Skip to main content

Tag: research

Breaking Ground: Brendan Brown brings research to small-scale farmers

Agricultural research for development has tremendous potential for widespread impact in poverty alleviation and food security. However, achieving real benefits for farmers is challenging and many well-intentioned projects fail to achieve large-scale impact. According to Brendan Brown, a postdoctoral research fellow with CIMMYT’s socioeconomics program in Nepal, this is where his work can help.

“There have been decades of work trying to improve agricultural livelihoods, but many of these interventions are yet to have tangible impacts for farmers,” Brown said. “My research seeks to help address this gap, using novel frameworks and applying participatory methods.”

Socioeconomic research at CIMMYT plays a key role at the nexus of agricultural innovations, helping to enhance interventions and initiatives for greater impact. Knowledge from such studies helps to prioritize and target resources, optimizing research capacity and accelerating the uptake of innovations.

“I attempt to understand constraints and opportunities at various scales from farms all the way up to institutional levels,” Brown explained. “I then seek to find pathways to catalyze change that lead to improved farmer livelihoods. Such research is integral to getting agronomic research into farmers’ fields.”

This area of research calls for a mixture of qualitative and quantitative tools and expertise, for which Brown is well suited. He has a bachelor’s degree in Agricultural Science with a major in Soil Science. “However, after working in agricultural research and development for a few years, I saw a gap in linking agronomy to the contextual realities of smallholder farming, so I opted to pursue a career that bridges the gap between the physical and social sciences.”

A desire to help

Brown grew up in Australia, between Sydney and a family farm on the south coast of New South Wales. He enjoyed being outdoors, “preferably barefoot,” participated in hobby farming, and from an early age showed an interest in social justice issues. A career aptitude test taken towards the end of high school revealed he was suited to be one of three things: a ship captain, a nurse or an agricultural scientist. He opted for the latter.

It was at university that Brown gained the insight of applying his agricultural knowledge to helping smallholder farmers. During a backpacking trip from Cape Town to Cairo, which incorporated some agricultural volunteering, he witnessed first-hand the difficulties farmers face in sub-Saharan Africa. Upon returning to his studies, he resolved to pursue a career that would enable him to help smallholders and, at the same time, address some of the world’s biggest ethical dilemmas.

Research with impact

Newly graduated, Brown worked with the Australian Centre for International Agricultural Research (ACIAR), based in Canberra, and the Food and Agriculture Organization of the United Nations (FAO), based in Ghana, where he gained hands-on experience working in agricultural systems in developing countries across Asia, Africa and the Middle East. It also inspired his PhD, which explored the disconnect between development work at research stations and the reality experienced by African farmers.

“During my PhD, I collaborated with CIMMYT through the Sustainable Intensification of Maize Legume Systems in Eastern and Southern Africa (SIMLESA) initiative. I developed a more nuanced approach to what ‘adoption’ actually means in terms of uptake and impact assessments. I also studied communities’ attitudes to conservation agriculture practices and diagnosed key institutional bottlenecks within research and extension systems.”

Brown’s studies allowed him to develop novel mixed methods and participatory impact pathways to promote new farming practices, such as conservation agriculture, to smallholder farmers in Africa. “My work with CIMMYT allows me to contribute to solving some of the world’s biggest issues. Through interacting with smallholders, facilitating conversations and creating new understanding, I hope to contribute to real change.”

Brendan Brown during a field visit.
Brendan Brown (left) during a field visit.

Moving to Asia

After spending nearly a decade in and out of Africa, he joined the CIMMYT team in Nepal earlier this year and is relishing the opportunity to explore new contexts in South Asia.

“So much potential exists within the food systems of South Asia given the existence of multiple cropping seasons and diverse markets, as well as exciting developments in the use of mechanization and irrigation that have potential for delivering large-scale benefits, driving improved food security and profits.” However, he points out the integration of such innovations in this part of the world can be challenging due to inherent complex social hierarchies and caste systems. “I still have much to learn within such complex systems.”

Brown’s work in South Asia focusses on understanding the adoption, scaling and impact of sustainable intensification technologies and practices. He is primarily working with the Sustainable and Resilient Farming Systems Intensification (SRFSI) initiative, which aims to reduce poverty by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women in agriculture.

