Skip to main content

Tag: mechanization

Disinfecting equipment keeps agricultural production running in Bangladesh

Agricultural production in Bangladesh is heavily dependent on machines for land preparation, irrigation, pest control, harvesting and transport. Small enterprises that make up the light engineering sector in Bangladesh are responsible for the creation, maintenance and repair of these machines. Without a functioning light engineering sector, agricultural production would quickly grind to a halt.

As with other industries in the country, most light engineering workshops closed at the beginning of the COVID-19 pandemic. However, as restrictions on movement eased and in response to demand from agricultural machinery operators, the machinery manufacturing and repair workshops have started to open again.

Worker washes hands in agricultural machinery workshop with water tank provided through the Cereal Systems Initiative for South Asia Mechanization Extension Activity, funded by the United States Agency for International Development Feed the Future initiative. (Photo: Rashed/CIMMYT)

Ensuring COVID-19-free workshops

To ensure a safe and hygienic return to work, the Cereal Systems Initiative for South Asia Mechanization Extension Activity (CSISA-MEA) provided water tanks with handwashing points and knapsack sprayers to 50 workshops employing 1,624 staff in Bogura and Jashore to disinfect the workshops and tools. To create awareness on COVID-19 prevention and guide staff on using the handwashing points and sprayer, the CSISA-MEA team distributed low text graphics-based user guides and WHO designed flyers. The flyers also show staff the precautions they should take at home to prevent COVID-19 infection.

Since behavior change is a complex process, the use of more than one approach is often needed. Therefore, workshop owners and workers were sent SMS messages weekly, reminding them of the need to wash hands, disinfect the workspaces and practice other COVID-19 mitigation actions such as maintaining social distance and wearing face masks.

Man disinfects machines.
Staff disinfect the machines each day before working. (Photo: Rashed/CIMMYT)

Ahsan Habib, a workshop owner in Bogura, said, “This equipment is a blessing for my workers and me.  I have 35 workers and before, they had to use the small tank for handwashing, which was not adequate for many people. Now I can ensure their safety. At the same time, we disinfect the machines with the sprayer before we start working.”

The relatively small investments in equipment and provision of information provided through this USAID-supported activity has helped 50 small companies operate safely in the pandemic. The new equipment and practices allow them to make and repair the machinery that keeps agricultural production running in Bangladesh and contributes to ensuring national food security.

Women find a role in Bangladesh’s agricultural mechanization sector

It is a general perception, globally and in Bangladesh, that women do not have a role in the agricultural mechanization sector. However, a deeper look into the sector shows a different reality. Women in Bangladesh are owners and managers in businesses supported by the Cereal Systems Initiative for South Asia Mechanization Extension Activity (CSISA-MEA), funded by the United States Agency for International Development (USAID) Feed the Future initiative.

Professions have no gender

Poly Rani married her husband, Poritosh Kumar Malo, when she was 15. He is an engineer who established his own machine manufacturing business, RK Metal Ltd of Faridpur. As the business expanded Rani began to help her husband with office administration work, leaving him time to supervise the manufacturing side.

“After my marriage, my husband asked me to spend some time in his shop, as he was busy with his job. I never thought I would work in a mechanical workshop where everything is related to machines and male-dominated. Eventually, I started to like it, and now it is my passion. I know every machine and their functions very well. Therefore, when customers arrive, I can explain things,” Rani said.  

With support of CSISA-MEA, their business has expanded quickly, now employing 15 staff and manufacturing 38 types of small machines such as rice threshers, corn shellers and fodder choppers. They sell up to 400 machines a year. As the couple expanded the business, Rani’s administrative role became more important and diverse. She now manages the finances and takes orders for machines, using Facebook and YouTube.

“I wish I was a bit more educated and knew better these technical things. I have a dream that one of my daughters will become an engineer and join our workshop, because professions have no gender — we put gender identity with professions. I can cook, raise children and manage a business as well.”

Woman works machinery.
Poly Rani uses machinery at her workshop. (Photo: Poritosh Malo)

Seedlings of change

It is rare for women in Bangladesh to run businesses that provide farmers with mechanization services. One exception is a group of nine women from Baliakandi Upazila in Rajbari District. They have owned and provided planting services for four years using a power tiller operated seeder (PTOS), which annually earns them approximately $500 each. However, this machine cannot transplant rice.

Rice transplanting is a major labor-consuming activity in Bangladesh, where workers manually transplant 11 million hectares of rice each year. A new machine, called the rice transplanter, is being introduced to Bangladesh. However, to transplant rice seedlings with this machine, the seedlings have to be raised on plastic sheets so they have a mat of roots that allows the machine to pick them up and plant them. With the growing popularity of these machines, the women’s group saw raising these seedlings as a good business opportunity. After learning the seedling raising technology from CSISA-MEA, they have produced and sold seedlings sufficient for 10 hectares. The next step is to buy a rice transplanter!

Women working in field.
Women’s group works in the field. (Photo: Sourov Dey)

Gender gap

Jorina Begum is the sole breadwinner of her family at 25, caring for her mother, four-year-old son  and two disabled siblings in Ramnagor, Sadar, Jashore. After her father’s death when she was ten years old, Begum had to abandon school and start working as a foundry cleaner. She married at an early age and quickly became a mother, but immediately after her son’s birth, her husband left her.

She now works in a foundry where she paints machine parts. “My wage is 75% less than the male workers,” said Begum. “I get only 200 taka [$2] per hour. I work the same hours as the men do but I am paid less, because I cannot do the heavy work and I do not have training.”

In foundries and machinery workshops, women are considered less productive than men. “If I could receive some training, I could perform better and earn more, which will benefit my employer and my family,” said Begum. 

To respond to this need, CSISA-MEA is working to raise women’s capacity to work in the agricultural mechanization sector and manage machinery-based businesses through technical and business training. Through these opportunities, more women like Rani and Begum will be able to contribute to the development of this sector.

Cover photo: Jorina Begum works in the foundry workshop. (Photo: Touhidur Rahman)

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

The future of agriculture in sub-Saharan Africa

The theme for International Youth Day 2020, Youth Engagement for Global Action, highlights the various ways in which the engagement of young people at local, national and global levels enriches national and multilateral institutions and processes.

Up to 60% of Africa’s youth face challenges such as limited employment opportunities, financial constraints to access land and adequate technical equipment. However, agriculture is increasingly providing options. Through it, young people are participating and leveraging on new technologies that can optimize farming systems and create employment.

This photo essay depicts youth in on-farm and off-farm activities across East and Southern Africa. These young men and women are innovators and adopters of improved technologies such as small scale mechanization, appropriate farming practices, employment opportunities and research innovations implemented by the International Maize and Wheat Improvement Center (CIMMYT).

In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)

Cheap maize sheller saves farmers tens of hours

The machine saves farmers the burden of physically removing maize from combs, a tedious, time wasting and costly exercise that is practiced by at least 85 per cent of smallholder farmers in the country according to a research dubbed ‘maize production, challenges and experience of smallholder farmers in East Africa by the International Maize and Wheat Improvement Center (CIMMYT).

Read more here: https://farmbizafrica.com/market-place/12-machinery/999-inexpensive-maize-sheller-saves-farmers-tens-of-hours

Small is beautiful

Can Africa’s smallholder farmers adopt and reap the benefits of farm mechanization? The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) team set out in 2013 to test this proposition.  With the project nearing closure, the International Maize and Wheat Improvement Center (CIMMYT) project leader FrĂ©dĂ©ric Baudron believes the answer is yes.

“We have demonstrated that small-scale mechanization is a pathway to sustainable intensification and rural transformation, and can have positive gender outcomes as well,” he explained.

Here are some of the key lessons learned along the way, according to the people involved.

