Participants at the mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project. Photo CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) and the Rwanda Agriculture and Animal Resources Development Board (RAB) recently held a mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project.
The meeting aimed to track the progress made in the first year of the projectâs implementation, identify challenges, document lessons learned, and develop an action plan for the following year, based on identified gaps and priorities.
In his welcoming remarks, RAB Director General Patrick Karangwa highlighted the close partnership between the two institutions.
âThe workshop is not only about reviewing the progress but also about creating a strong partnership and interaction with each other to form a lasting togetherness that can later be useful for supporting each other in running the programâs activities of GAIA in the region,â he said.
Karangwa also noted the dynamism and enthusiasm of the GAIA team and partners, who made âremarkable successesâ during a challenging period due to the COVID-19 pandemic.
Along with plant nutrition and improved land management, healthier soils contribute to more productive and profitable smallholder enterprises. The GAIA project uses scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.
The workshop brought together about 49 participant including regional program implementing partners, key stakeholders, and scientists from Ethiopia, Kenya, Rwanda, Tanzania, and Zimbabwe to  participate in more than 20 face-to-face and virtual presentations,  breakout sessions, and team-building exercises.
âThe key to project success is a strong partnership and collaboration with national and regional partners, particularly with private and public sectors ââ said  Sieglinde Snapp, the director of the Sustainable Agrifood Systems (SAS) program at CIMMYT.
The participants addressed the work undertaken around eight work packages: spatial ex-ante analysis, adoption research on lime value chains, agronomy research for lime recommendations, support to the lime sector, policy support, coordination and advocacy, data use and management, and communication.
GAIA is funded by the Bill and Melinda Gates Foundation and implemented by CIMMYT in partnership with the Centre for Agriculture and Bioscience International; Dalberg; national agricultural research systems in Ethiopia, Kenya, Rwanda, and Tanzania; the Southern Agricultural Growth Corridor of Tanzania; Wageningen University; and the University of California – Davis. The project aims to provide data-driven and spatially explicit recommendations to increase returns on investment for farmers, the private sector, and governments in Africa.
National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)
CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiativeâs inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.
The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.
Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.
âThe CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. âThis calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.â
Demand-driven multistakeholder approach
CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.
The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenyaâs Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIARâs contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.
âAs government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],â said Magenya.
Implications of Plant Health in Africa and globally
Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.
Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.
CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrowâs problems today, through collective and decisive action at all levels.
Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)
The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing womenâs major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. âWe welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,â she added.
Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.
Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.
Reflecting on gender, social inclusion, and plant health
Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.
Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).
B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)
Charting the course for the Initiative
The Plant Health Initiative Work Package Leads presented the Initiativeâs five specific work packages and reiterated their priorities for the next three years.
âWe are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,â said Prasanna.
The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.
âPlant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forwardâ moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).
 âScaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovationsâ moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)
Work Package Title and Leads
Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization
Lead:Monica Carvajal, Alliance of Bioversity-CIAT
Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response
Lead: Lava Kumar, IITA
Work Package 3: Integrated pest and disease management
Lead: Prasanna Boddupalli, CIMMYT
Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination
Lead:Alejandro Ortega-Beltran, IITA
Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)
A blast-blighted stalk of wheat. (Photo: Chris Knight/Cornell)
Every year, the spores of the wheat blast fungus lie in wait on farms in South America, Bangladesh, and beyond. In most years, the pathogen has only a small impact on the countriesâ wheat crops. But the disease spreads quickly, and when the conditions are right thereâs a risk of a large outbreak â which can pose a serious threat to the food security and livelihood of farmers in a specific year.
To minimize this risk, an international partnership of researchers and organizations have created the wheat blast Early Warning System (EWS), a digital platform that notifies farmers and officials when weather conditions are ideal for the fungus to spread. The team, which began its work in Bangladesh, is now introducing the technology to Brazil â the country where wheat blast was originally discovered in 1985.
The International Maize and Wheat Improvement Center (CIMMYT), the Brazilian Agricultural Research Corporation (EMBRAPA), Â Brazilâs University of Passo Fundo (UPF) and others developed the tool with support from USAID under the Cereal Systems Initiative for South Asia (CSISA) project.