By studying the portfolio of CIMMYT-led initiatives in the region, he is also developing his understanding of prevailing sustainable intensification practices and the issues farmers face when implementing them. In addition to his work with SRFSI, Brown is soon to embark on a new ACIAR-funded research project aiming to enhance sustainable mechanization of farming systems in two provinces of Nepal by mobilizing strategic planning and collaboration.

“I look forward to sitting down with local agricultural service providers to understand how they run their businesses and how they structure their livelihoods,” Brown expressed. “This will then be paired with the perspectives of farmers, as well as extension officers, researchers and policymakers to build theories of change and pathways to maximize the uptake and impact of sustainable intensification practices.”

He highlights how local ownership of change can be fostered by implementing participatory methods during this process. This can result in transformative change, felt from the institutional level all the way to the smallholder farmer. Brown hopes his work in South Asia will deliver widespread impact for smallholder farmers and he welcomes collaboration and sharing of ideas and approaches with others working towards similar objectives.

New publications: Exploring the gendered rules shaping agricultural innovation

How do gender norms, agency and agricultural innovation interlink? How can we research this question comparatively to better understand patterns without overlooking the specificities of different contexts and the people who occupy them? These questions set the stage for the new special issue in the Journal of Gender, Agriculture and Food Security (Agri-Gender) on the GENNOVATE research initiative.

Ahead of the International Day of Rural Women (October 15), researchers from across CGIAR drew on the voices of over 7,000 rural women and men across diverse regional contexts to demonstrate why understanding and addressing gender norms is critical for achieving sustainable and equitable development.

Gender norms comprise the social rules that differentiate what a society considers a man and a woman should be in their lives. The papers published in the GENNOVATE special issue provide new empirical and methodological contributions to the literature on gender, agricultural innovation and rural transformation. The testimonies gathered across 137 communities in 26 countries illuminate how agricultural innovation processes are regularly constrained by gender norms. These norms prescribe women’s deference to men’s authority and in turn assign women with heavy household and care work burdens. They also limit their access to resources, physical mobility and social interactions.

Challenging the norms

Women in Nepal participate in a focus group discussion as part of GENNOVATE's field research (Photo: Anuprita Shukla)
Women in Nepal participate in a focus group discussion as part of GENNOVATE’s field research (Photo: Anuprita Shukla)

Nevertheless, women and men find ways to challenge and redefine these norms, and village practices are often different from normative expectations. In a large majority of GENNOVATE research communities, women influence important household decisions and innovate in their rural livelihood activities, albeit often close to their homesteads and on a smaller scale than rural men. Some gender norms are beginning to relax to accommodate women’s and men’s changing lives, but these processes vary greatly across the types of norms, the groups of people concerned — young or unmarried women, widows, resource-constrained women, etc. — and the places where they live. By and large, women continue to face a myriad of barriers trying to expand their economic initiatives.

Two of the papers in the special issue explore gender norms in circumstances where farmer innovation and community development are particularly prevalent. CIMMYT researcher Lone Badstue and co-authors present findings from 336 semi-structured interviews with rural women and men from 19 countries who are known in their villages for agricultural innovation. While finance and physical assets emerge as important enablers of innovation, the testimonies stress that factors related to personality and agency are key drivers for both women’s and men’s capacity to innovate. Compared to men, women innovators are far more likely to detail how supportive spouses, parents, siblings, in-laws or children can help them learn about and adopt new farming techniques or otherwise actively innovate in their rural livelihoods.

Men in Kenya participate in a focus group discussion as part of GENNOVATE's field research (Photo: Renee Bullock/IITA)
Men in Kenya participate in a focus group discussion as part of GENNOVATE’s field research (Photo: Renee Bullock/IITA)

In another paper focused on 79 community case studies, Patti Petesch and co-authors focus on a small set of “transforming” villages, where participants in the GENNOVATE study widely reported accelerated processes of empowerment and poverty reduction in their communities. Case studies and comparative evidence are able to show that more equitable gender norms play a crucial role in catalyzing inclusive agricultural innovation and development processes.

Other papers in the issue emphasize concerns over innovation processes that reinforce gender inequality and marginalize specific social groups. For example, Marlène Elias and co-authors focus on rural youth in seven countries to demonstrate how norms that discriminate against women in agriculture are key for understanding young women’s limited aspirations in agricultural work. Petesch and co-authors also introduce the concept of local normative climate to shed light on the contextual and fluid ways in which norms operate, such as why in one community only men perceive their village to be an enabling climate for their agency and agricultural innovation, while in another community only women perceive this.

