Skip to main content

Tag: pests

CGIAR webinar unleashes multidisciplinary approach to climate change and plant health

Evidence of enormity and immediacy of the challenges climate change poses for life on earth seems to pour in daily. But important gaps in our knowledge of all the downstream effects of this complex process remain. And the global response to these challenges is still far from adequate to the job ahead. Bold, multi-stakeholder, multidisciplinary action is urgent.

Mindful of this, the first event in Unleashing the Potential of Plant Health, a CGIAR webinar series in celebration of the UN-designated International Year of Plant Health, tackled the complicated nexus between climate change and plant health. The webinar, titled “Climate change and plant health: impact, implications and the role of research for adaptation and mitigation,” convened a diverse panel of researchers from across the CGIAR system and over 900 audience members and participants.

In addition to exploring the important challenges climate changes poses for plant health, the event explored the implications for the wellbeing and livelihoods of smallholder farming communities in low- and middle- income countries, paying special attention to the gender dimension of both the challenges and proposed solutions.

The event was co-organized by researchers at the International Rice Research Institute (IRRI) and the International Centre of Insect Physiology and Ecology (icipe).

The overall webinar series is hosted by the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Food Policy Research Institute (IFPRI), the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).

This is important

The stakes for the conversation were forcefully articulated by Shenggen Fan, chair professor and dean of the Academy of Global Food Economics and Policy at China Agricultural University and member of the CGIAR System Board. “Because of diseases and pests, we lose about 20-40% of our food crops. Can you imagine how much food we have lost? How many people we could feed with that lost food? Climate change will make this even worse,” Fan said.

Such impacts, of course, will not be evenly felt across geographic and social divides, notably gender. According to Jemimah Njuki, director for Africa at IFPRI, gender and household relationships shape how people respond to and are impacted by climate change. “One of the things we have evidence of is that in times of crises, women’s assets are often first to be sold and it takes even longer for them to be recovered,” Njuki said.

The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)
The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)

Shifting risks

When it comes to understanding the impact of climate change on plant health “one of our big challenges is to understand where risk will change,” said Karen Garrett, preeminent professor of plant pathology at the University of Florida,

This point was powerfully exemplified by Henri Tonnang, head of Data Management, Modelling and Geo-information Unit at icipe, who referred to the “unprecedented and massive outbreak” of desert locusts in 2020. The pest — known since biblical times — has reemerged as a major threat due to extreme weather events driven by sea level rise.

Researchers highlighted exciting advancements in mapping, modelling and big data techniques that can help us understand these evolving risks. At the same time, they stressed the need to strengthen cooperation not only among the research community, but among all the stakeholders for any given research agenda.

“The international research community needs to transform the way it does research,” said Ana María Loboguerrero, research director for Climate Action at the Alliance of Bioversity International and CIAT. “We’re working in a very fragmented way, sometime inefficiently and with duplications, sometimes acting under silos… It is difficult to deliver end-to-end sustainable and scalable solutions.”

Time for a new strategy

Such injunctions are timely and reaffirm CGIAR’s new strategic orientation. According to Sonja Vermeulen, the event moderator and the director of programs for the CGIAR System Management Organization, this strategy recognizes that stand-alone solutions — however brilliant — aren’t enough to make food systems resilient. We need whole system solutions that consider plants, animals, ecosystems and people together.

Echoing Fan’s earlier rallying cry, Vermeulen said, “This is important. Unless we do something fast and ambitious, we are not going to meet the Sustainable Development Goals.”

Register for the other webinars in the series

Cover photo: All farmers are susceptible to extreme weather events, and many are already feeling the effects of climate change. (Photo: N. Palmer/CIAT)

Announcing CIMMYT-derived fall armyworm tolerant elite maize hybrids for eastern and southern Africa

A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.
A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the successful development of three CIMMYT-derived fall armyworm-tolerant elite maize hybrids for eastern and southern Africa.

Fall armyworm (Spodoptera frugiperda) emerged as a serious threat to maize production in Africa in 2016 before spreading to Asia in 2018. Host plant resistance is an important component of integrated pest management (IPM). By leveraging tropical insect-resistant maize germplasm developed in Mexico, coupled with elite stress-resilient maize germplasm developed in sub-Saharan Africa, CIMMYT worked intensively over the past three years to identify and validate sources of native genetic resistance to fall armyworm in Africa. This included screening over 3,500 hybrids in 2018 and 2019.