Although first developed with the help of Brazilian scientists for Bangladesh, the EWS has now come full circle and is endorsed and being used by agriculture workers in Brazil. The team hopes that the system will give farmers time to take preventative measures against the disease.
Outbreaks can massively reduce crop yields, if no preventative actions are taken.
âIt can be very severe. It can cause a lot of damage,â says MaurĂcio Fernandes, a plant epidemiologist with EMBRAPA.
Striking first
In order to expand into a full outbreak, wheat blast requires specific temperature and humidity conditions. So, Fernandes and his team developed a digital platform that runs weather data through an algorithm to determine the times and places in which outbreaks are likely to occur.
If the system sees a region is going to grow hot and humid enough for the fungus to thrive, it sends an automated message to the agriculture workers in the area. These messages â texts or emails â alert them to take preemptive measures against the disease.
More than 6,000 extension agents in Bangladesh have already signed up for disease early warnings.
In Brazil, Fernandes and his peers are connecting with farmer cooperatives. These groups, which count a majority of Brazilian farmers as members, can send weather data to help inform the EWS, and can spread alerts through their websites or in-house applications.
Wheat blast can attack a plant quickly, shriveling and deforming the grain in less than a week from the first symptoms. Advance warnings are essential to mitigate losses. The alerts sent out will recommend that farmers apply fungicide, which only works when applied before infection.
âIf the pathogen has already affected the plant, the fungicides will have no effect,â Fernandes says.
A blast from the past
Because wheat had not previously been exposed to Magnaporthe oryzae, most wheat cultivars at the time had no natural resistance to Magnaporthe oryzae, according to Fernandes.  Some newer varieties are moderately resistant to the disease, but the availability of sufficient seed for farmers remains limited.
The pathogen can spread through leftover infected seeds and crop residue. But its spores can also travel vast distances through the air.
If the fungus spreads and infects enough plants, it can wreak havoc over large areas. In the 1990s â shortly after its discovery â wheat blast impacted around three million hectares of wheat in South America. Back in 2016, the disease appeared in Bangladesh and South Asia for the first time, and the resulting outbreak covered around 15,000 hectares of land. CGIAR estimates that the disease has the potential to reduce the regionâs wheat production by 85 million tons.
In Brazil, wheat blast outbreaks can have a marked impact on the countryâs agricultural output. During a major outbreak in 2009, the disease affected as many as three million hectares of crops in South America. As such, the EWS is an invaluable tool to support food security and farmer livelihoods. Fernandes notes that affected regions can go multiple years between large outbreaks, but the threat remains.
âPeople forget about the disease, then you have an outbreak again,â he says.
Essential partnerships
The EWS has its roots in Brazil. In 2017 Fernandes and his peers published a piece of research proposing the model. After that, Tim Krupnik, a senior scientist and country representative with CIMMYT in Bangladesh, along with a group of researchers and organizations, launched a pilot project in Bangladesh.
There, agriculture extension officers received an automated email or text message when weather conditions were ideal for wheat blast to thrive and spread. The team used this proof of concept to bring it back to Brazil.
According to Krupnik, the Brazil platform is something of a âhomecomingâ for this work. He also notes that cooperation between the researchers, organizations and agriculture workers in Brazil and Bangladesh was instrumental in creating the system.
âFrom this, we’re able to have a partnership that I think will have a significant outcome in Brazil, from a relatively small investment in research supplied in Bangladesh. That shows you the power of partnerships and how solutions can be found to pressing agricultural problems through collaborative science, across continents,â he says.
Back-to-back droughts followed by plagues of locusts have pushed over a million people in southern Madagascar to the brink of starvation in recent months. In the worst famine in half a century, villagers have sold their possessions and are eating the locusts, raw cactus fruits, and wild leaves to survive.
Instead of bringing relief, this yearâs rains were accompanied by warm temperatures that created the ideal conditions for infestations of fall armyworm, which destroys mainly maize, one of the main food crops of sub-Saharan Africa.
Drought and famine are not strangers to southern Madagascar, and other areas of eastern Africa, but climate change bringing warmer temperatures is believed to be exacerbating this latest tragedy, according to The Deep South, a new report by the World Bank.
Up to 40% of global food output is lost each year through pests and diseases, according to FAO estimates, while up to 811 million people suffer from hunger. Climate change is one of several factors driving this threat, while trade and travel transport plant pests and pathogens around the world, and environmental degradation facilitates their establishment.
