, a multi-crop thresher, and a sheller in 2021. Since then, he has been offering paid mechanization services to farmers in his community. But more than a service provider, Joe is an innovator, a machinery fabricator, and a businessman, creating tailor-made climate-smart mechanization solutions with the support of the SIFAZ project, responding directly to the challenges faced by farmers in his community.

Grounding innovation in reality

Joe’s innovations aren’t conceived in a lab—they’re forged in the field, shaped by the lived realities of his fellow smallholder farmers. One of his earliest breakthroughs came when he collaborated with SIFAZ engineers to design a T-bar to modify the Chinese single-row, no-till multi-crop planters into a double-row planter for a two-wheel tractor, allowing simultaneous planting of two rows instead of just one.

The original single-row planters, while functional, were slow and inefficient. “We wanted to save time and get the work done faster,” Joe explains. “So, we created the T-bar so that two planters could work together in tandem.”

But the innovation didn’t stop there. Joe received feedback from the farmers on the issue of high side separation between the seed and fertilizer openers on the planter. This high side separation of about 120 mm might be useful to reduce seed burning in an irrigated system for which the planter was developed, but Joe and his client farmers in the rain-fed system noticed reduced early plant growth, evidently resulting from delayed nutrient access by young seedlings of the crops. Further, the furrow covered by the press wheels of the planter was not optimum (leaving some seeds uncovered with soil), leading to germination failures.

With his own hands and tools, together with the SIFAZ engineers, Joe redesigned the seed placement system by better aligning the seed and fertilizer openers (with 50 mm side separation) and developing a flexible seed-covering kit fitted before each press wheel on the planter. These modifications addressed what agronomists refer to as “placement efficiency”, but for Joe, it was simply about “getting the seed and fertilizer placed close to each other for the plants to access the fertilizer early and firmly cover the seeds for optimum emergence.” To further improve performance, he added a balancing bar to help stabilize the planter across uneven ground, making the machine more practical for Southern Province’s uneven terrains and varying soil textures.

Joe demonstrates his two-wheel tractor mini boom sprayer to the CIMMYT mechanization team (Photo: CIMMYT)

Bridging science with farmer-led solutions

Joe’s hands-on creativity is not new. Back in 2010, he was part of the team that co-developed an animal-drawn ripper, a widely adopted tool that aligns with Conservation Agriculture (CA) principles by reducing soil disturbance.

With a background in blacksmithing and metal fabrication from Kasisi, and early career exposure to seed certification at ACCI in Chilanga, Joe has long moved between formal agriculture and on-the-ground adaptation. Joe is aware of declining draft animals and the aging of the farmers in Zambia, which adds to the challenges faced by smallholder farmers. He sees a declining interest of rural youths in agriculture who do not want to walk behind the beasts or do labor-intensive manual work. Observing the ease with which large-scale commercial farmers operate rippers and boom sprayers, Joe wondered, “Why not adapt this to smallholder needs?”

Joe designed a double-row ripper and a mini boom sprayer for use with a two-wheel tractor. Compared to the traditional animal-drawn single-row rippers or the knapsack sprayers, the two-wheel tractor double-row ripper saves not only time, costs, and drudgery, but also makes farming interesting. “In just ten minutes, I can finish spraying a 16 m by 39 m field,” he says. It’s a leap in efficiency, and for farmers, who often juggle time, labor, and resource constraints, it’s a game-changer! Joe has sold a few rippers and boom sprayers to his neighboring farmers and different projects. The demand for the machinery is on the rise, which encourages him as a rural manufacturer.

Business with a purpose

Joe isn’t only an innovator; he’s also a sharp businessman. From ripping and planting to boom spraying and shelling maize, his mechanization services are in high demand among farmers in and around Dumba Camp. “Ripping has been the most profitable,” he notes. “Almost every farmer now wants it because of the sustainable farming practices introduced by SIFAZ.” He charges based on plot size and crop type, typically around ZMW 200–450 per hectare (approximately US$7–16) for services like no-till planting. But he also knows the realities farmers face. “Sometimes, I negotiate. I don’t want the price to scare away the farmers.” Demonstration days and field shows are his marketing lifeline. From the Cotton Development Trust-organized mechanization field days to local radio promotions, Joe has built a network of trust and visibility. He’s become a go-to name in the Dumba Camp and beyond.

Joe stands with his 80-year-old client, who, thanks to hiring the no-till soybean planting service, is able to keep his family farm running despite his children’s absence. (Photo: Md A Matin, CIMMYT)

Staying afloat in tough seasons

Last season, the El Niño-induced drought was a huge blow in farmers’ fields. Poor and uneven rainfall and economic strain slashed demand for mechanization services. But Joe stayed afloat by leaning on his farmer instincts. He didn’t sell off all his harvest, but instead, he stored 100 bags of maize and sold another 100 bags to have money for living. That food sovereignty, paired with diversified income from shelling and ripping, kept his business breathing through the drought.

A legacy in the making

Behind the machines and modifications is a father of five, two of whom are already following in his footsteps, bringing civil engineering skills into the family’s growing innovation portfolio. It’s a quiet generational shift powered by resilience, knowledge sharing, and an openness to adapt. Joe’s story reminds us that the future of farming isn’t only shaped by distant policies or global climate models, but also built, welded, and tested in the fields of Southern Zambia, where farmer-innovators like Joe bridge the gap between science and local adaptation.