Women in Ethiopia participate in a focus group discussion as part of GENNOVATE's field research (Photo: Mahelet Hailemariam)
Women in Ethiopia participate in a focus group discussion as part of GENNOVATE’s field research (Photo: Mahelet Hailemariam)

A large-scale endeavor

Two papers describe GENNOVATE’s methodology and conceptual framework. The authors reflect on the challenges and opportunities faced in carrying out the large-scale qualitative study. They highlight the need to be attentive to the complexities of various local social contexts and women’s and men’s own understanding of their lives, while looking for patterns to make broader claims that can contribute to agricultural research and development. They also discuss GENNOVATE’s research protocols for sampling, data collection and analysis, and reflect on challenges that correspond with their application.

The GENNOVATE papers make evident that gender norms set the stage for agricultural innovation and that some people and places find pathways to forge ahead far faster than others. The special issue makes an important contribution to the development of strategies that are meaningfully informed by social realities while also allowing for comparisons across various contexts. This insight is relevant to research and development beyond the field of agriculture and natural resource management.

The GENNOVATE special issue in the Journal of Gender, Agriculture and Food Security (Agri-Gender) was published on September 2018, Volume 3, Issue 1.

The GENNOVATE research initiative is a collaboration of 11 CGIAR research programs.

CIMMYT collaborator wins Norman Borlaug Award for Field Research and Application

Matthew Rouse, a researcher with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), has been named the winner of the 2018 Norman Borlaug Award for Field Research and Application. Rouse is recognized for his essential leadership efforts to contain and reduce the impact of Ug99, a devastating new race of the stem rust pathogen that poses a serious threat to the world’s wheat crops and food security.

The Norman Borlaug Award for Field Research and Application is presented annually to a young extension worker, research scientist or development professional who best emulates the dedication, perseverance, and innovation demonstrated by Norman Borlaug while working in the field with Mexican farmers in the 1940s and ’50s.

“When I learned that I was selected for the Borlaug Field Award, I was humbled by both the legacy of Norman Borlaug and by the fact that any impact I made was a part of collaborations with talented and hard-working individuals at USDA-ARS, the University of Minnesota, CIMMYT, the Ethiopian Institute of Agricultural Research, and other national programs,” Rouse said.

Rouse has been an essential collaborator for a wide range of crucial projects to protect the world’s wheat crops. His research supports more than 20 breeding programs in the U.S. and 15 wheat genetics programs around the world, including those at CIMMYT. As the coordinator of ARS’s spring wheat nursery project in Ethiopia and Kenya, he has provided Ug99 resistance genes to breeders worldwide, accelerating the process for incorporating enhanced stem rust protection into wheat varieties.

Rouse also collaborated with CIMMYT in 2013, when a race of stem rust unrelated to Ug99 caused an epidemic in Ethiopia. He rapidly assembled a team of scientists from CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and USDA-ARS, and developed a research plan to establish four stem rust screening nurseries. This led to the selection of promising new wheat breeding lines by Ethiopian and CIMMYT scientists and the rapid 2015 release of the variety ‘Kingbird’ in Ethiopia, which was shown to be resistant to four of the most dangerous races of stem rust in addition to Ug99.

Read the announcement of the award on the World Food Prize website.

Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)
Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)

 

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

New publications: Toxin-producing fungal strains can now be detected in maize field soils with a new technique

A novel approach allows the detection of aflatoxin-producing fungi in maize fields. A new study explains the technique and how it was tested. “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method” was developed in collaboration between scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Japanese National Agriculture and Food Organization (NARO) and Fukui University of Technology, funded in part by the CGIAR Research Program on Maize (MAIZE).

Aflatoxins are harmful compounds produced by the fungi Aspergillus flavus, which can be found in the soil, plants and grain of a variety of cereals and commodities including maize, nuts, cottonseed, spices and dried fruit. The toxic carcinogenic qualities of aflatoxins pose serious health hazards to humans and animals when contaminated crops are ingested. These health risks include cancers of the liver and gallbladder, stunted development in children, premature births and abnormal fetal development.