Crop pests and pathogens have threatened food supplies since agriculture began. The Irish potato famine of the late 1840s, caused by late blight disease, killed about one million people. The ancient Greeks and Romans were well familiar with wheat stem rust, which continues to destroy harvests in developing countries.
But recent research on the impact of temperature increases in the tropics caused by climate change has documented an expansion of some crop pests and diseases into more northern and southern latitudes at an average of about 2.7 km a year.
Prevention is critical to confronting such threats, as brutally demonstrated by the impact of the COVID-19 pandemic on humankind. It is far more cost-effective to protect plants from pests and diseases rather than tackling full-blown emergencies.
One way to protect food production is with pest- and disease-resistant crop varieties, meaning that the conservation, sharing, and use of crop biodiversity to breed resistant varieties is a key component of the global battle for food security.
CGIAR manages a network of publicly-held gene banks around the world that safeguard and share crop biodiversity and facilitate its use in breeding more resistant, climate-resilient and productive varieties. It is essential that this exchange doesnât exacerbate the problem, so CGIAR works with international and national plant health authorities to ensure that material distributed is free of pests and pathogens, following the highest standards and protocols for sharing plant germplasm. The distribution and use of that germplasm for crop improvement is essential for cutting the estimated 540 billion US dollars of losses due to plant diseases annually.
Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations. Human-driven climate change is the challenge of our time. It poses grave threats to agriculture and is already affecting the food security and incomes of small-scale farming households across the developing world.
We need to improve the tools and innovations available to farmers. Rice production is both a driver and victim of climate change. Extreme weather events menace the livelihoods of 144 million smallholder rice farmers. Yet traditional cultivation methods such as flooded paddies contribute approximately 10% of global man-made methane, a potent greenhouse gas. By leveraging rice genetic diversity and improving cultivation techniques we can reduce greenhouse gas emissions, enhance efficiency, and help farmers adapt to future climates.
A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)
We also need to be cognizant that gender relationships matter in crop management. A lack of gender perspectives has hindered wider adoption of resistant varieties and practices such as integrated pest management. Collaboration between social and crop scientists to co-design inclusive innovations is essential.
Men and women often value different aspects of crops and technologies. Men may value high yielding disease-resistant varieties, whereas women prioritize traits related to food security, such as early maturity. Incorporating womenâs preferences into a new variety is a question of gender equity and economic necessity. Women produce a significant proportion of the food grown globally. If they had the same access to productive resources as men, such as improved varieties, women could increase yields by 20-30%, which would generate up to a 4% increase in the total agricultural output of developing countries.
Practices to grow healthy crops also need to include environmental considerations. What is known as a One Health Approach starts from the recognition that life is not segmented. All is connected. Rooted in concerns over threats of zoonotic diseases spreading from animals, especially livestock, to humans, the concept has been broadened to encompass agriculture and the environment.
This ecosystem approach combines different strategies and practices, such as minimizing pesticide use. This helps protect pollinators, animals that eat crop pests, and other beneficial organisms.
The challenge is to produce enough food to feed a growing population without increasing agricultureâs negative impacts on the environment, particularly through greenhouse gas emissions and unsustainable farming practices that degrade vital soil and water resources, and threaten biodiversity.
Behavioral and policy change on the part of farmers, consumers, and governments will be just as important as technological innovation to achieve this.
The goal of zero hunger is unattainable without the vibrancy of healthy plants, the source of the food we eat and the air we breathe. The quest for a food secure future, enshrined in the UN Sustainable Development Goals, requires us to combine research and development with local and international cooperation so that efforts led by CGIAR to protect plant health, and increase agricultureâs benefits, reach the communities most in need.
Barbara H. Wells MSc, PhD is the Global Director of Genetic Innovation at the CGIAR and Director General of the International Potato Center. She has worked in senior-executive level in the agricultural and forestry sectors for over 30 years.
The conservation of plant genetic diversity through germplasm conservation is a key component of global climate-change adaptation efforts. Germplasm banks like the maize and wheat collections at the International Maize and Wheat Improvement Center (CIMMYT) may hold the genetic resources needed for the climate-adaptive crops of today and tomorrow.
But how do we ensure that these important backups are themselves healthy and not potential vectors of pest and disease transmission?