Based on the results of on-station screenhouse trials for fall armyworm tolerance (under artificial infestation) conducted at Kiboko during 2017-2019, CIMMYT researchers evaluated in 2020 a set of eight test hybrids (four early-maturing and four intermediate-maturing) ) against four widely used commercial hybrids (two early- and two intermediate-maturing) as checks. The trials conducted were:

  • “No choice” trial under fall armyworm artificial infestation in screenhouses in Kiboko, Kenya: Each entry was planted in 40 rows in a separate screenhouse compartment (“no-choice”), and each plant infested with seven fall armyworm neonates 14 days after planting. Foliar damage was assessed 7, 14 and 21 days after infestation. Ear damage and percent ear damage were also recorded, in addition to grain yield and other agronomic parameters.
  • On-station trials in eastern Africa: The trials, including the eight test entries and four commercial checks, were conducted at six locations in Kenya during the maize cropping season in 2020. Entries were evaluated for their performance under managed drought stress, managed low nitrogen stress, and under artificial inoculation for Turcicum leaf blight (TLB) and Gray leaf spot (GLS) diseases. The three-way cross CIMMYT test hybrids and their parents were also characterized on-station for their seed producibility, including maximum flowering time difference between parents, and single-cross female parent seed yield.

The eight test entries with fall armyworm tolerance were also included in the regional on-station trials (comprising a total of 58 entries) evaluated at 28 locations in Kenya and Tanzania. The purpose of these regional trials was to collect data on agronomic performance.

  • On-farm trials in Kenya: The eight test hybrids and four commercial checks were evaluated under farmers’ management conditions (without any insecticide spray) at 16 on-farm sites in Kenya. Each entry was planted in 20-row plots, and data was recorded on natural fall armyworm infestation. Foliar damage was assessed 7, 14, 21, 28 and 35 days after germination together with insect incidence. Ear damage and percent ear damage were also recorded, besides grain yield and other agronomic parameters.
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).

Summary of the data

  • “No-choice” trials in screenhouses at Kiboko: Significant differences were observed between the three selected fall armyworm tolerant hybrids (FAWTH2001-2003) and the commercial benchmark hybrid checks at the vegetative and grain filling stages and at harvest (Figure 1). In the fall armyworm artificial infestation trial, the three selected FAWTH hybrids yielded 7.05 to 8.59 t/ha while the commercial checks yielded 0.94-1.03 t/ha (Table 1).
  • On-station trials: No significant differences were observed between the three selected FAWTH hybrids and the commercial checks for grain yield and other important traits evaluated under optimum, managed drought stress, low nitrogen stress, TLB and GLS diseases (Table 1). The three FAWTH hybrids recorded excellent synchrony in terms of flowering between the female and male parents, and very good female parent seed yield (Table 1).
  • On-farm trials: There were significant differences in terms of foliar damage ratings between the FAWTH hybrids and the commercial checks. For ear damage, the differences were not statistically significant. The grain yields did not vary significantly under natural infestation in the on-farm trials because of the very low incidence of fall armyworm at most sites.

Native genetic resistance to fall armyworm in maize is partial, though quite significant in terms of yield protection under severe fall armyworm infestation, as compared to the susceptible commercial checks. Sustainable control of fall armyworm is best achieved when farmers use host plant resistance in combination with other components of integrated pest management, including good agronomic management, biological control and environmentally safer pesticides.

Next Steps

Together with national agricultural research system (NARS) partners, CIMMYT will nominate these FAWTH hybrids for varietal release in target countries in sub-Saharan Africa, especially in eastern and southern Africa.  After national performance trials (NPTs) and varietal release and registration, the hybrids will be sublicensed to seed company partners on a non-exclusive, royalty-free basis for accelerated seed scaling and deployment for the benefit of farming communities.

Acknowledgements

This work was implemented with funding support from the CGIAR Research Program on Maize (MAIZE), the U.S. Agency for International Development (USAID) Feed the Future initiative, and the Bill & Melinda Gates Foundation. MAIZE receives Windows 1&2 funding support from the World Bank and the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, UK and USA. The support extended by the Kenya Agriculture & Livestock Research Organization (KALRO) for implementation of this work through the fall armyworm mass rearing facility at Katumani and the maize research facilities managed by CIMMYT at Kiboko is gratefully acknowledged.