1. Appropriate mechanization is essential

With many farms in Africa measuring no more than two hectares, FACASI focused on bringing two-wheel tractors to regions where smallholdings dominate, especially in Zimbabwe and Ethiopia. For most small farmers, conventional farm machinery is out of reach due to its size, costs, and the skills needed to operate it. The typical path to mechanization would be for farmers to consolidate their farms, which could lead to social and environmental upheaval. Instead, the FACASI team scaled-down the equipment to suit the local context.

FACASI has obtained evidence to dispel commonly held myths about farm power in smallholder farming systems,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR).

2. Test, develop and adapt technologies
 together 

From start to finish, the project tested and developed technologies in collaboration with farmers, local manufacturers, engineers, extension agents. Together, they adapted and refined small-scale machinery used in other parts of the world to accommodate the uneven fields and hard soils of African smallholder farms. This co-construction of technologies helped cultivate a stronger sense of local ownership and buy-in.

“We gained many valuable insights by continuously refining technologies in the context of efficiency, farmer preference and needs,” said Bisrat Getnet, FACASI national project coordinator in Ethiopia, and director of the Agricultural Engineering Research Department in the Ethiopian Institute of Agricultural Research (EIAR).

Jane Mautsa and her husband operating the sheller. (Photo: Shiela Chikulo/CIMMYT)

3. Make it useful 

The basic two-wheel tractor is a highly flexible and adaptable technology, which can be used to mechanize a range of on-farm tasks throughout the seasons. With the right attachments, the tractor makes short work of sowing, weeding, harvesting, shelling, water pumping, threshing and transportation.

“This multi-functional feature helps to ensure the tractor is useful at all stages of the annual farming cycle, and helps make it profitable, offsetting costs,” said Raymond Nazare, FACASI national project coordinator in Zimbabwe and lecturer at the Soil and Engineering Department of the University of Zimbabwe.

4. Less pain, more profit

Reducing the unnecessary drudgery of smallholder farming can be financially rewarding and open new doors. Mechanization can save farmers the costs of hiring additional labor, and vastly reduce the time and effort of many post-harvest tasks — often done by women — such as transport, shelling and grinding. FACASI researchers demonstrated the potential for mechanization to reduce this onerous labor, allowing women to channel their time and energy into other activities.

5. New, inclusive rural business models

New technologies need reliable supply chains and affordable support services. The FACASI team supported leasing and equipment-sharing schemes, trained people to operate and maintain machinery, and encouraged individuals and groups to become service providers. These efforts often focused on giving youth and women new business opportunities.

“The project demonstrated that small mechanization can create profitable employment,” said Tirivangani Koza, of Zimbabwe’s Ministry of Lands, Agriculture, Water and Rural Resettlement.

“Women and youth are using small mechanization to grow profitable businesses,” said Alice Woodhead in Australia.

“They have advanced from dependent family members to financially independent entrepreneurs. Their new skills, such as servicing the tractors, marketing and shelling, have increased their family’s income. FACASI has also inspired community members to launch aligned businesses such as shelling services, inventing new two-wheel tractor implements for the growing customer base, or becoming artisan mechanics. In some districts, the two-wheel tractors are starting to create a cycle of innovation, business development, food diversification and sustainable economic growth,” she said.

6. Respond to farmer demands

Although the FACASI team set out to promote mechanization as a way to help farmers take up conservation agriculture techniques such as direct seeding, they opened the Pandora’s box for other beneficial uses. By the project’s end, it was clear that transport and mechanization of post-harvest tasks like shelling and threshing, had become far more popular among farmers than mechanization of crop production. This result is a sign of the team’s success in demonstrating the value of small-scale mechanization, and adapting technologies to respond to farmers’ needs.

7. Embrace new research models

Agricultural research for development has long forgotten about labour and mechanization issues; the FACASI team helped put these front and center by involving engineers, business enterprises, agriculturalists, and partners from across the supply chain.

“FACASI demonstrates an important change in how to do agricultural research to achieve meaningful impacts,” Woodhead said.

“Rather than focus only on the farm environment and on extension services, they worked from the outset with partners across the food, agriculture and manufacturing sectors, as well as with the public institutions that can sustain long-term change. The project’s results are exciting because they indicate that sustainable growth can be achieved by aligning conservation agriculture goals, institutions and a community’s business value propositions,” she explained.

What’s next?

Demonstration of a minitiller, Naivasha, Kenya. (Photo: Matt O' Leary/CIMMYT)
Demonstration of a minitiller, Naivasha, Kenya. (Photo: Matt O’ Leary/CIMMYT)

Although the project has ended, its insights and lessons will carry on.

“We have built a solid proof of concept. We know what piece of machinery works in a particular context, and have tested different delivery models to understand what works where,” explained FrĂ©dĂ©ric Baudron.

“We now need to move from piloting to scaling. This does not mean leaving all the work to development partners; research still has a big role to play in generating evidence and making sure this knowledge can be used by local manufacturers, engineers, local dealers and financial institutions,” he said.

As an international research organization, CIMMYT is strategically placed to provide critical answers to farming communities and the diversity of actors in the mechanization value chain.

A number of other organizations have taken up the mantle of change, supporting mechanization as part of their agricultural investments. This includes an initiative supported by the German Development Agency (GIZ) in Ethiopia, an IFAD-supported project to boost local wheat production in Rwanda and Zambia, and an intervention in Zimbabwe supported by the Zimbabwe Resilience Building Fund.

“ACIAR provided us generous and visionary support, at a time when very few resources were going to mechanization research in Africa,” Baudron acknowledged. “This allowed CIMMYT and its partners from the national research system and the private sector to develop unique expertise on scale-appropriate mechanization. The legacy of FACASI will be long-lived in the region,” he concluded.

Cover photo: Starwheel planter in Zimbabwe. (Photo: JérÎme Bossuet/CIMMYT)

Mechanized harvesting fuels rural prosperity in Nepal

In response to increasing labor scarcity and costs, growth in mechanized wheat and rice harvesting has fueled farm prosperity and entrepreneurial opportunity in the poorest parts of Nepal, researchers from the International Maize and Wheat Improvement Center (CIMMYT) have recorded.

Farmers are turning to two-wheeled tractor-mounted reaper-harvesters to make up for the lack of farm labor, caused by a significant number of rural Nepalese — especially men and youth — migrating out in search of employment opportunities.

For Nandalal Oli, a 35-year-old farmer from Bardiya in far-west Nepal, investing in a mechanized reaper not only allowed him to avoid expensive labor costs that have resulted from out-migration from his village, but it also provided a source of income offering wheat and rice harvesting services to his neighbors.

“The reaper easily attaches on my two-wheel tractor and means I can mechanically cut and lay the wheat and rice harvests,” said Oli, the father of two. “Hiring help to harvest by hand is expensive and can take days but with the reaper attachment it’s done in hours, saving time and money.”

Oli was first introduced to the small reaper attachment three years ago at a farmer exhibition hosted by Cereal Systems Initiative for South Asia (CSISA), funded through USAID. He saw the reaper as an opportunity to add harvesting to his mechanization business, where he was already using his two-wheel tractor for tilling, planting and transportation services.

Prosperity powers up reaper adoption

Number of 2-wheel tractor-attachable reaper-harvesters operational through service providers in Nepal’s Terai, 2014–2019
Number of 2-wheel tractor-attachable reaper-harvesters operational through service providers in Nepal’s Terai, 2014–2019

Over 4,000 mechanized reapers have been sold in Nepal with more than 50% in far and mid-west Nepal since researchers first introduced the technology five years ago. The successful adoption — which is now led by agricultural machinery dealers that were established or improved with CSISA’s support — has led nearly 24,000 farmers to have regular access to affordable crop harvesting services, said CIMMYT agricultural economist Gokul Paudel.