âGermplasm refers to the source plants of either specific cultivars or of unique genes or traits that can be used by breeders for improved cultivars,â program moderator and head of the Health and Quarantine Unit at the International Potato Center (CIP) Jan Kreuze explained to the eventâs 622 participants. âIf the source plant is not healthy, whatever you multiply or use it for will be unhealthy.â
According to keynote speaker Saafa Kumari, head of the Germplasm Health Unit at the International Center for Agricultural Research in the Dry Areas (ICARDA), we know of 1.3 thousand pests and pathogens that infect crops, causing approximately $530 billion in damages annually. The most damaging among these tend to be those that are introduced into new environments.
Closing the gap, strengthening the safety net
The CGIAR has an enormous leadership role to play in this area. According to Kumari, approximately 85% of international germplasm distribution is from CGIAR programs. Indeed, in the context of important gaps in the international regulation and standards for germplasm health specifically, the practices and standards of CGIARâs Germplasm Health Units represent an important starting point.
âGermplasm health approaches are not necessarily the same as seed and plant health approaches generally,â said Ravi Khaterpal, executive secretary for the Asia-Pacific Association of Agricultural Research Institutions (APAARI). âBest practices are needed, such as CGIARâs GreenPass.â
In addition to stronger and more coherent international coordination and regulation, more research is needed to help source countries test genetic material before it is distributed, according to Francois Petter, assistant director for the European and Mediterranean Plant Protection Organization (EPPO). Head of the CGIAR Genebank Platform Charlotte Lusty also pointed out the needed for better monitoring of accessions in storage. âWe need efficient, speedy processes to ensure collections remain healthy,â she said.
Of course, any regulatory and technological strategy must remain sensitive to existing and varied social and gender relations. We must account for cultural processes linked to germplasm movement, said Vivian Polar, Gender and Innovation Senior Specialist with the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Germplasm moves through people, she said, adding that on the ground âwomen and men move material via different mechanisms.â
âThe cultural practices associated with seed have to be understood in depth in order to inform policies and address gender- and culture-related barriersâ to strengthening germplasm health, Polar said.
The event was co-organized by researchers at CIP and the International Institute of Tropical Agriculture (IITA).
The overall webinar series is hosted by CIMMYT, CIP, the International Food Policy Research Institute (IFPRI), IITA, and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).
The third of the four webinars on plant health, which will be hosted by CIMMYT, is scheduled for March 10 and will focus on integrated pest and disease management.Â
Evidence of enormity and immediacy of the challenges climate change poses for life on earth seems to pour in daily. But important gaps in our knowledge of all the downstream effects of this complex process remain. And the global response to these challenges is still far from adequate to the job ahead. Bold, multi-stakeholder, multidisciplinary action is urgent.
In addition to exploring the important challenges climate changes poses for plant health, the event explored the implications for the wellbeing and livelihoods of smallholder farming communities in low- and middle- income countries, paying special attention to the gender dimension of both the challenges and proposed solutions.
The event was co-organized by researchers at the International Rice Research Institute (IRRI) and the International Centre of Insect Physiology and Ecology (icipe).
The overall webinar series is hosted by the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Food Policy Research Institute (IFPRI), the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).
This is important
The stakes for the conversation were forcefully articulated by Shenggen Fan, chair professor and dean of the Academy of Global Food Economics and Policy at China Agricultural University and member of the CGIAR System Board. âBecause of diseases and pests, we lose about 20-40% of our food crops. Can you imagine how much food we have lost? How many people we could feed with that lost food? Climate change will make this even worse,â Fan said.
Such impacts, of course, will not be evenly felt across geographic and social divides, notably gender. According to Jemimah Njuki, director for Africa at IFPRI, gender and household relationships shape how people respond to and are impacted by climate change. âOne of the things we have evidence of is that in times of crises, womenâs assets are often first to be sold and it takes even longer for them to be recovered,â Njuki said.
The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)
Shifting risks
When it comes to understanding the impact of climate change on plant health âone of our big challenges is to understand where risk will change,â said Karen Garrett, preeminent professor of plant pathology at the University of Florida,
This point was powerfully exemplified by Henri Tonnang, head of Data Management, Modelling and Geo-information Unit at icipe, who referred to the âunprecedented and massive outbreakâ of desert locusts in 2020. The pest â known since biblical times â has reemerged as a major threat due to extreme weather events driven by sea level rise.