For further information, please contact:

B.M. Prasanna, Director of the Global Maize Program, CIMMYT and the CGIAR Research Program on Maize. b.m.prasanna@cgiar.org

Somalia agriculture partners learn about integrated fall armyworm control practices

Fall armyworm continues to cause havoc in Africa. Farmers in Somalia have not been spared since this unwelcome guest showed up in the country over three years ago. As part of the mitigation measures, the Somali Agriculture Technical Group (SATG) in partnership with the International Maize and Wheat Improvement Center (CIMMYT) and the International Committee of the Red Cross (ICRC) recently conducted online trainings on fall armyworm management for sustainable crop protection. The online trainings, targeting national agriculture stakeholders in the country, took place on August 25 and September 30, 2020, with nearly 250 participants attending both webinars.

“This is the first of our efforts to reach out to our partners in Somalia, especially the Somali Agriculture Technical Group and the national agricultural research system, to increase the awareness on the integrated pest management approaches that can help combat this highly destructive pest,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).

“This training was designed to help participants to gain a better understanding about fall armyworm, how to identify it, how to monitor and scout for it, how to effectively implement a management strategy that is environmentally and ecologically benign, in order to protect the food security and livelihoods of farmers and their families,” Prasanna said.

An integrated pest management strategy for sustainable control of fall armyworm should consider various interventions, including regular scouting and monitoring of the pest in the fields, host plant resistance, biological and biorational control, agroecological management, and use of environmentally safer pesticides and good agronomic practices tailored for the socio-cultural and economic contexts of the farmers. Ultimately, the purpose of a functional integrated pest management approach is to suppress pest population by applying techniques that minimize human and environmental harm, while protecting the crops from economic damage.

“I am happy to see the expertise from high levels of research at CIMMYT, icipe, IITA, universities, SATG and the humanitarian sector coming together to tackle and solve problems linked to food production and consumption. I believe that such important trainings have great value for Somalia, and should be further strengthened and encouraged,” said Abdalla Togola from the ICRC.

B.M. Prasanna presents at training.
B.M. Prasanna, Director of CIMMYT Global Maize Program and the CGIAR Research Program MAIZE, presents at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Hussein Haji presents at training.
Hussein Haji, the Executive Director of Somali Agriculture Technical Group speaks at the fall armyworm online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Professor Dan McGrath presents at training.
Professor Dan McGrath of Oregon State University, USA, delivering a training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
John Karonga presents at training.
John Karonga, an agronomist at the International Committee of the Red Cross (ICRC) speaks at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)

Hussein Haji, the Executive Director of SATG was optimistic that the training would go a long way to empower farmers in Somalia, through their cooperatives, and could lead to better ways of tackling challenges such as fall armyworm, already made worse by other stresses like drought and desert locusts.

“Through our extension workers, we hope this information will trickle down to our cooperatives, who produce mainly maize and sorghum seed in Somalia,” he added.

This comes on the back of a partnership between the ICRC and SATG to implement activities intended to improve food production among rural communities in six regions of Somalia. The partnership would enhance quality seed production with a focus on maize and sorghum, the major staple crops in the country.

Besides Prasanna, the key resource persons included Dan McGrath (Professor Emeritus, Oregon State University, USA), Joseph Huesing (CIMMYT Consultant on integrated pest management) and Georg Goergen (Entomologist, International Institute of Tropical Agriculture), Frederic Baudron (CIMMYT Systems Agronomist), Anani Bruce (CIMMYT Entomologist), Yoseph Beyene (CIMMYT Regional Breeding Coordinator for Africa) and Saliou Niassy (Head of Agricultural Technology Transfer Unit, International Center of Insect Physiology and Ecology).

The fall armyworm, a voracious caterpillar officially reported for the first time in Africa in Nigeria in 2016, remains a serious pest with devastating consequences on millions of farmers’ food and livelihood security. The pest has spread quickly throughout sub-Saharan Africa, primarily attacking maize and sorghum, two main staple crops in the region. The Food and Agriculture Organization of the United Nations (FAO) estimates up to 18 million tons of maize are lost to the pest annually, at an estimated economic loss of $4.6 billion.