Scaling conservation agriculture: Victor Munakabanze’s journey from trials to transformative adoption

Victor Munakabanze in his field sharing his scaling story with scientists and district agriculture officers (Photo: CIMMYT)

Each annual field tour offers a fresh perspective on the realities farmers face. It’s a window into how different agroecological conditions shape farming experiences and outcomes, revealing what works in farmers’ fields and what doesn’t under an increasingly unpredictable climate.

This year, in Zambia’s Southern Province, the story is promising, as good rains have set the foundation for a favorable crop—a stark contrast to the past season, marked by the El Niño-induced drought.

In the Choma district’s Simaubi camp, Conservation Agriculture (CA) trials paint a picture of resilience and adaptation. The area experiences a semi-arid climate with erratic rainfall averaging 600–800 mm annually, often prone to dry spells and drought years, such as the last, when only 350–400 mm were received. The soils are predominantly of sandy loam texture, with low organic matter and poor water retention capacity, making them susceptible to drought stress.

The area around Simaubi hosts seven mother trials, where a wide range of technologies are tested, and 168 baby trials, where a subset of favored technologies are adapted to farmers’ contexts. Each trial tests different maize-legume intercropping and strip cropping systems against conventional tillage-based practices. As adoption steadily rises, more farmers are experiencing firsthand the benefits of sustainable intensification.

A Champion in the Making

Meet Victor Munakabanze, a farmer with decades of experience and a passion for learning. He began his CA journey as a baby trial implementer, experimenting with the four-row strip cropping system on a 10 m by 20 m plot, with four strips of ripped maize and four strips of ripped groundnuts. Starting in the 2020/21 season—despite a slow start—he persevered. Instead of giving up, he and his wife embarked on a learning journey that led them to scale up and champion CA technologies in their community.

Victor has been part of CA trials under the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project in the Southern Province for five years and has seen the power of small steps in driving change. His initial trial plots sparked hope, showing him that improved yields were possible even under challenging conditions. Encouraged by these results, he expanded his CA practices to a 1.5-hectare plot during the 2024/2025 cropping season, investing in his farm using income from goat sales. He successfully integrated livestock within the cropping system, using goat manure to complement fertilizers—an approach that has not only improved soil fertility but also strengthened the farm’s sustainability.

From Experimentation to Expansion

Victor’s decision to adopt CA at scale was driven by tangible results. He found that intercropping maize and groundnuts in well-spaced rip lines could optimize overall yields better than conventional methods.

However, the transition wasn’t without challenges. In the first season, he started late and harvested little. The following year, delayed planting resulted in just four bags of maize from the 200 mÂČ. The El Niño event during the 2023/24 season wiped out his harvest completely. But through each setback, he refined his approach, improving his planting timing and weed management by incorporating herbicides when needed.

Now, his farm serves as a learning hub for fellow farmers from the surrounding community in Simaubi camp. They are drawn in by his success, curious about his planting techniques, and impressed by his ability to integrate crops and livestock. With 23 goats, a growing knowledge base, and a determination to share his experience, Victor embodies the spirit of farmer-led innovation. His story is proof that CA can be practiced beyond the trial plots—it is about ownership, adaptation, and scaling what works.

Inspiring Adoption, One Farmer at a Time

Victor’s journey highlights a crucial lesson: when farmers see the benefits of CA on a small scale, they are more likely to adopt and expand these practices on their own. His resilience, coupled with a keen eye for what works, has made him a role model in his community. From testing to real-world application, his success is growing evidence of the replicability of CA technologies. As adoption spreads, stories like Victor’s pave the way for a future where sustainable farming is not just an experiment—but a way of life.

It’s time to scale: Emerging lessons from decades of Conservation Agriculture research in Southern Africa

CA in action at the farmer level. (Photo: Christian Thierfelder/CIMMYT)

For decades, smallholder farmers in Southern Africa have battled the whims of a changing climate—from withered crops to yield reductions and looming food insecurity concerns. And the outlook is not improving. Based on the latest available science, the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) reaffirms the projected negative impacts of climate change on livelihoods in Southern Africa.

Conservation Agriculture (CA) has been considered as an important step to make smallholder farming systems climate smart and resilient. The principles of CA are simple yet potent: minimal soil disturbance, crop cover, and diverse rotations, which tend to have lasting implications on rebuilding soil health, conserving moisture, and nurturing a thriving ecosystem. A strong evidence base from on-farm and on-station trials show that CA has the potential to build the adaptive capacity and resilience of smallholder farming systems to climate stress.

Yet, despite the positive results, significant scaling gaps remain. Key questions arise on what can be done to turn the tide, scale, and encourage uptake. What institutional, policy and economic incentives would enable scaling? Could mechanization be the missing link? The Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA) project responds to these questions. With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA), and CIMMYT, the ACASA project goes beyond the narrow focus on promotion and technology delivery of past and ongoing interventions on CA in Southern Africa.

ACASA was designed to help stakeholders gain deeper understanding of the interactions between the socio-economic, biophysical, and institutional constraints and opportunities for adoption of CA practices. To do this, the project has undertaken extensive surveys aimed at understanding incentives, drivers, and barriers of CA adoption across Zambia, Malawi, and Zimbabwe.