“Reapers improve farm management, adding a new layer of precision farming and reducing grain loss. Compared to manual harvesting mechanized reapers improve farming productivity that has shown to significantly increase average farm profitability when used for harvesting both rice and wheat,” he explained.

Nearly 65% of Nepal’s population works in agriculture, yet this South Asian country struggles to produce an adequate and affordable supply of food. The research indicated increased farm precision through the use of mechanized reapers boosts farm profitability by $120 a year when used for both rice and wheat harvests.

Oli agreed farmers see the benefit of his harvesting service as he has had no trouble finding customers. On an average year he serves 100 wheat and rice farmers in a 15 kilometer radius of his home.

“Investing in the reaper harvester worked for me. I earn 1,000 NRs [about $8] per hour harvesting fields and was able to pay off the purchase in one season. The added income ensures I can stay on top of bills and pay my children’s school fees.”

Farmers who have purchased reapers operate as service providers to other farms in their community, Paudel said.

“This has the additional benefit of creating legitimate jobs in rural areas, particularly needed among both migrant returnees who are seeking productive uses for earnings gained overseas that, at present, are mostly used for consumptive and unproductive sectors.”

“This additional work can also contribute to jobs for youth keeping them home rather than migrating,” he said.

The adoption rate of the reaper harvester is projected to reach 68% in the rice-wheat systems in the region within the next three years if current trends continue, significantly increasing access and affordability to the service.

Private and public support for mechanized harvester key to strong adoption

Achieving buy-in from the private and public sector was essential to the successful introduction and uptake of reaper attachments in Nepal, said Scott Justice, an agricultural and rural mechanization expert with the CSISA project.

Off the back of the popularity of the two-wheel tractor for planting and tilling, 22 reaper attachments were introduced by the researchers in 2014. Partnering with government institutions, the researchers facilitated demonstrations led by the private sector in farmers’ fields successfully building farmer demand and market-led supply.

“The reapers were introduced at the right place, at the right time. While nearly all Terai farmers for years had used tractor-powered threshing services, the region was suffering from labor scarcity or labor spikes where it took 25 people all day to cut one hectare of grain by hand. Farmers were in search of an easier and faster way to cut their grain,” Justice explained.

“Engaging the private and public sector in demonstrating the functionality and benefits of the reaper across different districts sparked rapidly increasing demand among farmers and service providers,” he said.

Early sales of the reaper attachments have mostly been directly to farmers without the need for considerable government subsidy. Much of the success was due to the researchers’ approach engaging multiple private sector suppliers and the Nepal Agricultural Machinery Entrepreneurs’ Association (NAMEA) and networks of machinery importers, traders, and dealers to ensure stocks of reapers were available at local level. The resulting competition led to 30-40% reduction in price contributing to increasing sales.

“With the technical support of researchers through the CSISA project we were able to import reaper attachments and run demonstrations to promote the technology as a sure investment for farmers and rural entrepreneurs,” said Krishna Sharma from Nepal Agricultural Machinery Entrepreneurs’ Association (NAMEA).

From 2015, the private sector capitalized on farmers’ interest in mechanized harvesting by importing reapers and running their own demonstrations and several radio jingles and sales continued to increase into the thousands, said Justice.

 Building entrepreneurial capacity along the value chain

Through the CSISA project private dealers and public extension agencies were supported in developing training courses on the use of the reaper and basic business skills to ensure long-term success for farmers and rural entrepreneurs.

Training was essential in encouraging the emergence of mechanized service provision models and the market-based supply and repair chains required to support them, said CIMMYT agricultural mechanization engineer Subash Adhikari.

“Basic operational and business training for farmers who purchased a reaper enabled them to become service providers and successfully increased the access to reaper services and the amount of farms under improved management,” he said.

As commonly occurs when machinery adoption spreads, the availability of spare parts and repairs for reapers lagged behind sales. Researchers facilitated reaper repair training for district sales agent mechanics, as well as providing small grants for spare parts to build the value chain, Adhikari added.

Apart from hire services, mechanization creates additional opportunities for new business with repair and maintenance of equipment, sales and dealership of related businesses including transport and agro-processing along the value chain.

The Cereal Systems Initiative for South Asia (CSISA) aims to sustainably increase the productivity of cereal based cropping systems to improve food security and farmers’ livelihoods in Nepal. CSISA works with public and private partners to support the widespread adoption of affordable and climate-resilient farming technologies and practices, such as improved varieties of maize, wheat, rice and pulses, and mechanization.

Cover photo: A farmer uses a two-wheel tractor-mounted reaper to harvest wheat in Nepal. (Photo: Timothy J. Krupnik/CIMMYT)

African small-scale mechanization project winds down after strong results

Smallholder farmers in Zimbabwe and Ethiopia have embraced small-scale mechanization thanks to an innovative CIMMYT-led project, which is now drawing to a close. Since 2013, the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project has helped farmers access and use two-wheel tractors that significantly reduce the time and labor needed to grow, harvest and process their crops. To ensure long-term sustainability, the project and its partners helped support and develop local enterprises which could supply, service and operate the machines, and encouraged the development of supportive government policies. The project was funded by the Australian Centre for International Agricultural Research (ACIAR), as well as the CGIAR Research Programs on Maize and Wheat.

“Mechanization is a system not a technology”

From its inception, FACASI went beyond simply providing machinery to farmers, and instead envisioned mechanization as a way out of poverty. “Mechanization is a system, not only a technology,” said Bisrat Getnet, the project’s national coordinator in Ethiopia and director of the Agricultural Engineering Research Department at the Ethiopian Institute of Agricultural Research. “Mechanization needs infrastructure such as roads, fuel stations, spare part dealerships, maintenance centers, training centers and appropriate policies. This project assessed which measures are needed to sustain a new technology and addressed these with direct interventions,” he explained.

The FACASI project worked to introduce and develop new small-scale machines, including two-wheel tractors, small shellers and threshers, and small pumps, in African rural settings, collaborating with local engineers, farmers and manufacturers. This included adapting a range of attachments that could be used to mechanize on-farm tasks such as planting, harvesting, transporting and shelling. In parallel, the project developed local business opportunities around the supply, maintenance and use of the machines, to ensure that users could access affordable services and equipment in their communities.

The project initially worked in four countries: Ethiopia, Kenya, Tanzania and Zimbabwe. Researchers saw significant potential for mechanization to reduce the labor intensity associated with smallholder farming, while encouraging application of conservation agriculture techniques and developing rural service provision businesses. In its second phase, which began in 2017, the project focused on strengthening its efforts in Zimbabwe and Ethiopia.

“In my view the most innovative aspect enabling FACASI’s success was the concept of combining engineering and business modelling, with an understanding of the political, legislative and policy situations in the four countries,” said Professor John Blackwell, an Adjunct Professor at Charles Sturt University who reviewed FACASI and also invented and helped commercialize several successful machines in South Asia, including the famous Happy Seeder.

“FACASI has proven that small mechanization is viable in smallholder settings,” said CIMMYT scientist and project coordinator FrĂ©dĂ©ric Baudron. “It has shown smallholders that they don’t have to consolidate their farms to benefit from conventional machines, but that machines can instead be adapted to their farm conditions. This, to me, defines the concept of ‘appropriate mechanization’,” he said.

Conservation agriculture planter manufacturing in Arusha, Tanzania. (Photo: CIMMYT)

Benefits to local communities

During its course, the project improved the efficiency and productivity of smallholder farming, reducing labor requirements and creating new pathways for rural women and youth.

The reduction in the labor and drudgery of farming tasks has opened many doors. Farmers can save the costs of hiring additional labor and reinvest that money into their enterprises or households. With a small double-cob sheller producing one ton of kernels in an hour compared to up to 12 days by hand, women can do something else valuable with their time and energy. Entrepreneurs offering mechanization services — often young people who embrace new technologies — can earn a good income while boosting the productivity of local farms.