To reduce the losses, experts have been recommending a toolbox of integrated pest management (IPM) practices to minimize the damage on smallholder farmers’ fields. Scientists at CIMMYT are also working intensively to develop improved maize varieties with native genetic resistance to this devastating insect pest.

Cover photo: Kowthar Abdirahman Afyare studies agriculture at the Somali National University. (Photo: AMISOM Public Information)

In case of fall armyworm, watch this video

To the first-time observer, the aftermath of a fall armyworm infestation must be terrifying. The larvae can cause significant damage to an entire field in a single night, leaving once-healthy leaves looking like tattered rags.

A new instructional video, which will air in Bangladesh, aims to combat both the pest and the distress its appearance can cause with detailed, actionable information for farmers. The video describes how to identify the pest, its lifecycle and the kind of damage it can do to maize — among other crops — and provides techniques for identifying, assessing, and combating an infestation.


 
This video was developed by the International Maize and Wheat Improvement Center (CIMMYT) with support from the Department of Agricultural Extension (DAE) and the Bangladesh Wheat and Maize Research Institute (BWMRI), as part of the project Fighting back against fall armyworm in Bangladesh. Supported by USAID’s Feed the Future Initiative and Michigan State University, this CIMMYT-led project works in synergy with the Cereal Systems Initiative for South Asia (CSISA), and with national partners to mitigate the impact of this invasive pest on smallholder farmers’ livelihoods.

The video is available in Bangla with English captions.

Jamal conquered his dreams through maize farming

When we talk about the impact of agricultural research we often rely on numerical metrics: percent increase in yield, percent decrease in crop loss, adoption rates, etcetera. For farmers on the ground, however, the impact can be much harder to boil down to a few numbers. Hiding behind every statistical table are real stories of dreams dashed or fulfilled, of everyday people trying to survive and flourish.

A new educational video powerfully dramatizes this point through the story of Jamal Mia and his daughter Rupa. Jamal’s dreams to own a house and see Rupa enroll in college are threatened when his maize crop is attacked by fall armyworm. An encounter with an agricultural extension officer puts Jamal on track to tackle the infestation, save his crop and secure his family’s wellbeing.

The video was developed by CIMMYT with support from Bangladesh’s Department of Agricultural Extension and the Bangladesh Wheat and Maize Research Institute (BWMRI), as part of a project titled “Fighting back against fall armyworm in Bangladesh.” Supported by USAID’s Feed the Future Initiative and Michigan State University, this CIMMYT-led project works in synergy with the Cereal Systems Initiative for South Asia (CSISA) and with national partners to mitigate the impact of this invasive pest on smallholder farmers’ livelihoods.

The video was filmed in Dinajpur district, Bangladesh, and is available in Bangla with English captions.

Fawligen registered in Bangladesh

Ispahani and AgBiTech are pleased to announce the formal registration of a biological control for Fall Armyworm in Bangladesh.

This rapid assessment and registration despite the ongoing lockdown due to Covid-19 is the result of months of collaborative hard work and support from members representing multiple organizations including USAID, CIMMYT, the Ministry of Agriculture, Bangladesh Agricultural Research Institute, Plant Protection Wing of Agricultural Extension, and the Fall Armyworm National Task Force.

Read more here: https://www.prnewswire.com/news-releases/fawligen-registered-in-bangladesh-301061228.html

Fall armyworm survey marks CIMMYT’s first research project in Laos

A major farmer survey is gathering data to understand how smallholders in Laos are responding to fall armyworm invasion and develop agroecological management options to control its spread.

The study, led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Lao Farmer Network (LFN) and the National Agriculture and Forestry Research Institute (NAFRI), is CIMMYT’s first official research initiative in the country.

Farmer surveys are being conducted in some of the country’s key maize farming areas, recording attempts to manage the pest and laying the groundwork to raise awareness on sustainable best-bet agroecological strategies that promote a healthy system approach to maize farming, says Horst Weyerhaeuser, a scientific program consultant working with CIMMYT.

“Currently, researchers, policy makers and extension officers possess little information on fall armyworm pest management and control in Laos,” he explains. “The survey is working to build a knowledge-base.”

In June 2019, CIMMYT and national research scientists confirmed that fall armyworm, a global pest that affects the food security of millions of maize farmers, was present in the country.