Researchers highlighted exciting advancements in mapping, modelling and big data techniques that can help us understand these evolving risks. At the same time, they stressed the need to strengthen cooperation not only among the research community, but among all the stakeholders for any given research agenda.
âThe international research community needs to transform the way it does research,â said Ana MarĂa Loboguerrero, research director for Climate Action at the Alliance of Bioversity International and CIAT. âWeâre working in a very fragmented way, sometime inefficiently and with duplications, sometimes acting under silos⊠It is difficult to deliver end-to-end sustainable and scalable solutions.â
Time for a new strategy
Such injunctions are timely and reaffirm CGIARâs new strategic orientation. According to Sonja Vermeulen, the event moderator and the director of programs for the CGIAR System Management Organization, this strategy recognizes that stand-alone solutions â however brilliant â arenât enough to make food systems resilient. We need whole system solutions that consider plants, animals, ecosystems and people together.
Echoing Fanâs earlier rallying cry, Vermeulen said, âThis is important. Unless we do something fast and ambitious, we are not going to meet the Sustainable Development Goals.â
Cover photo: All farmers are susceptible to extreme weather events, and many are already feeling the effects of climate change. (Photo: N. Palmer/CIAT)
The UN has designated 2020 as the International Year of Plant Health. CGIAR Centers have significant scientific knowledge, extensive experience on the ground, and thought leadership that they can lend to the global discussion to advance awareness, collaboration, and scaling of needed interventions.
CGIARâs International Year of Plant Health events will comprise a series of four webinars of global scope targeting scientists and researchers working in relevant fields. The webinars will take an in-depth look into current science in the area, identify areas for further research, and opportunities to take current scientific innovations to scale.
Each webinar will examine one aspect of the crop supply chain â from genebanks to farmersâ fields to consumersâ plates â to identify ways of promoting the adoption of tools and practices designed to boost the long-term health of plants and the environment in low- and middle-income countries. With the acceleration of the effects of climate change on the incidence and intensity of pests and diseases, identification of the right crop varieties, mix of crops, and tools and practices will be key to ensuring the availability of food to feed the planet.
Webinar 1 will discuss the anticipated impacts of climate change on plant health in smallholder systems, tackling how the occurrence, intensity, and frequency of biotic and abiotic stresses will change as a function of climate change. It will provide participants with information on the negative effects on plant health, in relation to food security, nutrition, environment, gender, and livelihoods, as well as on the role of research in providing support to global efforts to mitigate or adapt to climate change challenges for plant health. Full details of webinar 1.
Webinar 2 will highlight the importance of germplasm (phytosanitary) health in the prevention of transboundary pest and disease spread, as well as the propagation of clean planting material to be used locally. Experts will discuss the implications of poor germplasm practices on agricultural and food system sustainability, farmer livelihoods, and food and nutrition security. They will also examine how opportunities for greater workplace diversity in germplasm health hubs and gender-responsive programming could drive more inclusive sustainable development. Full details of webinar 2.
Webinar 3 examines integrated approaches for sustainable management of transboundary diseases and crop pests and their implications for agri-food system sustainability, social inclusion and gender equity. Drawing on both successes and enduring challenges, experts will identify the potential benefits of more gender-responsive approaches to pest and disease control; more coordinated action by national, regional and global organizations; and lessons to be learned from successful animal health management. Full details of webinar 3.
Webinar 4 brings together scientists working at the intersection of environmental, human, and animal health. In this session, the experts will examine plant health and agriculture from a âOne Healthâ approach â a collaborative, multisectoral, and transdisciplinary perspective that recognizes the health of people, animals, plants, and their environments as all closely connected. In this approach, agricultural practices and plant health outcomes both are determined by, and contribute to, ecological, animal, and human health. Full details of webinar 4.
A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.
The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the successful development of three CIMMYT-derived fall armyworm-tolerant elite maize hybrids for eastern and southern Africa.