Mechanization has shown to sustainably improve yields. In Ethiopia, farmers using two-wheel tractors were able to reduce the time needed to establish a wheat crop from about 100 hours per hectare to fewer than 10 hours. In trials, maize and wheat respectively yielded 29% and 22% more on average, compared with using conventional crop establishment methods.

Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)

Impacts now and into the future

According to its national partners, FACASI has laid the groundwork for cheap and practical two-wheel tractors to proliferate. In Ethiopia, there are currently 88 service providers whose skills has been directly developed through FACASI project interventions. “This has been a flagship project,” said Ethiopia national coordinator Bisrat Getnet. “It tested and validated the potential for small-scale mechanization and conservation agriculture, it proved that new business models could be profitable, and it opened new pathways for Ethiopian agriculture policy,” he said.

In Zimbabwe, the project has also set the wheels of change in motion. “FACASI demonstrated an opportunity for creating employment and business opportunities through small-scale mechanization,” said Tirivangani Koza, of Zimbabwe’s Ministry of Lands, Agriculture, Water and Rural Resettlement. “With the right funding and policies, there is a very wide and promising scope to scale-up this initiative,” he said.

Read more:
Explore the FACASI Hello Tractor knowledge platform to learn more about conservation agriculture and small-scale mechanization

Cover photo: Demonstration of a minitiller, Naivasha, Kenya. (Photo: CIMMYT)

 

Reaping the benefits of innovation

Post-harvest losses — which can range between 10-20% in major cereals — cause not only the loss of economic value of the food produced, but also the waste of scarce resources such as labor, land, and water, as well as non-renewable resources such as fertilizer and energy.

“High postharvest losses imply reduced grain yield, but with the same total greenhouse gas emission,” says RabĂ© Yahaya, a CIM/GIZ Integrated Expert working at the International Maize and Wheat Improvement Center (CIMMYT). “Reducing these losses reduces the yield-scaled global warming potential — total greenhouse gas emission per kilogram of grain — and contributes to climate change mitigation, as well as food security.”

A significant proportion of these losses are caused by late harvest due to labor shortages, with crops languishing in the field before farmers can retrieve them. Small and medium-sized machinery may seem like the answer, but many one or two-axe machines are often unable to reach the inner sections of rice and wheat fields because of limited road access, or the fact that they are simply too heavy to carry.

“As mechanized land preparation works outwards, inner fields get ready for harvest first, but without any applicated technical solution,” he explains.

Could motorized scythes be the answer? Yahaya thinks so.

The other scythe

Motorized scythes are hand-operated tools used for mowing grass or reaping crops. Though largely replaced by horse-drawn and tractor-mounted implements, they are still commonly used in some areas of Asia and Europe.

Models specifically adapted for harvesting rice and wheat have been commercially available in Africa for over two decades and currently sell for $150-350, presenting the lowest initial investment cost of all engine-driven solutions on the market. The motor scythe also boasts the lowest harvest cost per hectare and is portable enough to reach inner fields.

Despite its relative affordability, uptake in much of West Africa has been slow, as many farmers have found the 10kg machinery too heavy for sustained use.

“Studies carried out in Benin, Burkina Faso, Cote d’Ivoire and Mali show that this rapid fatigue is caused by incorrect handling of the machinery, including flawed posture,” Yahaya explains. “This is simply because most operators have never undertaken official training for operating the tool.”

In a bid to address this challenge, Yahaya has been collaborating with Elliott Dossou, Sali Atanga Ndindeng and Ernst Zippel — all scientists at AfricaRice — to design and test potential solutions. Their proposal for the development of a Service Provider Harvest (SPH) model has been shortlisted for the GIZ Innovation Fund 2020 award, from a GIZ/BMZ-supported Innovation Fund.

Ernst Zippel, CIM/GIZ Integrated Expert at AfricaRice, presents on the reduction of postharvest losses through correct usage of motor scythes. (Video: AfricaRice)

Cut for service

The approach focuses heavily on capacity development, with an initial nucleus group of trainers taking the lead on activities such as recruiting and contracting service providers, providing training on harvesting and threshing, supporting aftersales services such as machine maintenance and repair, and helping to determine the optimum harvest time.

Under the proposed model, each trainer will be responsible for a group of around 50 service providers, who will receive guidance on understanding their role, finance, creating a network of client farmers, machine maintenance and use.

In addition to the financial rewards and aftersales services, the training opportunities will make this technology accessible to young entrepreneurs in rural areas. Earning up to $18 a day for harvesting and weeding services, those using the tool can expect to see a return on their initial investment in one to two months.

“Young people are the main prospective clients for this initiative,” says Yahaya. “With the motor scythe and related training, they can start earning serious money.” He stresses, however, that all farmers – regardless of age or gender – will be able to benefit from the job creation opportunities this initiative provides.

The initiative has been shortlisted for the GIZ Innovation Fund 2020. If selected, funding from the accelerator program would support testing, the integration of GPS sensors into the tools, creation of a platform for bank security and Carbon Credit earning, other technical activities.

Farmers diversify crops in their fields and food on their plates

Farmers in the Bale area, in Ethiopia’s Oromia region, mainly produce wheat and barley. Temam Mama was no different — but some six years ago, the introduction of the two-wheel tractor offered him additional opportunities. This was part of an initiative of the International Maize and Wheat Improvement Center (CIMMYT) and the Africa RISING project.

Selected as one of the two farmers in the region to test the technology, Temam took a five-day training course to understand the technology and the basics behind operating calibrating and maintaining the equipment.

The two-wheel tractor is multipurpose. By attaching various implements to a single engine, farmers can use it for ploughing, planting, water pumping, transportation, harvesting and threshing. For Temam, who had always relied on a rainfed agricultural system, the technology has high importance — he will be able to use the nearby river as a source of water for irrigation purposes.

To start off, Temam allocated 0.25 hectare from his four hectares of land for irrigation and planted potatoes for the first time. He was delighted with his harvest and the income he collected afterwards.

“From the first harvest, I was able to collect 112 quintals of potato and made roughly $1,529 in total,” said Temam.

Temam Mama checks his crops. (Photo: Simret Yasabu/CIMMYT)
Temam Mama checks his crops. (Photo: Simret Yasabu/CIMMYT)

Eternal returns

His productive journey had just started. This income allowed Temam to keep growing his business. He bought a horse and cart for $550 and taking the advice from the project team, he constructed a Diffused Light Storage (DLS) system to store his potatoes for longer.

To diversify his income, Temam occasionally provides transport services to other farmers. Over time, Temam’s financial capital has continued to grow, bringing new ideas and a desire to change. He went from a wooden fence to a corrugated iron sheet, to an additional three rooms by the side of his house for rentals.

He is fortunate for having access to the river and the road, he explains. He also sees new opportunities emerging as the demand for potato in the market continues to grow. The price for one quintal of potato sometimes reaches $76 and matching the demand is unthinkable without the two-wheel tractor, he says.

In addition to the two-wheel tractor, he has also bought a water pump to enable him to increase the area that he can grow irrigated potato, garlic and pepper on. His target is to have two hectares irrigated soon.

Temam Mama drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)
Temam Mama drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)

The future is bright

With his wife and four children, Temam is now living a well-deserved, healthy and exemplary life. Tomato, chilli and onion now grow on his farm ensuring a healthy diet, as well as diversified and nutritious food for the family. His economic status is also enabling him to support his community in times of need. “As part of my social responsibility, I have contributed around $152 for road and school constructions in our area,” noted Temam.

Under the Africa RISING project, Temam has proven that irrigation of high-value crops using two-wheel tractor pumping really works, and that it increases production and the profitability of farming. He has now stepped into a new journey with a bright future ahead of him.