Working with CIMMYT, LFN trained lead farmers to conduct surveys and collect data from farmers in their local areas. The network has also been distributing a series of infographics and videos in local languages, developed by CIMMYT and translated with major support from HELVETAS Swiss Intercooperation and the Lao Farmer Rural Advisory Project, to describe appropriate pesticide use and sustainable farming practices to limit impact on harvests.

“The survey data explores how farmers respond to the armyworm in their maize fields, so that integrated pest management strategies can be promoted for successful pest control and especially to limit excessive use of harmful pesticides,” says Phoutthasinh Phimmachanh, who leads the LFN secretariat. “The survey also asks about farmers’ plans for the upcoming rainy season and if they experienced a fall armyworm infestation in 2019 will it change their crop selection and planting schemes.”

The initiative is part of a larger strategy to work with government and farmers in southeast Asia to build a knowledge base on sustainable maize farming through the CGIAR program on MAIZE. Due to the impact of COVID-19, researchers are currently exploring options to continue these and additional surveys digitally and via telephone.

As maize farming increases, so does the risk fall armyworm poses to farmer livelihoods

A woman in Oudomxhai, Laos, stands in her maize field damaged by fall armyworm. (Photo: H. Weyerhaeuser/CIMMYT)
A woman in Oudomxhai, Laos, stands in her maize field damaged by fall armyworm. (Photo: H. Weyerhaeuser/CIMMYT)

Maize is becoming an increasingly important cash crop in southeast Asia as diets change and consumer preferences for white meat and pork drive a transition from subsistence to commercial maize feed production. Farmer focus groups in northern Laos suggest that maize sales deliver more than 60% of smallholders’ annual cash income.

“Maize is the only cash crop for thousands of smallholder farmers in Laos. Fall armyworm poses a credible threat to their livelihoods and could push them to a vicious circle of poverty and damage to the environment,” explains CIMMYT economist Amjath Babu.

“We want to confirm anecdotal accounts suggesting uninformed farmers are buying whatever pesticides they can get their hands on in a bid to control the pest’s impact on harvests. This reaction mimics that of initial farmer responses in sub-Saharan Africa when the pest first broke out there in 2016.” In this sense, he adds, CIMMYT’s partnership with LFN helps to measure the implications of fall armyworm and the potential for this pest to reduce farmers’ profit margins while encouraging unsustainable pesticide use.

Pesticides must be used with extreme caution and only appropriately if they are to be a part of any fall armyworm management regime, warns CIMMYT Senior Scientist Tim Krupnik.

“The pest has particular habits — like living under leaves, hiding in hard to reach places of the plant, and feeding mainly at night,” he explains. “This makes indiscriminate application of insecticides relatively less useful.” It could also inadvertently contribute to the loss of biodiversity and ecosystem services through overuse of pesticides that cause mortality for natural enemies and parasitoids.

Scientists want to explore whether the higher production costs farmers may incur through additional insecticide purchase is encouraging a shift from maize cash crop monocultures to a more diverse production including replacement or rotations with cassava, fodder crops, and rotational grazing, where feasible.

“By building an evidence base we can work with the National Agriculture and Forestry Research Institute,the  agricultural department and farmers to build sustainable, resilient maize farming systems that ensure farmers continue to cash in on maize while diversifying production into sensible alternative crops, with emphasis on protecting their health and the environment,” Babu adds.

Fall armyworm survey part of a larger increase in maize research in southeast Asia

The expansion of maize in Laos has been accompanied by a progressive decrease in landscape and agricultural biodiversity, as farmers respond to opportunities to export maize at relatively profitable prices, largely to neighboring Vietnam and China, by resorting to an expansion of slash-and-burn agriculture with shortened fallows. The rapidly growing demand for maize has resulted in unsustainable farming systems intensification, explains Krupnik, with many farmers clearing forests to plant, and using excessive amounts of herbicides to keep weeds at bay.

“Combined with the fall armyworm invasion, potentially dangerous pesticides have been added to this scenario, with quite concerning potential consequences for further biodiversity loss and contamination of mountain streams by agrochemicals,” he says.

“Projects run by Helvetas, which has helped support our research through coordination and convening efforts, have measured dangerous levels of pesticides in the blood of samples taken from farmers and their families and government officials.”