Fall armyworm (Spodoptera frugiperda) emerged as a serious threat to maize production in Africa in 2016 before spreading to Asia in 2018. Host plant resistance is an important component of integrated pest management (IPM). By leveraging tropical insect-resistant maize germplasm developed in Mexico, coupled with elite stress-resilient maize germplasm developed in sub-Saharan Africa, CIMMYT worked intensively over the past three years to identify and validate sources of native genetic resistance to fall armyworm in Africa. This included screening over 3,500 hybrids in 2018 and 2019.
Based on the results of on-station screenhouse trials for fall armyworm tolerance (under artificial infestation) conducted at Kiboko during 2017-2019, CIMMYT researchers evaluated in 2020 a set of eight test hybrids (four early-maturing and four intermediate-maturing) ) against four widely used commercial hybrids (two early- and two intermediate-maturing) as checks. The trials conducted were:
âNo choiceâ trial under fall armyworm artificial infestation in screenhouses in Kiboko, Kenya: Each entry was planted in 40 rows in a separate screenhouse compartment (âno-choiceâ), and each plant infested with seven fall armyworm neonates 14 days after planting. Foliar damage was assessed 7, 14 and 21 days after infestation. Ear damage and percent ear damage were also recorded, in addition to grain yield and other agronomic parameters.
On-station trials in eastern Africa: The trials, including the eight test entries and four commercial checks, were conducted at six locations in Kenya during the maize cropping season in 2020. Entries were evaluated for their performance under managed drought stress, managed low nitrogen stress, and under artificial inoculation for Turcicum leaf blight (TLB) and Gray leaf spot (GLS) diseases. The three-way cross CIMMYT test hybrids and their parents were also characterized on-station for their seed producibility, including maximum flowering time difference between parents, and single-cross female parent seed yield.
The eight test entries with fall armyworm tolerance were also included in the regional on-station trials (comprising a total of 58 entries) evaluated at 28 locations in Kenya and Tanzania. The purpose of these regional trials was to collect data on agronomic performance.
On-farm trials in Kenya: The eight test hybrids and four commercial checks were evaluated under farmersâ management conditions (without any insecticide spray) at 16 on-farm sites in Kenya. Each entry was planted in 20-row plots, and data was recorded on natural fall armyworm infestation. Foliar damage was assessed 7, 14, 21, 28 and 35 days after germination together with insect incidence. Ear damage and percent ear damage were also recorded, besides grain yield and other agronomic parameters.
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under âno choiceâ trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).
Summary of the data
âNo-choiceâ trials in screenhouses at Kiboko: Significant differences were observed between the three selected fall armyworm tolerant hybrids (FAWTH2001-2003) and the commercial benchmark hybrid checks at the vegetative and grain filling stages and at harvest (Figure 1). In the fall armyworm artificial infestation trial, the three selected FAWTH hybrids yielded 7.05 to 8.59 t/ha while the commercial checks yielded 0.94-1.03 t/ha (Table 1).
On-station trials: No significant differences were observed between the three selected FAWTH hybrids and the commercial checks for grain yield and other important traits evaluated under optimum, managed drought stress, low nitrogen stress, TLB and GLS diseases (Table 1). The three FAWTH hybrids recorded excellent synchrony in terms of flowering between the female and male parents, and very good female parent seed yield (Table 1).
On-farm trials: There were significant differences in terms of foliar damage ratings between the FAWTH hybrids and the commercial checks. For ear damage, the differences were not statistically significant. The grain yields did not vary significantly under natural infestation in the on-farm trials because of the very low incidence of fall armyworm at most sites.
Native genetic resistance to fall armyworm in maize is partial, though quite significant in terms of yield protection under severe fall armyworm infestation, as compared to the susceptible commercial checks. Sustainable control of fall armyworm is best achieved when farmers use host plant resistance in combination with other components of integrated pest management, including good agronomic management, biological control and environmentally safer pesticides.
Next Steps
Together with national agricultural research system (NARS) partners, CIMMYT will nominate these FAWTH hybrids for varietal release in target countries in sub-Saharan Africa, especially in eastern and southern Africa. Â After national performance trials (NPTs) and varietal release and registration, the hybrids will be sublicensed to seed company partners on a non-exclusive, royalty-free basis for accelerated seed scaling and deployment for the benefit of farming communities.