“I plan to sell my indigenous cows to buy improved breeds and, in two to three years’ time, if I am called for refreshment training in Addis Ababa, I will arrive driving my own car,” concluded Temam.

Cover photo: Temam Mama’s family eats healthy and nutritious food produced through irrigation. (Photo: Simret Yasabu/CIMMYT)

Farm mechanization under COVID-19

The COVID-19 pandemic continues to transform the way the world operates, and agricultural production systems are not exempt.

Even in countries that have identified the agricultural sector as an essential one, ongoing restrictions on transport and freedom of movement are causing disruptions across the value chain — with potentially devastating impact on already fragile food systems in Latin America, sub-Saharan Africa and South Asia.

With this in mind, systems agronomists and mechanization specialists at the International Maize and Wheat Improvement Center (CIMMYT), discuss the impact of restrictions on agricultural labor and production, and the role farm mechanization can play in addressing new challenges.

What are the implications of the agricultural labor shortages that are emerging in Africa and Latin America as a result of COVID-19 restrictions?

A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)
A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)

FrĂ©dĂ©ric Baudron: The pandemic has demonstrated that food production systems around the world — even in countries where agriculture is thought to be highly mechanized — are highly dependent on farm labor.

Africa is often presented as being dominated by farms which rely mainly on the labor of family members. Therefore, one could expect that Africa would be spared from the consequences of unavailability and/or unaffordability of hired labor. However, a recent CIMMYT study shows that farming systems in Africa are far more dependent on hired labor than commonly thought, and that the quasi total dependence of smallholder farming on family labor is a myth. Depending on the farming system, a complete loss of hired labor could lead to a productivity decrease of up to 20% in Eastern and Southern Africa. Hired labor is also likely to be replaced by child labor.

Because most production on the continent is rainfed during a single season, most farmers only plant and harvest once per year, making the timing of each task critical. A delay in planting because of labor shortages — as will soon occur Ethiopia — could lead to dramatically reduced yields. A delay in harvesting — as is currently experienced in Zimbabwe — means a large fraction of the crop is likely to be spoilt in the field.

Jelle Van Loon: The situation is similar for Mexico and the general Central American corridor, although the main production cycle is only just starting. Proper land preparation and timely sowing are critical, not only in terms of food production and achieving proper yields, but also to ensure that farmers have a stable income at the end of the year. This is especially important now, as financial and food reserves are shrinking at a faster pace due to COVID-19 restrictions that heavily affect demand on informal markets.

An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)
An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)

Are you seeing a similar situation in South Asia?

Timothy Krupnik: Depending on the country, we’ve seen either abrupt interruptions in the movement of agricultural laborers — for example in India where millions of migrant laborers have not been able to travel home during lockdown — or an influx of people from urban areas who fled to their villages when lockdown began.

In the latter case, one might expect this to increase labor availability for farming, but we tended to observe the reverse. People remain largely frightened of coming out of their homes, so even in rural areas which saw an influx of people, labor availability has not necessarily increased. Where laborers are willing to work, our initial scan of the evidence indicates that daily wage labor costs have also increased considerably due to risks of infection spreading. In either situation, smallholder farmers who need to hire labor to assure crucial crop management activities like planting or harvesting are suffering. There are reports emerging also of increased child labor in the region as schools are closed and resource-poor farmers are allocating family members and children to work where they can’t afford to hire labor.

M.L. Jat: I would like to cite the specific example of intensive rice-wheat rotation in India’s breadbasket and the Green Revolution corridors in the western Indo-Gangetic plains, which provide the bulk of cereals to the national food basket. An ex-ante analysis on the consequences of the reverse migration of the agricultural workforce and social distancing due to COVID-19 revealed that a delay in the transplanting of rice seedlings by two weeks is likely, which will delay rice harvesting and consequently delay the planting of wheat. This will potentially lead to rice and wheat production losses of 10-25%, worth up to $1.5 billion.

In addition, the shorter turn around between harvesting rice and planting wheat may further increase the incidence of rice residue burning. This is a major problem which creates significant health issues and may exacerbate the threat of COVID-19 by increasing both infection rates and disease severity.

Krupnik: The situation has increased interest and policy to support use of scale-appropriate machinery for operations like harvesting. In Bangladesh, for example, there was a recent and very serious risk of losing much of the rice harvest as the monsoon has started early and flash flooding has been a concern. Without manual laborers to harvest the crop, CIMMYT-led projects like the Cereal Systems Initiative for South Asia – Mechanization and Extension Activity (CSISA-MEA) have played a key role in assisting the movement of combine harvesters and crop reapers to areas at risk of crop losses and helping to assure the rice crop is harvested on time.

An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)
An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)

It sounds like these machines were instrumental in avoiding crop losses. Does this mean that mechanization has a key role to play in lessening the impact of these labor shortages?

Krupnik: During the COVID-19 crisis, scale-appropriate machinery has become even more important for mitigating labor shortages.  We work to facilitate the availability of scale-appropriate machinery not only so that farmers can buy and use equipment, but also by encouraging those who own machineries to become entrepreneurial service providers who offer efficient and mechanized land preparation, planting, irrigation, harvesting and post-harvesting to other farmers on an affordable fee-for-service basis.

This is a win-win situation for farmers who can’t access or afford the escalating costs of labor. In the COVID-19 crisis, these arrangements assist in responding to the labor crunch in locations where resource-poor farmers are most in need, and also allow farmers to get crucial work done while maintaining and encouraging social distancing.

Baudron: Over the past seven years, CIMMYT and its partners have fine-tuned technologies and developed delivery models — based on rural service providers supported by private sector companies — to scale the use of small machines in East and Southern Africa. These are profitable for both farmers and service providers and reduce labor requirements tremendously.

In Zimbabwe, we found that labor requirements were 15 times lower when establishing a maize field with a direct seeder pulled by a two-wheel tractor, and 23 times lower using a similar technology for establishing wheat in Rwanda, compared to the conventional method based on labor and draft power. A ton of maize that would take 12 people a full day to shell manually, can be shelled in one hour using a small double-cob sheller that costs about $300.

Jat: Rapid policy decisions by sub-national and national governments on facilitating more mechanized operations in labor intensive rice-wheat production regions will address labor availability issues while contributing to productivity enhancement of succeeding wheat crop in rotation, as well as overall system sustainability. Our ex-ante analysis on the implications of labor shortages in rice-wheat rotation in the western Indo-Gangetic plains due to COVID-19 indicates that adoption of scale-appropriate farm mechanization has the potential to stabilize the food production as well as reducing the income losses and air pollution surges in northwest India.

Harvesting maize in Mexico. (Photo: CIMMYT)
Harvesting maize in Mexico. (Photo: CIMMYT)

The situation in the regions each of you have mentioned is unique, but are there any global trends that you’ve noticed? And if so, can other regions learn from these localized experiences?

Krupnik: A huge part of what we do as a research and training institute is facilitate exchanges of information across continents and countries. Different types and designs of machinery that can be used in similar circumstances can be shared, as can business models supporting service providers.

Importantly, part of the concept of ‘scale-appropriate mechanization’ is also learning when and where machinery makes sense — where labor is not scarce and rural communities are highly dependent on income from labor to sustain their communities, some forms of mechanization may not be appropriate. We work to understand these dynamics and target the right machines in the right time and right places.

Van Loon: In addition to reducing pressure on available labor and alleviating drudgery, modern farm equipment tailored to the needs of smallholders can also increase competitiveness, as it allows for higher precision and efficiency.

In this sense, scale-appropriate mechanization can stimulate rural transformation incentivizing short and efficient value chains while ensuring stable food provision — aspects that have become essential to navigating the present crisis.

Has the current pandemic brought up any new perspectives in terms of how you consider labor and mechanization?