Dialogues for change

Participants from across the region during the reflective meeting. (Photo: CIMMYT)

In December 2023, CIMMYT collaborated with IITA and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development of Zimbabwe to convene a highly engaging, reflective, and learning meeting, with the participation of government representatives, the private sector, and research institutes, among others. The primary objective was to share valuable insights accumulated over years of research and development on conservation agriculture in southern Africa. These insights are a result of collaborative efforts in social science, scaling, and mechanization work by CIMMYT, IITA, and extension and research partners in Malawi, Zambia, and Zimbabwe. Conversations centered on tracing the historical pathway of CA, leveraging mechanization, and identifying key enablers to transform smallholder agriculture.

Tracing the pathway of conservation agriculture

For decades, CIMMYT has been a leading force in promoting Conservation Agriculture. From the early stages in the 1990s, CIMMYT introduced CA principles and practices through on-farm and on-station field days, to undertaking robust research on biophysical impacts and developing adapted technologies in collaboration with national and global partners. As this research progressed and matured, efforts were made to integrate and focus on understanding the social and economic factors influencing CA adoption, while recognizing the significance of enabling environments. To date, linkages with mechanization and other innovations promoting CA-friendly equipment have been strengthened, ensuring inclusivity and empowerment. Questions remain around policy and institutional innovations to nudge and sustain adoption. In a nutshell, there is scope to borrow tools and methods from behavioral and experimental economics to better study and facilitate behavioral change among smallholder farmers. This snapshot highlights global efforts, grounded in scientific evidence, farmer centric approaches, and collaborative partnerships.

Insights from the field

Described as a data and evidence driven process, a notable highlight was the detailed gathering and analytical efforts using a large multi-country household survey involving 305 villages and 4,374 households across Malawi, Zambia, and Zimbabwe. The main thrust was not only to harvest data but listen to farmers and better understand their context while deciphering their decision-making processes concerning CA adoption, across the three countries. A compelling and hopeful story unfolds from the results. The adoption of CA practices such as crop residue retention, minimum tillage, crop rotation, and intercropping is much higher than previously thought, highlighting a crucial need for better targeted surveys. Key enablers to strengthen adoption include access to CA extension, hosting demonstrations, and access to credit. In addition, age, and extension in the case of Zambia were identified as important drivers of the speed and persistence of adoption. Demand for mechanization is rising, which is key to address drudgery associated with CA and to raise production efficiencies. Key recommendations centered on the need for investments in a dense network of farmer-centric learning centers that allow for experiential learning, facilitating equitable access to mechanization, promoting private sector participation, and developing integrated weed management options as weeds remain the Achilles Heel of CA adoption in the region. [1]

Emerging lessons

A deep dive on the findings reveals critical considerations for the widespread adoption of Conservation Agriculture (CA). Firstly, weed-related labor challenges pose a significant obstacle, with around 75% of farmers in three countries citing weeds as the most constraining issue during initial CA adoption. Addressing this weed management challenge is essential, emphasizing the need for environmentally safe, non-chemical solutions as a research priority. Secondly, there is a noticeable gap between scientific research on CA and farmer practices, primarily attributed to limited technical knowledge. Bridging this gap requires innovative approaches to translate scientific information into practical, farmer-centered products. Thirdly, incentivizing CA adoption through complementary input support programs, like payments for environmental services, may encourage farmers, especially when private returns are not immediate.

Fourthly, strengthening extension systems is crucial to facilitate farmer learning and bridge the awareness-to-know-how gap. Lastly, investing in improved machinery value chains can alleviate high labor costs and drudgery associated with CA practices, with economic estimates suggesting farmers’ willingness to pay for machinery hire services. These insights collectively highlight the multifaceted nature of challenges and opportunities for scaling up CA adoption.

Moving forward

ACASA’s research findings are not just numbers — they are seeds of hope. They point towards a future where CA adoption among smallholder farmers can transform the breadbasket of the three African countries, and beyond. CIMMYT and its partners remain committed to continuous learning, refining their approaches, and working hand-in-hand with farmers to nurture the CA revolution.

It will not be a pipe dream to transform agriculture in Southern Africa through CA by cultivating seeds of resilience, one at a time. This is because the experience from the region suggests that with the right political will, it is possible to mainstream CA as a critical adjunct to climate-smart agriculture strategies and resilience building. This broader institutional and political buy-in is important since CA programming cannot succeed without sector-wide approaches to removing systemic constraints to technology adoption.  A classic example is the Government-backed Pfumvudza program in Zimbabwe, which has seen adoption of planting basins conditioned on receipt of input subsidies soar to more than 90%.

[1] CIMMYT/IITA Scientists explore the weed issue in detail in a paper just accepted and forthcoming in Renewable Agriculture and Food Systems – Unanswered questions and unquestioned answers: The challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa.

Advancing appropriate-scale mechanization in the Global South

Smallholder farmers in Chimanimani, Zimbabwe use a multi-crop thresher for the faster processing of wheat. (Photo: CIMMYT)

To foster collaboration and knowledge sharing, CIMMYT hosted a 2-day workshop in September 2023 in Lusaka, Zambia, on appropriate mechanization for smallholder farmers in the Global South. This event was part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub funded by the United States Agency for International Development (USAID).

Recognizing that equitable access to finance and credit are key enablers for mechanization, this platform strived to understand smallholder farmer needs and the identification of key financing models to facilitate widespread adoption.

With over 40 participants ranging from government representatives, development partners, and stakeholders from organizations such as USAID, the Food and Agriculture Organization (FAO), the International Institute of Tropical Agriculture (IITA), the International Fertilizer Development Center (IFDC), and Hello Tractor, this regional event provided an opportunity for robust discussions and to align the course of action.