Acknowledgements
This work was implemented with funding support from the CGIAR Research Program on Maize (MAIZE), the U.S. Agency for International Development (USAID) Feed the Future initiative, and the Bill & Melinda Gates Foundation. MAIZE receives Windows 1&2 funding support from the World Bank and the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, UK and USA. The support extended by the Kenya Agriculture & Livestock Research Organization (KALRO) for implementation of this work through the fall armyworm mass rearing facility at Katumani and the maize research facilities managed by CIMMYT at Kiboko is gratefully acknowledged.
For further information, please contact:
B.M. Prasanna, Director of the Global Maize Program, CIMMYT and the CGIAR Research Program on Maize. b.m.prasanna@cgiar.org
Pawan Kumar Singh, head, wheat pathology, International Maize and Wheat Improvement Center (CIMMYT) says that the fast-acting and devastating fungal disease known as wheat blast was first spotted in Africa in the Zambian rainfed wheat production system in the 2017-2018 crop cycle.
For the first time, wheat blast, a fast-acting and devastating fungal disease, has been reported on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture â Foreign Disease Weed Science Research Unit (USDA-ARS).
Wheat blast damages wheat spikes. (Photo: Xinyao He / CIMMYT)
In an article published in Nature Scientific Reports, a team of scientists led by wheat breeder Philomin Juliana from the International Wheat and Maize Improvement Center (CIMMYT) conducted a large genome-wide association study to look for genomic regions that could also be associated with resistance to wheat blast.
Juliana and fellow scientists found 36 significant markers on chromosome 2AS, 3BL, 4AL and 7BL that appeared to be consistently associated with blast resistance across different environments. Among these, 20 markers were found to be in the position of the 2NS translocation, a chromosomal segment transferred to wheat from a wild relative, Aegilops ventricosa, that has very strong and effective resistance to wheat blast.
The team also gained excellent insights into the blast resistance of the globally-distributed CIMMYT germplasm by genomic fingerprinting a panel over 4,000 wheat lines for the presence of the 2NS translocation, and found that it was present in 94.1% of lines from International Bread Wheat Screening Nurseries (IBWSNs) and 93.7% of lines from Semi-Arid Wheat Screening Nurseries (SAWSNs). Although it is reassuring that such a high percentage of CIMMYT wheat lines already have the 2NS translocation and implied blast resistance, finding other novel resistance genes will be instrumental in building widespread, global resilience to wheat blast outbreaks in the long-term.
The researchers used data collected over the last two years from CIMMYTâs IBWSNs and SAWSNs by collaborators at the Bangladesh Wheat and Maize Research Institute (BWMRI) and Bolivia’s Instituto Nacional de InnovaciĂłn Agropecuaria y Forestal (INIAF).
Devastating fungal disease
Wheat blast, caused by the fungus Magnaporthe oryzae pathotype Triticum, was first identified in 1985 in South America, but has been seen in Bangladesh in recent years. The expansion of the disease is a great concern for regions of similar environmental conditions in South Asia, and other regions globally.
Although management of the disease using fungicide is possible, it is not completely effective for multiple reasons, including inefficiency during high disease pressure, resistance of the fungal populations to some classes of fungicides, and the affordability of fungicide to resource-poor farmers. Scientists see the development and deployment of wheat with genetic resistance to blast as the most sustainable and farmer-friendly approach to preventing devastating outbreaks around the world.
This work was made possible by the generous support of the Delivering Genetic Gains in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation, the U.K. Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University, the U.S. Agency for International Developmentâs Feed the Future initiative, the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), The Swedish Research Council (VetenskapsrĂ„d), and the Australian Centre for International Agricultural Research (ACIAR).
Seeds are the start and the first step in a solution for global hunger.
B.M. Prasanna, director of the Global Maize Program and of the CGIAR Research program on Maize at the International Maize and Wheat Improvement Center (CIMMYT), says smallholder farms in sub-Saharan Africa make up 80% of all farms there, and contribute significantly to food production in the region.
âOver the past 15 years, CIMMYT and partners in sub-Saharan Africa have been able to intensively work with seed companies to invest in deployment of climate-resilient and nutritionally enriched maize seed, and generate demand for such products,â Prasanna says.
Efforts towards managing the Maize Lethal Necrosis (MLN), a viral disease affecting maize, have contributed to reducing seed production losses from 33 per cent to 16 per cent in the last four years, bolstering steady supply of maize seeds in the Eastern African region.