Maize is important for income generation, but more sustainable and diverse cropping systems are needed to reduce the impact on biodiversity, while avoiding the worst pesticides that comprise human health. The data generated from this research will help design strategies to respond to these problems with more appropriate agricultural practices.

The ministry of agriculture has welcomed support from CIMMYT’s maize systems experts to aid in building a base of knowledge to inform the development of agricultural policy, says Chay Bounphanousay, director general of the National Agriculture and Forestry Research Institute. “With the rise of maize farming and the associated challenges and opportunities it brings, an increase in research will inform agricultural policy to improve farmer livelihoods while protecting the environment.”

Cover photo: Traditional mixed maize farming system in northern Laos. (Photo: H. Weyerhaeuser/CIMMYT)

Responding to fall armyworm in Lao PDR

 

Highland maize production systems in Southeast Asia are crucial in that they generate considerable income for otherwise impoverished farmers in remote upland areas. However, they are largely unsustainable, involving destructive slash and burn agriculture, with increasingly short fallow times between crops. Additionally, and in response to historically favorable maize markets, many farmers now plan to expand maize cultivation areas, which is anticipated to have serious consequences for biodiversity loss and ecosystem services.

The arrival of fall armyworm adds additional pressures that could lead to intensification of management practices and over-use of insecticides; a partial transition away from maize as farmers respond to the pest by growing other crops and initiating new land use practices; and increased use of sustainable intensification practices that employ agroecological options for fall armyworm management.

Responding to fall armyworm (Spodoptera frugiperda J.E. Smith) with data, evidence and agroecological management options in Lao PDR is a research project funded through the CGIAR Research Program on Maize (MAIZE). It sees CIMMYT partner with the Laos Farmer Network (LFN) and the National Agriculture and Forestry Research Institute (NAFRI) to understand how smallholders in the country are responding to fall armyworm invasion and develop agroecological management options to control its spread.

Working with CIMMYT, LFN will train lead farmers to conduct surveys and collect data from farmers in their local areas. The network will also distribute a series of infographics and videos in local languages, developed by CIMMYT and translated with major support from HELVETAS Swiss Intercooperation and the Lao Farmer Rural Advisory Project, to outline appropriate pesticide use and sustainable farming practices to limit impact on harvests. An estimated 2,000 farmers will receive information on research results and fall armyworm management advice.

The results will offer evidence-based insights allowing LFN and the Lao Upland Rural Advisory Service (LURAS) project to plan future extension and development activities more effectively, while also identifying crucial additional research needs given these urgent issues and circumstances.

This research will yield actionable lessons and position LFN and the LURAS project to provide farmers with context-specific and agroecological fall armyworm management advice that responds to insights derived from farmer surveys that characterize pest incidence and severity, and relates them to farmers’ management practices, farm- and landscape-biodiversity, and location.

Fighting back against fall armyworm in Bangladesh

Fall armyworm is an invasive Lepidopteran pest that favors maize and is native to the Americas. It was identified in Bangladesh for the first time in late 2018 following migration from Africa and southern India.

Supported by the University of Michigan and USAID, this project cooperates with national research and extension partners, CABI and the FAO to strengthen efforts to mitigate impact of the pest on farmers’ income, food security and health.

Objectives

  • Develop educational materials to help reach audiences with information to improve understanding and management of fall armyworm
  • Assist the Department of Agricultural Extension (DAE) in deploying awareness raising and training campaigns
  • Institutional change to improve crop protection and integrated pest management
  • Prepare the private sector for appropriate fall armyworm response
  • Support the standing multi-threat pest emergency taskforce
  • Generate data and evidence to guide integrated fall armyworm management

Fall Armyworm R4D and Management

The fall armyworm (Spodoptera frugiperda; FAW), an insect-pest native to the Americas, has been a persistent and serious pest of maize for over a century. Public and private sector scientists in the Americas – particularly in Brazil and the United States – have developed and deployed effective strategies to control the pest.

Incidence of fall armyworm was first reported in Nigeria in January 2016, and subsequently in over 40 countries across Africa. In Asia, the pest was first reported in India in mid-2018, and has since emerged in several countries in the Asia-Pacific. Strategies for fall armyworm management in both Africa and the Asia-Pacific can benefit immensely from those already fine-tuned in the Americas, with necessary customization to fit local agroecologies and farming systems. There is also a need to intensively work on various aspects of integrated pest management (IPM) for effective and sustainable fall armyworm management. This includes Research-for-Development (R4D) for discovering, validating and piloting best-bet technological interventions or management practices.