Unpacking mechanization in the Global South

Appropriate-scale mechanization is essential and a top policy priority to transform African agriculture. Evidence shows that nearly 70% of operations in sub-Saharan Africa are done manually. However, human labor is limited and is increasingly scarce and costly given the unfolding transformation of rural spaces in most places, necessitating agricultural mechanization. The cornerstone of this shift lies in integrating small, affordable machines tailored to the operations and needs of smallholder farmers, which must be accessible through market-based financial and business models.

A top policy priority in Zambia

The Permanent Secretary, Technical Services of the Zambian Ministry of Agriculture, Green Mbozi, officially opened the meeting. He lauded the meeting as timely and commendable as agriculture mechanization is a top policy priority for Zambia.

Green Mbozi, permanent secretary, opens the meeting. (Photo: CIMMYT)

“The government has embarked on a process to formulate a national mechanization strategy, which will serve as a blueprint on how to sustainably promote agricultural machinery and equipment across the value chains. The insights from this workshop would be helpful in feeding into the formulation of the strategy and help in identifying entry points to support sustainable agriculture mechanization,” said Mbozi.

Accelerating change through inclusive dialogues

The dialogue played a crucial role in bolstering support for sustainable agriculture mechanization while tackling challenges hindering active adoption. Mbozi highlighted the imminent launch of an agricultural mechanization strategy developed with technical support from FAO and CIMMYT through the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project.

The mechanization strategy champions sustainable and efficient mechanization practices, strengthens the private sector’s role in mechanization, and provides training and financial support to small-scale farmers, women, and youth. Proposed initiatives include regional centers of excellence, a national mechanization association, and the use of information and communication technologies to promote mechanization.

Sieg Snapp, director of Sustainable Agrifood Systems, delivers a presentation on mechanization financing. (Photo: CIMMYT)

“It is important to develop the right bundle of mechanization services that meet the needs of farmers and are profitable for mechanization service providers,” said Director of Sustainable Agrifood Systems (SAS) at CIMMYT, Sieg Snapp. “Finding the right financing is needed to support multiple bundles of mechanization services, which provide profits throughout the year.”

Additionally, the SIFAZ project promotes local manufacturing, supporting quality assurance, conducting demand studies, and establishing an agricultural mechanization data bank to catalyze transformative progress.

Key insights from USAID and FAO

David Howlett, the Feed the Future coordinator at the USAID Mission in Zambia, shared with participants that, “USAID is working to address the effects of climate change through mechanization and other adaptation strategies.” Aligning with the central focus of the meeting, he further reiterated that mechanization will be key to building resilience by improving agricultural systems.

David Howlett, Feed the Future coordinator for the Zambia USAID mission, expresses commitment to investing in climate adaptation and mitigation strategies. (Photo: CIMMYT)

Offering insights drawn from country-level experiences on scale mechanization for smallholder farmers, Joseph Mpagalile from FAO said, “FAO has been helping countries develop national agricultural mechanization strategies, with 12 countries in Africa already revising or preparing new strategies for sustainable agricultural mechanization.”

Private sector engagement: lessons from Hello Tractor

Operating across 13 African countries, Hello Tractor has been leveraging digitalization to scale mechanization in Africa since its inception. Hello Tractor facilitates services to over 500,000 smallholder farmers through 3,000+ tractors and combine harvesters, while providing remote tracking of assets and preventing fraud and machine misuse for machinery owners. At the heart of the company are booking agents who connect farmers to solutions to increase productivity and income.

Call to action

As the discussions ended, key outcomes distilled highlighted a pressing need to sensitize farmers on the merits of mechanization and facilitating access through tailored financial resources. Special attention was also directed towards empowering women and youth through implementation of de-risking mechanisms and strategic marketing linkages.

Recognizing the critical absence of data, a compelling call for a funding pool to collect essential information in the ESA region became clear. In addition, it was emphasized that appropriate-scale mechanization should be driven by sustainable business and financing models. The journey towards mechanization is a collective effort, blending policy initiatives, private sector engagement, and research-driven strategies.

How K-State research feeds the world

Jared Crain, a research assistant professor of plant pathology, collaborates with CIMMYT on wheat genomics. Leading the Feed the Future Innovation Lab for Applied Wheat Genomics at K-State, Crain and his team annually analyze DNA from 19,000 plants.

Read the full story.

 

Breaking barriers in agriculture

In Nepal, the International Water Management Institute and CIMMYT conducted research on Sustainable Intensification of Mixed Farming System (SI-MFS) in collaboration with local governments in Gurbakot Municipality of Surkhet and Haleshi Tuwachung Municipality of Khotang.

The research found a noticeable shift in farmers’ interest in farming practices, where successful implementation of innovation and scaling, it’s crucial to have farmers’ interest and ownership in interventions.

Read the full story.

The Scaling Scan — launch of 3rd edition

How many times have we seen innovative ideas launched into the marketplace, seeming to offer answers to key problems, only to see them fail to make the impact that we expected? In the modern world, having a great idea is not enough to ensure market success. Even when new products, processes or technologies have been carefully and successfully tested in trials and studies, the process of scaling and launching them often leads to disappointing results.

History of the Scaling Scan

“The Scaling Scan is a necessary breakthrough for those connected with meaningful impact. The Scaling Scan is accessible, practical, grounded in the reality, and most importantly, a watershed rethinking the ‘bigger is better’ logic of scaling.”