Not all strains of A. flavus produce aflatoxins however, so it is important to be able to detect and distinguish between A. flavus strains that are benign (atoxigenic) and those that produce dangerous toxins (aflatoxigenic). Current methods of detection are often complicated by the fact that the fungal strains display very similar physiological and molecular traits, thus a new approach is required.

In the study, a novel approach to detect and distinguish A. flavus strains was tested. Using soil samples from a CIMMYT experimental maize field in Mexico, fungal isolates were chemically treated in-line with a method recently developed in Japan, resulting in a color change indicative of toxicity. The method was found to be effective and accurate in the detection of the aflatoxigenic strains of the fungus.

This study is foundational work in the development of a simple, cost-effective and efficient method of detecting aflatoxigenic strains of A. flavus, which will help inform growers about the potential aflatoxin contamination of their crops. This is of particular importance in the developing world, where the resources for effective control of the fungus are often lacking.

To read the original study, “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method”, please click here.

Original citation: Kushiro, M.; Hatabayashi, H.; Yabe, K.; Loladze, A. Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method. Toxins 2018, 10, 263.

This article was originally published on the website of the CGIAR Research Program on Maize.

Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)
Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)

Check out other recent publications by CIMMYT researchers below:

  1. Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions. 2018. Makumbi, D., Assanga, S., Diallo, A., Magorokosho, C., Asea, G., Regasa, M.W., Bänziger, M. In: Crop Science v. 58, no. 4, p. 1492-1507.
  2. Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula’. 2018.  Randhawa, M.S., Caixia Lan, Basnet, B.R., Bhavani, S., Huerta-Espino, J., Forrest, K.L., Hayden, M., Singh, R.P. In: Australian Journal of Crop Science v. 12, no. 6, p. 1023-1033.
  3. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. 2018. Tabib Ghaffary, S.M., Chawade, A., Singh, P.K. In: Euphytica v. 214, art. 122.
  4. Sashaydiall : A SAS program for hayman’s diallel analysis. 2018. Makumbi, D., Alvarado Beltrán, G., Crossa, J., Burgueño, J. In: Crop Science v. 58, no. 4, p. 1605-1615.
  5. Soil bacterial diversity under conservation agriculture-based cereal systems in indo-gangetic plains. 2018. Choudhary, M., Sharma, P.C., Jat, H. S., Dash, A., Rajashekar, B., McDonald, A., Jat, M.L.  In: 3 Biotech v. 8, art. 304.

How to get your high-impact research published in leading journals: top tips from the Senior Editor of Nature Genetics

At CIMMYT’s Science Week 2018, Nature Genetics Senior Editor Catherine Potenski spoke on how to publish plant genomics research that has broad, novel impact.

Catherine Potenski, Senior Editor of Nature Genetics, talks to participants of CIMMYT's Science Week on June 26, 2018. (Photo: Alfonso Cortés/CIMMYT)
Catherine Potenski, Senior Editor of Nature Genetics, talks to participants of CIMMYT’s Science Week on June 26, 2018. (Photo: Alfonso Cortés/CIMMYT)

Having research that is high-impact is not only critical to doing excellent science that has meaning, but also a premier way to let the research community know what you are doing and reach a broader audience, according to Catherine Potenski, Senior Editor at Nature Genetics, one of the more than 70 high-quality academic journals of publishing company Springer Nature.

“Plant genomics is an exciting field that is a priority for Nature Genetics given climate change and other challenges,” said Potenski. “We look for studies with novelty, a genetics scope and resource value.”

Nature Genetics is highly selective and publishes approximately 200 papers per year. Potenski wants to make the editorial review process more productive and simple for researchers so they can share their best work.

“You should organize your paper to highlight the impact of the findings and write a cover letter that places your work in context, highlighting what gap of knowledge it fills and how others will use this research,” explained Potenski. In addition, scientists should target the right journal for their research. In case of doubt, they can send a pre-submission inquiry and work with editors.

Impact is not always immediate, and the impact factor is not necessarily a good or proven metric. “The first CRISPR articles published in the early 2000s are now very impactful, but nobody knew the impact they would have then. Just because it is not in a high-impact journal, it does not mean it is not high-impact,” she said.

Potenski shared the six questions plant researchers should ask themselves when submitting research to Nature Genetics.

  1. Is my main approach genetic?

Your main analyses should be based on genetic screens, Quantitative Trait Locus (QTL) mapping, genome re-sequencing or other genetic approaches. If the main analysis of a paper is in transcriptomics, imaging or biochemistry, this could be considered off scope (but fine if they are secondary analyses).