This project brings together the expertise of key institutions with long-standing experience in effectively dealing with transboundary insect-pests to strengthen the capacities of Africa- and Asia-based institutions in fall armyworm management. The goal is to develop and disseminate comprehensive, expert approved, IPM-based fall armyworm pest management practices that will enable various stakeholders – especially farmers, extension agents, and pest control advisors – to effectively scout, determine the need for, and appropriately apply specific interventions to control the fall armyworm in maize and other crops in Africa and Asia.

Objectives

  • Develop, publish and disseminate comprehensive, expert-approved, IPM-based information resources for various stakeholder groups
  • Integrate traits for fall armyworm resistance into the CIMMYT breeding pipeline
  • Establish a fall armyworm Research-for-Development (R4D) Consortium

The value of research on plant resistance to insects

Crop pest outbreaks are a serious threat to food security worldwide. Swarms of locusts continue to form in the Horn of Africa, threatening food security and farmer livelihoods ahead of a new cropping season. The devastating fall armyworm continues cause extensive damage in Africa and South Asia.

With almost 40% of food crops lost annually due to pests and diseases, plants resistance to insects is more important than ever. Last month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT) global headquarters outside Mexico City.

Watch Mike Smith, entomologist and distinguished professor emeritus at Kansas State University explain the importance of working with economists to document the value of plant insect resistance research, and why communication is crucial for raising awareness of the threat of crop pests and insect resistance solutions.

Crossing boundaries

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

Daily life as we know it has grinded to a halt and crop scientists are pondering next steps in face of the global COVID-19 crisis. Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, joins us for a virtual chat to discuss the need for increased investment in crop disease research as the world risks a food security crisis.

What have you learned from your work on contagious wheat diseases that we can take away during this time?

Wheat epidemics go back to biblical times. Wheat scientists now believe Egypt’s “seven bad years” of harvest referenced in the Bible were due to a stem rust outbreak.

So, we know what happens when we have a crop epidemic: diseases can completely wipe out a harvest. I have seen subsistence farmers stand in front of their swaying, golden wheat fields, but there is not a single grain inside the spikes. All because of wheat blast.

There are a lot of parallel issues that I see with COVID-19.

The epidemiology models for humans which we see now have a lot in common with plant epidemiology. For example, if you take a wheat field sown with a variety which is rust-resistant and then you get a spore which mutates and overcomes the resistance — like COVID-19 overcomes the human immune system — it then takes about two weeks for it to sporulate again and produce millions of these mutated spores. They sporulate once more and then you have billions and trillions of spores — then the wheat fields at the local, national and, in the worst case, regional level are severely damaged and in worst case are going to die.

The problem is that since we cannot quarantine wheat, if the weather is favorable these spores will fly everywhere and — just like with COVID-19 — they don’t need a passport to travel.

Could you elaborate on that? How can wheat diseases go global?

Usually it takes around 5 years, sometimes less, until a mutation in a rust spore can overcome the resistance of a wheat variety. Every so often, we see rust epidemics which cover an entire region. To monitor this movement, the Borlaug Global Rust Initiative of Cornell University and CIMMYT, funded by the Bill & Melinda Gates Foundation and DFID, established a global rust monitoring system that provides live data on spore movements.

For example, if you have a new race of stem rust in Yemen — and in Yemen wheat matures early — and then farmers burn the straw, their action “pushes” the spores up into the air, thus allowing them to enter the jet stream and cover 2,000 to 5,000 kilometers in a short period of time. Spores can also be carried on clothes or shoes by people who walked into an infected wheat field. Take Australia, for example, which has very strict quarantine laws. It is surrounded by sea and still eventually they get the new rust races which fly around or come with travelers. One just cannot prevent it.

Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)
Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)

Could climate change exacerbate the spreading of crop diseases?

Yes, the climate and its variability have a lot to do with it. For example, in the case of yellow rust, what’s extremely important is the time it takes from sporulation to sporulation. Take a rust spore. It germinates, then it grows, it multiplies and then once it is ready it will disperse and infect wheat plants. From one dispersal to the next it takes about two weeks.