 

Rob McLean, CIMMYT scaling coordinator senior program specialist in Policy and Evaluation at IDRC and author of “Scaling Impact”

The Scaling Scan was developed to improve this process and ensure that new innovations have the best chance of success. Traditionally, scaling an innovation has often resulted in “linear” thinking, where the project team focuses on the advantages of their new product and relies on these for launch. The Scaling Scan encourages teams to broaden their thinking into areas within the overall private and public sector environments where they may have less experience, but which can greatly help or hinder the success of new ideas. It looks at 10 “ingredients” to consider, discuss, and develop strategies to address — ranging from end-user financing and business cases to national strategies and regulations.

The first version of the Scaling Scan was launched in 2017 following cooperation between scaling expert Lennart Woltering at CIMMYT and the Public Private Partnership Lab (PPPLab), a research consortium based in the Netherlands. A second, updated version was released the following year. The tool has been implemented through workshops held around the world, with trained moderators to encourage discussion, share ideas and develop expertise. These discussions resulted in five action steps:

  • Evaluation of realistic targets for the scaling — is the team’s thinking too ambitious, or alternatively, has the analysis identified further opportunities?
  • Consideration of the impact on other areas of concern — for example, the environment or social dynamics (such as gender roles and relations).
  • Identification of weak areas of expertise that hold back scaling — for example poor access to finance or lack of evidence that would convince others to join the cause.
  • New and better-informed directions for project management, taking into consideration their own capacities, networks, and power.
  • Identification of knowledge and expertise that would be of benefit to the scaling team.

More than 1,200 participants attended the workshops that were held in English, Spanish and French. Half of the workshops were held in Africa, with the rest divided between Asia and North and South America, including 11 in Mexico. In 2022, an online version was made available through the launch of a new website, https://scalingscan.org/ with support from the Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) and the One CGIAR Mitigate initiative. This has further increased the availability of and access to scaling information.

“The Scaling Scan pushes users to go beyond a narrow focus on scaling an innovation. It is a great tool that enables practical thinking about the multiple pathways to impact at scale and the range of stakeholders that need to be considered in scaling process.”

 

Kelly Hayley Price, DRC senior evaluation officer

3rd edition Scaling Scan Launch                    

On September 14, 2023, the 3rd edition of the Scaling Scan will be launched. With the support of GIZ, FAO, Alliance, and SNV, the tool has been enhanced to include some changes inspired by discussions at the workshops. There is increased consideration of gender roles and how these might affect, or be affected by, a scaling program. Likewise, the impact of climate change is also included. In terms of usability, the Scaling Scan has been adapted to make it more accessible to use without a moderator, meaning that users will be able to benefit even if they have difficulty getting to a workshop. It has also been designed to make it easier to customize the Scaling Scan to fit one’s own needs, rather than requiring the standard version used in workshops.

To find out more about the Scaling Scan, please visit https://scalingscan.org/, or email e.valencia@cgiar.org for more information.

ASEAN – CGIAR Innovate for Food Regional Program

The primary focus of this project is on regenerative agriculture practices, including circular economy principles, co-identified and digital decision-support tools co-designed for at least two priority production systems (one upland and lowland rice-fish production system and another upland system), enabled by policymakers, and used by scaling partners in at least three Association of Southeast Asian Nations member states.

The project aims to align with the Sustainable Development Goals: SDG 5 – Gender Equality; SDG 13 – Climate Action; SGD 17 – Partnerships for the Goals.

Forging scaling partnerships in Latin America: Scaling specialists meet to strengthen future collaborations and learn from past experiences

On May 26, 2023, representatives from the International Maize and Wheat Improvement Center (CIMMYT) and the Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) hosted a scaling networking event at CIMMYT headquarters in Texcoco, Mexico. This event marked the culmination of a Scaling Readiness Training organized by the One CGIAR Portfolio Performance Unit (PPU), which included 30 participants from various CGIAR centers working on various One CGIAR Initiatives.

Consequently, the Scaling Networking Event was happy to bring together scaling experts from the CGIAR training together with other experts from GIZ, CIMMYT, and other academic and non-governmental organizations. The participants exchanged learnings, ideas, and methodologies for scaling agricultural innovations. Fortunately, this did not remain just an abstract exercise as the attendees were also eager to explore future joint scaling projects. Because collaboration is one of the most important factors in scaling innovations, the purpose of the event was to establish new collaborative initiatives and partnerships.

GIZ and CIMMYT have a long history of collaboration in Mexico and elsewhere. In Africa, for example, a group of mechanization specialists from CIMMYT recently provided training in this area to strengthen the work of the GIZ Green Innovation Centers for the agricultural and food sectors. In this event, both organizations explained what they meant by scaling and how they have worked on it using tools such as the Scaling Scan. The Scaling Scan is another example of the collaboration between GIZ and CIMMYT (and the Netherlands Development Organization SNV) and is a tool that analyzes bottlenecks and opportunities in scaling and innovation.

Both organizations noted a need to explore a wider space to connect sectors and actors interested in scaling innovations developed by agricultural research. Looking at different scaling approaches, the Scaling Readiness framework was presented as the official scaling practice in One CGIAR. Also, the University of Chapingo and the Universidad Iberoamericana in Mexico showed the tools they are using from analyzing social networks and Geographical Information Systems. They showed the connections with people that scaling requires and the importance of basing scaling assessments on quantitative data.