  1. Are the findings highly novel?

Your research should reflect a new method or finding that is really groundbreaking. Findings that just provide insight into a known process, are confirmatory or incremental do not meet Nature’s standards. If the finding is only new for a specific crop, that might also not be sufficiently novel.

  1. Is there a large user group for the data?

Bigger is usually always better; you want your research to apply to or benefit as many people as possible. If the crop you are studying is widely consumed like wheat, or you have a large study scope such as large-scale GWAS (Genome-Wide Association Study) analysis, that will impact many more people than if you are studying watermelons using single QTL mapping.

  1. Is this a very large or unique dataset?

You want large, high-quality datasets and analyses that are unique and other groups cannot easily repeat. Ideally this leads to a new approach in your field. Data that are open and easily available, and studies using the latest technologies also get priority.

  1. Do the findings provide biological insights?

You want people reading your study to learn something new about plant biology. Instead of merely reporting domestication patterns, you want something new about the mechanisms of evolution or adaptation. Editors look for comprehensive, molecular mechanistic insight into the processes studied.

  1. Is there evidence for crop improvement?

Editors prioritize studies with potential for crop improvement, especially in the context of climate change and food security. You want your research to be demonstrated in a crop plant, ideally in the physical plant and not in a model simulation.

 

 

Governments must raise, not cut, funding for food security

A Financial Times editorial by CIMMYT wheat physiologist Matthew Reynolds presents a new proposal for expanding the wheat network to include other major food crops and speed farmers’ adoption of vital technologies that can end hunger and address climate change. The idea has the support of experts from leading funding and development agencies.

https://www.ft.com/content/b3d07616-c3d3-11e7-a1d2-6786f39ef675

 

Student reflection: my visit to CIMMYT-Hyderabad, India

Alex-RenaudAlex Renaud is a third-year graduate student pursuing a doctorate degree in plant breeding and genetics from Purdue University in West Lafayette, Indiana, USA.

When given the opportunity to travel to India to work on heat tolerance in maize, I leaped at the prospect. I was excited by the potential for professional development and the chance to experience a different culture. My visit was part of the Heat Tolerant Maize for Asia (HTMA) collaborative project, funded by the United States Agency for International Development Feed the Future Initiative. The project supports graduate students in plant breeding to learn about and contribute to completing initiative objectives. HTMA is a public-private partnership (PPP) led by CIMMYT-Asia. Partners include Purdue University, Pioneer Hi-Bred and other seed companies and public sector maize programs in South Asia.

CIMMYT-Asia in Hyderabad, India, provides an ideal environment to evaluate or phenotype maize genotypes for heat stress tolerance. Temperatures regularly reach 40°C or higher and the relative humidity is usually below 30 percent during the reproductive development of maize planted during spring season. Additionally, the CIMMYT facilities in Hyderabad provided an excellent laboratory environment for testing hypotheses concerning the basis of heat stress tolerance in maize.

Having never been to India, I really enjoyed my stay in Hyderabad, from both research and cultural standpoints. I enjoyed getting to know the research scientists and technicians involved in the research project and had ample opportunities to learn in workshops, trainings, field visits and over dinner. My stay, which was longer than two months, provided me with the opportunity to build both personal and professional relationships. Anyone who has visited Hyderabad in May will understand just how hot it can be. It took time for me to adapt to the heat. As I was leaving the U.S. for India, my hometown received 300 millimeters of snow in 24 hours. During my first week in Hyderabad, the temperatures exceeded 40°C. It was quite a change.

Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud
Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud

In addition to taking advantage of research opportunities, I visited several interesting cultural sites, including the Taj Mahal. My favorite memories include sampling many different types of food, from Hyderabadi biryani to India’s version of Kentucky Fried Chicken; I never tried anything I did not like! As an aspiring plant breeder, this was a great experience, and I hope to continue my involvement with the PPP as it develops heat-stress-tolerant maize for South Asia.

I would like to sincerely thank Mitch Tuinstra, professor of plant breeding at Purdue University for providing me with this opportunity as well as P.H. Zaidi, senior maize physiologist at CIMMYT-Hyderabad and project leader of HTMA, and his wonderful team for everything that made my two-month stay professionally productive and personally memorable.