In the last decades, in particular for yellow rust, new races are better adapted to high temperature and are multiplying faster. In a Nature paper, we showed that 30 years ago yellow rust was not present in the Great Plains in the US. Today, it is the most important wheat disease there. So there really is something going on and changing and that’s why we are so concerned about new wheat disease races when they come up.

What could an epidemiologist specialized in human viruses take from this?

Well, I think human epidemiologists know very well what happens in a case like COVID-19. Ordinary citizens now also start to understand what a pandemic is and what its related exponential growth means.

Maybe you should ask what policymakers can learn from COVID-19 in order to prevent plant epidemics. When it comes to epidemics, what applies to humans applies to plants. If there is a new race of a given crop disease, in that moment, the plant does not have a defense mechanism, like humans in the case of COVID-19, because we haven’t developed any immunity. While in developed countries farmers can use chemicals to control plant diseases, resource-poor farmers do not have this option, due to lack to access or if the plant protective has not been registered in their country.

In addition to this, our lines of work share a sense of urgency. If “doomsday” happens, it will be too late to react. At present, with a human pandemic, people are worried about the supply chain from food processing to the supermarket. But if we have an epidemic in plants, then we do not have the supply chain from the field to the food processing industry. And if people have nothing to eat, they will go to the streets and we will see violence. We simply cannot put this aside.

What other lessons can policymakers and other stakeholders take away from the current crisis?

The world needs to learn that we cannot use economics as the basis for disease research. We need to better foresee what could happen.

Let’s take the example of wheat blast, a devastating disease that can destroy the wheat spike and was initially confined to South America. The disease arrived in Bangladesh in 2016 and caused small economic damage, maybe 30,000 tons loss in a small geographic area — a small fraction of the national production but a disaster for the smallholder farmer, who thus would have lost her entire wheat harvest. The disease is now controlled with chemicals. But what if chemical resistance is developed and the disease spreads to the 10 million hectares in the Indo-Gangetic Plains of India and the south of Pakistan. Unlikely? But what if it happens?

Agriculture accounts for 30% of the global GDP and the research money [going to agriculture] in comparison to other areas is small. Globally only 5% of R&D is invested in research for development related to agriculture. Such a discrepancy! A million U.S. dollars invested in wheat blast research goes a long way and if you don’t do it, you risk a disaster.

If there is any flip side to the COVID-19 disaster, it is that hopefully our governments realize that they have to play a much more serious role in many areas, in particular public health and disease control in humans but also in plants.

A Lloyd’s report concluded that a global food crisis could be caused by governments taking isolating actions to protect their own countries in response to a breadbasket failure elsewhere. I’m concerned that as the COVID-19 crisis continues, governments will stop exports as some did during the 2008 food price crisis, and then, even if there is enough food around, the 2008 scenario might happen again and food prices will go through the roof, with disastrous impact on the lives of the poorest.

This article was originally published by the CGIAR Research Program on Wheat (WHEAT):
Crossing boundaries: looking at wheat diseases in times of the COVID-19 crisis.

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

Wheat curl mites: What are they and how can we fight them?

The wheat curl mite, a pesky wheat pest which can cause up to 100% yield losses, is a significant threat to wheat crops worldwide. The pest has been confirmed in Asia, Australia, Europe, North America and parts of South America. Almost invisible to the naked eye, the microscopic pest is one of the most difficult pests to manage in wheat due to its ability to evade insecticides.

We caught up with Punya Nachappa, an assistant professor at Colorado State University, at this year’s International Plant Resistance to Insects (IPRI) Workshop to discuss wheat curl mites and how to fight them. She explains how the mite cleverly avoids insecticides, how climate change is leading to increasing populations and why breeding for host plant resistance is the main defense against outbreaks.

ICARDA’s Mustapha El-Bouhssini explains how crop pests are moving in a warming world

Insect resistance in plants is needed now more than ever. The UN, which has named 2020 as the International Year of Plant Health, estimates that almost 40% of food crops are lost annually due to plant pests and diseases.

Earlier this month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT).

We caught up with Mustapha El-Bouhssini, principal scientist at the International Center for Agricultural Research in the Dry Areas (ICARDA) to discuss insect pests and climate change. He explains how pests such as the Hessian fly — a destructive wheat pest which resembles a mosquito — and the chickpea pod borer are extending their geographical ranges in response to rising temperatures.