Plenary discussion to identify the best ways to carry out collaborations (Photo: Ronay Flores/CIMMYT)

The Mexican Center for Philanthropy (CEMEFI) and GIZ Mexico also discussed the difficulties that come with deciding what to scale and how to do so responsibly. Given current environmental concerns, GIZ Mexico emphasized the need to scale technologies at the intersection between biodiversity and agriculture.  CEMEFI started a dialogue among scaling specialists about how to scale while also taking social factors into account. The major topics that came out of this discussion were the need to engage communities more, spend time with them planning interventions, and examine power relations.

As part of this event, scaling practitioners from three One CGIAR Research Initiatives, of which CIMMYT is a member, presented their scaling reflections. They shared their work and some research questions that are now being investigated in the Digital Initiative, the Latin American “AgriLAC” Initiative, and the Mitigation Plus Initiative. Some of the questions addressed in the event included what criteria should be chosen to select innovations, how to bring different scaling processes together, and finally, how to develop scaling strategies that could be supported by the digital and technological enabling conditions and tools.

Before the event concluded, the participants still had sufficient energy to debate and support the idea of creating a Latin American scaling community of practice to continue exchanging scaling experiences in the region, not only with partners but between scaling researchers and practitioners. The expected result would be to strengthen scaling work so that the most relevant practices to make agri-food systems resilient and sustainable could be adopted, adapted, or transformed to suit each community and its needs in each context.

What then were the final learnings for this event? The importance of scaling with partners; the need to address social inclusion in scaling by understanding power relations; and the sharing of varied scaling experiences and processes. All of this was highlighted at the end of the meeting, which gave closure to the day but an initial drive towards future potential collaborations that were created out of it.

A promising partnership

In August 2022, the arrival of a container ship at the port in Cotonou, Benin signaled a major milestone in a developing South-South business relationship that holds the potential to produce a massive change in agricultural practices and output in Benin and across West Africa.

The delivery of six-row seeder planters from India marks the initial fruit of a collaboration between Indian manufacturer Rohitkrishi Industries and Beninese machinery fabricator and distributor Techno Agro Industrie (TAI) that has been two years in the making.

Connecting partners in the Global South

A major area of focus for the Green Innovation Centers for the Agriculture and Food Sector (GIC) projects launched in 15 countries by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger is fostering cooperation between nations in the Global South.

Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya, Nepal (Photo: Peter Lowe/CIMMYT)

This story began through the partnership between the Green Innovation Centers for the Agriculture and Food Sector and The International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and 2 in Asia.

GIC in India has been working with Rohitkrishi to develop appropriate mechanization solutions for smallholding farmers in India since 2017.

Under this new cross-border goal, GIC India discussed with Rohitkrishi the opportunity to adapt machines to the agroecological and socio-economic systems of African countries where continued use of traditional farming methods was drastically limiting efficiency, productivity, and yield. Rohitkrishi assessed the need and pursued this opportunity for long-term business expansion.

Small machines for smallholders

Before connecting with farmers and manufacturers in Benin, Rohitkrishi was busy solving problems for smallholding farmers in India, where large manufacturers focus on agricultural machinery designed and produced to meet the needs of the bigger, commercial farms. Sameer Valdiya of GIC India and Sachin Kawade of Rohitkrishi put their heads together to develop a plan for producing machines that could make a difference—and then convince smallholding farmers to try them.

A farmer pulls a row seeder, Maharashtra, India. (Photo: Green Innovation Center-India)

By adapting an existing machine and incorporating continuous feedback from farmers, they created a semi-automatic planter. This unique, co-creative process was accompanied by an equally important change in farmer mindset and behavior—from skepticism to the demonstrated impact and cost-benefit of the planter that was clear to each farmer.

These farmers were the first to adopt the technology and promoted it to their peers. Their feedback also drove continued improvements—a fertilizer applicator, new shaft and drive, safety features, night-lights and (perhaps most importantly) a multi-crop feature to make it useful for planting potatoes, ginger, and turmeric.

Today, Rohitkrishi has distributed 52 semi-automatic planters across India, and these machines are being used by up to 100 farmers each. Users are seeing a 17-20 percent increase in productivity, with an accompanying increase in income, and 30 percent of users are women.

The seeders are a roaring success, but Rohitkrishi is focused on continued improvement and expansion. As they continue to respond to adjustments needed by farmers, the company plans to sell 1000 semi-automatic planters per year by 2025. Reaching that goal will require both domestic and foreign sales.

Market opportunity meets technological need

Thanks to the active partnership of CIMMYT and Programme Centres d’Innovations Vertes pour le secteur agro-alimentaire (ProCIVA), TAI in Benin emerged as a promising early adopter of Rohitkrishi’s planters outside India. Seeing a remarkable opportunity to establish a foothold that could open the entire West African market to their products, Rohitkrishi began the painstaking process of redesigning their machine for a new context.

This ambitious project faced numerous challenges–from language barriers, to the definition of roles amongst major players, to major COVID-19 and supply chain delays. The arrival of the seeders, however, is a major accomplishment. Now Rohitkrishi and TAI will begin working with government representatives and farmer-based organizations to ensure the equipment performs well on the ground and meets Benin’s agroecological requirements.

Once final testing is completed in the coming months, Rohitkrishi’s seeders will have the chance to demonstrate what a difference they can make for soy and rice production in Benin.