Baudron: We often look at yield and area planted in staple crops to assess the food security situation of a country during a particular year. This pandemic has shown us that we need to pay more attention to labor productivity. In many countries, policy-makers and development agents fear that mechanization will displace labor, but the dependency of staple crops on labor is a threat to food security, as we currently see in Africa and South Asia.

If the production of fruit, vegetables, cash crops, and so on will continue to depend on manual labor, it is essential in my view for critical tasks in the production of staples to be mechanized — particularly planting and harvesting. This will ensure the resilience of national food systems in the case of a future disruption similar to the COVID-19 pandemic.

Cover photo: Establishment of demo trial in Nyanga, Zimbabwe. (Photo: CIMMYT/ZRBF)

New publications: Gender differentiated small-scale farm mechanization in Nepal hills

The use of small-scale mechanization in smallholder farming systems in South Asia has increased significantly in recent years. This development is a positive step towards agricultural transformation in the region. Small-scale mechanization is now seen as a viable option to address labor scarcity and offset the impact of male outmigration in rural areas, as well as other shortages that undermine agricultural productivity.

However, most existing farm mechanization technologies are either gender blind or gender neutral. This is often to the detriment of women farmers, who are increasingly taking on additional agricultural work in the absence of male laborers. Minimizing this gender disparity among smallholders has been a key concern for policymakers, but there is little empirical literature available on gender and farm mechanization.

A new study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) addresses this gap, using data from six districts in the highlands of Nepal to assess the impact of the gender of household heads on the adoption of mini-tillers — small machinery used to prepare and cultivate land before planting.

Their findings reveal that, when it comes to mini-tiller adoption, there is a significant gender gap. Compared to male-headed households, explain the authors, the rate of adoption is significantly lower among female-headed households. Moreover, they add, when male- and female-headed households have similar observed attributes, the mini-tiller adoption rate among the food insecure female-headed households is higher than in the food secure group.

The authors argue that this gender-differentiated mini-tiller adoption rate can be minimized in the first instance by increasing market access. Their findings suggest that farm mechanization policies and programs targeted specifically to female-headed households can also help reduce this adoption gap in Nepal and similar hill production agroecologies in South Asia, which will enhance the farm yield and profitability throughout the region.

Read the full article in Technology in Society:
Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression.

Women farmers test a mini tiller on farmland in Ramghat, Nepal. (Photo: CIMMYT)

See more recent publications from CIMMYT researchers:

  1. Effect of missing values on variance component estimates in multienvironment trials. 2019. Aguate, F.M., Crossa, J., Balzarini, M. In: Crop Science v. 59, no. 2, p. 508-517.
  2. The relative efficiency of two multistage linear phenotypic selection indices to predict the net genetic merit. 2019. Ceron Rojas, J.J., Toledo, F.H., Crossa, J. In: Crop Science v. 59, no. 3, p. 1037-1051.
  3. High-density mapping of triple rust resistance in barley using DArT-Seq markers. 2019. Dracatos, P.M., Haghdoust, R., Singh, R.P., Huerta-Espino, J., Barnes, C.W., Forrest, K.L., Hayden, M., Niks, R.E., Park, R.F., Singh, D. In: Frontiers in Plant Science v. 10, art. 467.
  4. Modernising breeding for orphan crops: tools, methodologies, and beyond. 2019. Ribaut, J.M., Ragot, M. In: Planta v. 250, no. 3, p. 971-977.
  5. An update of recent use of Aegilops species in wheat breeding. 2019. Kishii, M. In: Frontiers in Plant Science v. 1., art. 585.
  6. Genetics of greenbug resistance in synthetic hexaploid wheat derived germplasm. 2019. Crespo-Herrera, L.A., Singh, R.P., Reynolds, M.P., Huerta-Espino, J. In: Frontiers in Plant Science v. 10, art. 782.
  7. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population. 2019. Xinyao He, Dreisigacker, S., Singh, R.P., Singh, P.K. In: Theoretical and Applied Genetics v. 132, no. 8, 2401-2411.
  8. Studying selection criteria and genetic variability for improvement of indigenous maize in Pakistan. 2019. Maqbool, M.A., Aslam, M., Issa, A.B., Khan, M. S., Saeed, M.T. In: Pakistan Journal of Agricultural Sciences v. 56, no. 4. 819-827.
  9. Genome wide association study of karnal bunt resistance in a wheat germplasm collection from Afghanistan. 2019. Gupta, V., Xinyao He, Kumar, N., Fuentes DĂĄvila, G., Sharma, R.K., Dreisigacker, S., Juliana, P., Ataei, N., Singh, P.K. In: International Journal of Molecular Sciences v. 20, no. 13, art. 3124.
  10. Does caste determine farmer access to quality information? 2019. Krishna, V.V., Aravalath, L., Vikraman, S. In: PLoS One v. 14, no. 1, art. e0210721.
  11. Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.). 2019. Trachsel, S., Dhliwayo, T., Gonzalez-Perez, L., Mendoza Lugo, J.A., Trachsel, M. In: PLoS One v. 14, no. 3, art. e0212200.
  12. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. 2019. Roncallo, P.F., Beaufort, V., Larsen, A.O., Dreisigacker, S., Echenique, V. In: PLoS One v. 14, no. 6, art. e0218562.
  13. The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective. 2019. McLean R., F.D., Camacho Villa, T.C., Almekinders, C., PĂš, M.E., Dell’Acqua, M., Costich, D.E. In: Agriculture and Human Values v. 36, no. 4, 651-668.
  14. Molecular screening of Zymoseptoria tritici resistance genes in wheat (Triticum aestivum L.) using tightly linked simple sequence repeat markers. 2019. Mekonnen, T., Haileselassie, T., Kaul, T., Sharma, M., Abeyo Bekele Geleta, Kassahun, T. In: European Journal of Plant Pathology v. 155, no. 2, p. 593-614.
  15. Bacterial diversity based on a 16S rRNA gene amplicon data set from a high-altitude crater lake and glacial samples of the Iztaccihuatl volcanic complex (Mexico). 2019. Calvillo-Medina, R.P., Reyes‐Grajeda, J.P., Moreno-Andrade, V.D., Barba‐Escoto, L., Bautista‐de Lucio, V.M., Jones, G.H., Campos‐Guillen, J. In: Microbiology Resource Announcements v. 8, no. 12, art. e01636-18art. e01636-18art. e01636-18art. e01636-18art. e01636-18art. e01636-18.
  16. Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, ‘BARI Gom 33’, in Bangladesh. 2019. Hossain, A., Mottaleb, K.A., Farhad, M., Barma, N.C.D. In: Acta Agrobotanica v. 72, no. 2, art. 1775.
  17. Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing. 2019. Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto Espinosa, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Mac Arthur, A. In: Remote Sensing v. 11, no. 8, art. 962.
  18. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. 2019. Badu-Apraku, B., Talabi, O., Fakorede, M. A. B., Fasanmade, Y., Gedil, M., Magorokosho, C., Asiedu, R. In: BMC Plant Biology v. 9, art. 129.
  19. Understanding factors associated with agricultural mechanization: a Bangladesh case. 2019. Aryal, J.P., Rahut, D.B., Maharjan, S., Erenstein, O. In: World Development Perspectives v. 13, p. 1-9.
  20. Wealth, education and cooking-fuel choices among rural households in Pakistan. 2019. Rahut, D.B., Ali, A., Mottaleb, K.A., Aryal, J.P. In: Energy Strategy Reviews v. 24, p. 236-243.
  21. Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. 2019. Nan Wang, Bojuan Liu, Xiaoling Liang, Yueheng Zhou, Song, J., Jie Yang, Hongjun Yong, Jianfeng Weng, Degui Zhang, Mingshun Li, Nair, S.K., San Vicente, F.M., Zhuanfang Hao, Zhang, X, Xinhai Li. In: Molecular Breeding v. 39, no. 8, art. 113.
  22. Wildlife trade and consumer preference for species rarity: an examination of caged-bird markets in Sumatra. 2019. Krishna, V.V., Darras, K., Grass, I., Mulyani, Y.A., Prawiradilaga, D.M., Tscharntke, T., Qaim, M. In: Environment and Development Economics v. 24, no. 4, p. 339-360.
  23. Correction to: high-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. 2019. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant methods v. 15, art. 52.
  24. Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India. 2019. Singh, B., McDonald, A., Srivastava, A., Gerard, B. In: Nature Sustainability v. 2 no. 7, p. 580-583.