“When developing countries with similar contexts and challenges forge alliances and business connections to share their knowledge, expertise, and problem-solving skills with each other, this kind of direct South-South collaboration produces the most sustainable advances in agricultural production, food security, and job creation,” said Rabe Yahaya, agricultural mechanization specialist at CIMMYT.

Scale mechanization through a starter pack that comprises a two-wheel tractor – a double row planter as well as a trailer and sheller (Photo: CIMMYT)

Meanwhile, CIMMYT is studying this pilot project to identify opportunities for reproducing and expanding its success. Through the Scaling Scan–a web-based, user-friendly tool to assess ten core ingredients necessary to scale-up any innovation–CIMMYT is helping Rohitkrishi and TAI set ambitious and reachable goals for scalability.

Most importantly, the Scaling Scan results will identify areas for course correction and help Rohitkrishi and its partners continue to be sensitive to farmer feedback and produce equipment better suited to needs on the ground.

Increasing smallholder inclusion in markets boosts rural livelihoods

Sieglinde Snapp (right), director, Sustainable Agrifood Systems Program, CIMMYT, poses with Mr, and Mrs. Banda, who are part of seed producers who sell seed to fellow farmers. (Photo: CIMMYT)

Smallholder farmers have long been considered purely subsistence producers without the capacity to participate in commercial value chains. This has led to their exclusion from many agribusiness enterprises which typically focus on medium- to large-scale growers.

Through the Accelerated Innovation Delivery Initiative (AID-I), the International Maize and Wheat Improvement Center (CIMMYT) and partners are supporting smallholder farmers to enter viable legume value chains. Soybean is one crop experiencing a rapidly expanding market. This is a unique opportunity for small-scale farmers to access a legume value chain, one that drives sustainable intensified farming for improved income and livelihoods.

In the Kasenengwa District, in eastern Zambia, Josephine Mbewe produces soybean for local oil production and grain traders who export the commodity to neighboring countries like Zimbabwe and Malawi. She is one of many farmers who are benefitting from the Agriculture Development Agent model, a concept that has been developed by CIMMYT’s implementation partner Catholic Relief Services (CRS) and scaled up in the AID-I project.

“For years we always wanted to produce for the market, but the costs were just too high. In addition, we didn’t exactly know who to sell to so this model really helps us as we sell our products locally but knowing that our aggregated produce will go to distant consumers. This model is helping us to have access to high quality inputs such as improved seed, crop chemicals, fertilizers, and other related products,” Mbewe said.

The Agriculture Development Agent model aims to create a consortium of village based agrodealers who double as seed producers multiplying seed and selling it to surrounding farmers. The same dealers buy back the grain and sell it to oil pressing companies and export commodity trading companies.

The AID-I project scales promising innovations with proven ability to address some of the systemic constraints that have discouraged agribusinesses from engaging with smallholder farmers.

“This is a model that is leveraged on community social capital where trust exists between the ADA and the local farmer,” said James Nguluwe from CRS. “Issues related to seed diversion or side marketing of the harvested crop are kept at a bare minimum as farmers don’t want to spoil their relationship with the Agriculture Development Agent and their general reputation within the community.”

“The model is also catalytic to the use of improved seed as farmers have to produce using a particular seed type. The interactions with ADA over soya seed, production and reverse purchase set up has seen the farmers extending to procure improved maize varieties as well, as opposed to times past where they would recycle seed and reap poor harvests,” he said.

Paitana Mwanza, an ADA agreed and spoke of his positive experiences of the model.

“I have had no contractual breach with the farmers. When they buy the seed, we agree on a separate grain buy back arrangement – the farmers have always delivered as per agreement.”

For years, farmers have been growing recycled seed and use of improved seed has been very uncommon among smallholder farmers. Having a financial incentive where ADAs provide an assured market is proving to be a good enough incentive to facilitate behavioral change.

Agribusiness agents face high costs associated with aggregation of produce, which the Agriculture Development Agent model overcomes. Farmers are organized and supported by ADAs, who are registered market players that have been extensively trained in business practices, seed handling and seed and grain production. As such, both grain traders and processors can make a realistic profit through this innovative system that facilitates small-scale farmers accessing new markets.

One of the key objectives of the AID-I project is to ensure that participating in market systems is a choice for smallholder farmers and exclusion from viable value chains is a thing of the past. The Agriculture Development Agent model promises to transform not only eastern Zambia but the whole country at large.

The IDB and CGIAR discuss the importance of strengthening agrifood systems in Latin America and the Caribbean

Participants at the roundtable discussion on the IDB report Competing in Agribusiness: Corporate Strategies and Public Policies for the Challenges of the 21st Century. (Photo: CIMMYT)

CGIAR’s Regional Office for Latin America and the Caribbean, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), organized an important roundtable discussion at the beginning of February on the Inter-American Development Bank (IDB) report entitled Competing in Agribusiness: Corporate Strategies and Public Policies for the Challenges of the 21st Century. The main objective of this event was to advance the search for shared strategies to strengthen agrifood systems in Latin America and the Caribbean.

According to representatives from both institutions, strengthening Latin America’s agrifood systems would allow the region to consolidate its position as a leader in agricultural exports and make a significant contribution to the development and prosperity of its societies.

In his opening address to more than 130 event participants who followed the roundtable webcasting from CIMMYT HQ in Mexico, the CGIAR’s Regional Director for Latin America and the Caribbean, Joaquín Lozano, praised the quality of the report and highlighted that it provides new perspectives on issues  very closely related to the CGIAR’s mandate and work, such as innovation in agriculture, the importance of public goods, and the climate challenges affecting agrifood systems.

Lozano emphasized that, although agrifood systems have not traditionally been considered a suitable area for investment in innovation, this perception is changing thanks to science-based and precision agriculture. He further affirmed that the work of institutions dedicated to agricultural innovation and research, such as the CGIAR, make critical contributions to developing these areas.

“These forms of agriculture not only contribute to the development of agribusiness, but they could also be key to closing the technological, economic and social gap between modern and traditional agriculture,” he asserted. “For this to happen, there must be strong partnerships between scientific institutions, public authorities and development banks such as the IDB.”

Ernesto Stein, IDB Group representative in Mexico and coordinator of the team that prepared the report, also emphasized the key role that agriculture can play in the development and economic well-being of Latin American and Caribbean societies.

Ernesto Stein explaining the report’s main conclusions. (Photo: CIMMYT)

“Historically, it was thought that industrialization was the quickest path to development. However, this model has its limits. Moreover, agriculture has demonstrated that it can be not only a subsistence economic activity, but also an advanced production method,” he affirmed.

Stein warned that the success of this “alternative development strategy” is not automatic. The agrifood market requires higher and higher quality, sustainability and information standards, and meeting these requirements “depends on the development of new capacities.”

In this context, the IDB report describes 30 cases of agrifood companies, located in 12 Latin American countries, that have become successfully inserted into the market, and it analyzes the factors that have contributed to building these success stories.

These factors are related to value-addition strategies for agricultural products (meeting requirements of external markets; obtaining certifications; processing products with qualities that are especially valued by consumers; taking advantage of low-supply periods thanks to genetic innovation; developing by-products to optimize fresh produce that cannot reach markets; or creating a differentiated brand identity) and also to the model of productive organization (which the report divides into three: vertical integration companies [large-scale production companies with total control of all factors in the production process]; tractor companies [medium- or large-scale companies that contract production from small-scale producers]; and horizontal associative companies [such as cooperatives]).

The objective of the report is both descriptive and prospective, as the identification of these factors aims to inspire other companies and actors involved in defining rural development policies—especially governments—to help create conditions that will facilitate the replication or scaling-up of the models featured in the report.

The global presentation of the report was followed by the analysis of more specific questions. Speaking of the need for innovation in agriculture, Gustavo Crespi, from the IDB’s Competitiveness, Technology and Innovation Division, highlighted that “the innovation economy has always considered agriculture to be a sector of limited innovation. However, throughout the decades, agriculture has undertaken very significant productive and organizational transformations that have been underestimated.”

In fact, according to Crespi, agriculture is currently undergoing a complex transformation process, especially in the pre-cultivation, pre-harvest and post-harvest stages, that is successfully reducing the uncertainty associated with agriculture and greatly improving its efficiency.

Romina Ordoñez, from the IDB’s Rural Development, Environment and Disaster Risk Management Division, examined the environmental challenges affecting agricultural value chains and highlighted that these challenges also present opportunities, such as the fact that the environmental certification of an agricultural product allows it to generate additional income.

However, she warned that “the transition to more sustainable agriculture has an up-front cost that not everyone can afford.” Therefore, this transition requires the support of strong institutions —mainly public authorities, international organizations and development banks.

Subsequently, CGIAR commentators offered their perspectives from different angles. Valeria Piñeiro, from the Office for Latin America and the Caribbean at the International Food Policies Research Institute (IFPRI), also underscored the “key role that public goods must play in optimizing agricultural production systems.” According to Piñeiro, technological transformations must be accompanied by institutional and policy transformations.

Hugo Campos, Deputy Director General of Research at the International Potato Center (CIP, for its Spanish acronym), asserted that the event “could be a watershed in the way that we use innovation to generate value in agriculture.”

Deissy MartĂ­nez, Leader of the AgriLAC Resiliente Initiative. (Photo: CIMMYT)

Likewise, Deissy Martinez, Leader of the CGIAR’s AgriLAC Resiliente Initiative, emphasized that “in agriculture, it is possible to generate value from sustainability,” and that this fact, “which today is exceptional, should be the norm.”

After a thought-provoking session of questions and answers moderated by JesĂșs Quintana, Managing Director for the Americas at the Alliance of Bioversity International and CIAT Bram Govaerts, Director General a.i. of CIMMYT, concluded the event.

Govaerts highlighted that the challenge is to “connect innovation systems with agricultural value-addition models, ensuring that they have an impact in the fight against poverty and that they foster inclusion.” He also underscored that Latin America needs to think about where it would like to be in 2100 and work together to meet its objectives and determine “the when, the how and the where of its efforts” to transform its agrifood systems.

The roundtable discussion sparked discussions throughout and after the event. (Photo: CIMMYT)

The presenters’ and public’s diverse interventions confirmed the validity and relevance of the initial intuition that guided the IDB report and the event: strengthening agrifoods systems in Latin America and the Caribbean can make a decisive contribution to the development of the region and its societies. It was also clear that this objective can only be achieved through broad alliances that include the private and public sectors, large- and small-scale producers, investors, and national and international actors.

Access and download the report here.

Watch the video of the event here.

Read the original article: The IDB and CGIAR discuss the importance of strengthening agrifood systems in Latin America and the Caribbean