Shared responsibilities and equal economic benefits

Women play a crucial role in Ethiopian agriculture. A significant portion of their time is spent in the field helping their male counterparts with land preparation, planting, weeding and harvesting. Despite this, women face barriers in accessing productive resources and gaining financial benefits.

In 2015 and 2016, there was a 9.8% gap in farming plot productivity between woman- and man- managed farms in Ethiopia, which translated to a $203.5 million loss in the country’s GDP. Access to mechanization services though service provision could contribute to decreasing this gap.

The International Maize and Wheat Improvement Center (CIMMYT) and the German development agency GIZ have been testing service provision models in different areas of Ethiopia to expand small-scale agricultural mechanization that would benefit both men and women.

Zewdu Tesfaye, a smallholder farmer and mother of two, lives in the Amba Alaje district of the Tigray region. Two years ago, she paid $8 to become a member of the Dellet Agricultural Mechanization Youth Association (DAMYA), established to provide agricultural mechanization services in the area.

Zewdu Tesfaye drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)
Zewdu Tesfaye drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)

Along with other members, Tesfaye provides various services to farmers in her area that need assistance. “I take part in every assignment the group is tasked with. I drive the two-wheel tractor and I support during threshing and irrigation,” she says.

Tesfaye has now secured a job providing these services and has started earning income. In November 2019, she received $72 from the association’s threshing services, which she saved in the bank. If women are given equal opportunities and equal access to resources, she says, they have the capacity to do anything that will empower themselves and change their families’ lives.

DAMYA currently has 12 members — eight men and four women — and all responsibilities are shared, with benefits divided equally. “Agricultural mechanization is an area less accessible to women,” explains group chair Alemayehu Abreha. “Thus, we highly encourage and motivate our women members to maximize their potential and invite other women to witness that everything is possible.”

Belay Tadesse, regional advisor for GIZ’s Integrated Soil Fertility Management project, explained that the initiative aims to benefit both women and men as service providers and recipients. Various trainings are provided for women, so that they are well acquainted with the machinery, as well as with the business aspects of each model. Events and other activities are also helping spread awareness, to attract and encourage more women to get involved in similar jobs, adds Tadesse.

Belay Tadesse shows young women from Dellet how the water should flow. (Photo: Simret Yasabu/CIMMYT)
Belay Tadesse shows young women from Dellet how the water should flow. (Photo: Simret Yasabu/CIMMYT)

In the Gudiya Billa district, located about 220 kilometers away from Addis Ababa, the introduction of the two-wheel tractor has been a blessing for many farmers in the area, especially women. For Kidane Mengistu, farmer and mother of six, harvesting season used to bring an added strain to her already existing chores. Now everything has changed. Through the new service provision model, Mengistu is able to get help with her daily tasks from Habtamu, a farmer professionally trained in agricultural mechanization. “We now hire Habtamu, a service provider, to get different services like threshing,” she says. “He does the job in few hours with reasonable amount of payment. This has given me ample time to spend on other household chores.”

Kidane Mengistu is much happier with the threshing service she gets from the service provider. (Photo: Simret Yasabu/CIMMYT)
Kidane Mengistu is much happier with the threshing service she gets from the service provider. (Photo: Simret Yasabu/CIMMYT)

Maize, sorghum and teff are the three main crops grown on Mengistu’s eight hectares of land. With the introduction of the two-wheel tractor and service provision model, she and Habtamu have been able to begin potato irrigation on two hectares — Mengistu provides the land while Habtamu provides and operates the water pump — and together they share costs and income. Mengistu says she and her family have seen firsthand the benefits of the two-wheel tractor and plan to purchase their own someday.

New publication: Scaling agricultural mechanization services in smallholder farming systems

A new study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) assesses how three large projects have scaled service provision models for agricultural mechanization in Bangladesh, Mexico and Zimbabwe. In what is possibly the first cross-continental assessment of these issues to date, the study gauges the extent to which each initiative fits with the needs of its environment to enable sustained machinery use by farmers at a large scale, while acknowledging the influence of project design on outcomes.

Each of the projects has made considerable progress towards increasing the adoption of agricultural machinery in their target area. In Bangladesh and Mexico, mechanization service providers and machinery dealers have been able to strengthen their business cases because the projects use geospatial and market data to provide targeted information on client segmentation and appropriate cropping systems. In Zimbabwe, CIMMYT and partners have worked to strengthen the market for two-wheeled tractors by creating demand among smallholders, developing the capacity of existing vocational training centers, and spurring private sector demand.

However, despite these initial successes, it can often be difficult to gauge the sustained change and transformative nature of such interventions.

Applying a scaling perspective

To address this challenge, research teams held a series of workshops with project partners in each country, including regional government representatives, national and local private sector stakeholders, and direct project collaborators such as extension agents and site managers. Participants were asked to answer a series of targeted questions and prompts using the Scaling Scan, a user-friendly tool which facilitates timely, structured feedback from stakeholders on issues that matter in scaling. Responses given during this exercise allowed project designers to analyze, reflect on, and sharpen their scaling ambition and approach, focusing on ten scaling ‘ingredients’ that need to be considered to reach a desired outcome, such as knowledge and skills or public sector governance.

Local service provider uses a bed planter for crop production in Horinofolia, Bangladesh. (Photo: Ranak Martin)

“Although at first sight the case studies seem to successfully reach high numbers of end users, the assessment exposes issues around the sustainable and transformative nature of the project interventions,” says Lennart Woltering, a scaling advisor at CIMMYT.

The added value of this approach, explains Jelle Van Loon, lead author and CIMMYT mechanization specialist, is that lessons learned from project-focused interventions can be amplified to generate broader, actionable knowledge and implement thematic strategies worldwide. “This is especially important for CIMMYT as we do exactly that, but often face different constraints depending on the local context.”

The use of a scaling perspective on each of these projects exposed important lessons on minimizing project dependencies. For example, though each project has invested considerably in both capacity and business development training, in all three case studies the large-scale adoption of recommended service provision models has been limited by a lack of finance and insufficient collaboration among the value chain actors to strengthen and support mechanization service provider entrepreneurs.

“While provision of market and spatial information helps local businesses target their interventions, local stakeholders are still dependent on the projects in terms of transitioning from project to market finance, facilitating collaboration along the value chain, and provision of leadership and advocacy to address issues at governance level,” Woltering explains. This, Van Loon adds, demonstrates a need for the inclusion of properly planned exit strategies from projects, as well as a degree of flexibility during the project development phase.

In all three regions, the supply of appropriate mechanization services is struggling to meet demand and few solutions have been found to support the transition from project to market finance. Continued capacity development is required at all stages of the value chain to ensure the provision of high-quality services and it has been suggested that incentivizing potential clients to access mechanization services and linking service providers with machinery dealers and mechanics might produce more satisfying results than simply supporting equipment purchases.

Read the full study: Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. 2020. Van Loon, J., Woltering, L., Krupnik, T.J., Baudron, F., Boa, M., Govaerts, B. In: Agricultural Systems v. 180.

See more recent publications by CIMMYT researchers:

  1. An R Package for Bayesian analysis of multi-environment and multi-trait multi-environment data for genome-based prediction. Montesinos-Lopez, O.A., Montesinos-Lopez, A., Luna-Vazquez, F.J., Toledo, F.H., Perez-Rodriguez, P., Lillemo, M., Crossa, J. In: G3: genes – genomes – genetics v. 9, no. 5, p. 1355-1369.
  2. New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes. Montesinos-Lopez, O.A., Martin-Vallejo, J., Crossa, J., Gianola, D., Hernandez SuĂĄrez, C.M., Montesinos-Lopez, A., JULIANA P., Singh, R.P. In: G3: genes – genomes – genetics v. 9, no. 5, p. 1545-1556.
  3. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. Jia Liu, Bihua Wu, Singh, R.P., Velu, G. In: Journal of Cereal Science v.88,   p. 57-64.
  4. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. 2019. Jat, H.S., Datta, A., Choudhary, M., Sharma, P.C., Yadav, A.K., Choudhary, V., Gathala, M.K., Jat, M.L., McDonald, A. In: Catena v. 181: 104059.
  5. A cost-benefit analysis of climate-smart agriculture options in Southern Africa:  balancing gender and technology. 2019. Mutenje, M., Farnworth, C.R., Stirling, C., Thierfelder, C., Mupangwa, W., Nyagumbo, I. In: Ecological Economics v.163,   p. 126-137.
  6. Yield and labor relations of sustainable intensification options for smallholder farmers in sub-Saharan Africa. A meta-analysis. 2019. Dahlin, S., Rusinamhodzi, L. In: Agronomy for Sustainable Development v. 39, no. 3.
  7. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). 2019. Aguirre-Liguori, J.A., Gaut, B.S., Jaramillo-Correa, J.P., Tenaillon, M.I., Montes Hernandez, S., GarcĂ­a-Oliva, F., Hearne, S., Eguiarte, L.E. In: Molecular Ecology v. 28, no. 11, p. 2814-2830.
  8. Tillage, crop establishment, residue management and herbicide applications for effective weed control in direct seeded rice of eastern Indo-Gangetic Plains of South Asia . 2019. Jat, R.K., Singh, Ravi Gopal, Gupta, R.K., Gill, G., Chauhan, B.S., Pooniya, V. In: Crop Protection v. 123, p. 12-20.
  9. Benefits to low-input agriculture. 2019. Reynolds, M.P., Braun, H.J. In: Nature Plants v. 5, p. 652-653.
  10. Improving nutrition through biofortification: preharvest and postharvest technologies. 2019. Listman, G.M., Guzman, C., Palacios-Rojas, N., Pfeiffer, W.H., San Vicente, F.M., Velu, G. In: Cereal Foods World v. 64, no. 3.
  11. Transcriptomics of host-specific interactions in natural populations of the parasitic plant purple witchweed (Striga hermonthica). 2019. Lopez, L., Bellis, E.S., Wafula, E., Hearne, S., Honaas, L., Ralph, P.E., Timko, M.P., Unachukwu, N., dePamphilis, C.W., Lasky, J.R. In: Weed Science v. 67, no. 4, p. 397-411.
  12. Reduced response diversity does not negatively impact wheat climate resilience. 2019. Snowdon, R.J., Stahl, A., Wittkop, B., Friedt, W., Voss-Fels, K.P., Ordon, F., Frisch, M., Dreisigacker, S., Hearne, S., Bett, K.E., Cuthbert, R.D. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS) v. 116, p. 10623-10624.
  13. Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: a study of water markets in Bangladesh. 2019. Mottaleb, K.A., Krupnik, T.J., Keil, A., Erenstein, O. In: Agricultural Water Management v. 222, p. 242-253.
  14. 15N Fertilizer recovery in different tillage-straw systems on a Vertisol in north-west Mexico. 2019. Grahmann, K., Dittert, K., Verhulst, N., Govaerts, B., Buerkert, A. In: Soil Use and Management v. 35, no. 3, p. 482-491.
  15. Agricultural mechanization and reduced tillage: antagonism or synergy?. Debello, M. J., Baudron, F., Branka Krivokapic-Skoko, Erenstein, O. In: International Journal of Agricultural Sustainability v. 17, no. 3, p. 219-230.
  16. Scaling – from “reaching many” to sustainable systems change at scale:  a critical shift in mindset. 2019. Woltering, L., Fehlenberg, K., Gerard, B., Ubels, J., Cooley, L. In: Agricultural Systems v. 176, art. 102652.
  17. Determinants of sorghum adoption and land allocation intensity in the smallholder sector of semi-arid Zimbabwe. Musara, J. P., Musemwa, L., Mutenje, M., Mushunje, A., Pfukwa, C. In: Spanish Journal of Agricultural Research v. 17, no. 1, art. e0105.
  18. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Long Li, Xinguo Mao, Jingyi Wang, Xiaoping Chang, Reynolds, M.P., Ruilian Jing In: Plant Cell and Environment v. 42, no. 9, p. 2540-2553.
  19. Spending privately for education in Nepal. Who spends more on it and why?. Mottaleb, K.A., Rahut, D.B., Pallegedara, A. In: International Journal of Educational Development v. 69, p. 39-47.
  20. Genotype x environment interaction of quality protein maize hybrids under contrasting management condition in Eastern and Southern Africa. 2019. Mebratu, A., Dagne Wegary Gissa, Mohammed, W., Chere, A.T., Amsal Tesfaye Tarekegne In: Crop Science v. 59, no. 4, p. 1576-1589.
  21. Collaborative research on Conservation Agriculture in Bajio, Mexico: continuities and discontinuities of partnerships. Martinez-Cruz, T.E., Almekinders, C., Camacho Villa, T.C. In: International Journal of Agricultural Sustainability v. 17, no. 3, p. 243-256.
  22. Conservation agriculture based sustainable intensification of basmati rice-wheat system in North-West India. 2019. Jat, H.S., Pardeep Kumar, Sutaliya, J.M., Satish Kumar, Choudhary, M., Singh, Y., Jat, M.L. In: Archives of Agronomy and Soil Science v. 65, no. 10, p. 1370-1386.
  23. Gender and household energy choice using exogenous switching treatment regression: evidence from Bhutan. Aryal, J.P., Rahut, D.B., Mottaleb, K.A., Ali, A. In: Environmental Development v. 30, p. 61-75.
  24. Weather shocks and spatial Market efficiency: evidence from Mozambique. 2019. Salazar, C.| Hailemariam Ayalew | Fisker, P. In: Journal of Development Studies v. 55, No. 9, p. 1967-1982.
  25. Effects of Pakistan’s energy crisis on farm households. Ali, A., Rahut, D.B., Imtiaz, M. In: Utilities Policy v. 59, art. 100930.
  26. Social inclusion increases with time for zero-tillage wheat in the Eastern Indo-Gangetic Plains. Keil, A., Archisman Mitra, Srivastava, A., McDonald, A. In: World Development v. 123, art. 104582.

One-minute science: Jelle Van Loon explains mechanization for agriculture

Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYT’s mechanization work is context-specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.  

Jelle Van Loon, CIMMYT mechanization specialist, explains how his team prototypes innovations that allow precision farming and supports different actors in the value chain from importers to policy-makers to create broader availability of farm equipment.  

Ephrem Tadesse

Ephrem Tadesse is a Business Development Manager at CIMMYT.

He studies the economic viability of different technologies for smallholder farmers in different geography and crop patterns. For the last three and half year, he has been testing and identifying best-bet technologies in Ethiopia, together with local research institutes and private sector companies. Based on the performance of the machine and the economic viability for farmers and service providers, he has been working on adoption and scaling of technologies, through market linkages and facilitating access to finance.