Skip to main content

Tag: maize

Farmers in Buhera gear up for climate-smart agriculture

Isaiah Nyagumbo engages extension officers and host farmers on the water harvesting technologies under trial in Buhera district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

As climate change effects intensify, new innovations that enable smallholder farmers to adapt are no longer an option but a necessity. Significant parts of Zimbabwe are semi-arid, receiving less than 600mm of rainfall per year. Smallholder farming communities in districts such as Buhera have embraced feed production and water conservation innovations deployed by the International Maize and Wheat Improvement Center (CIMMYT) as part of the Livestock Production Systems in Zimbabwe project (LIPS-Zim). The project, funded by the European Union and led by the International Livestock Research Institute (ILRI) and CIMMYT, champions the crop-related aspects of interventions and aims to increase livestock productivity in Zimbabwe’s semi-arid regions. The project specifically aims to promote increased adoption of climate-relevant innovations in livestock-based production systems and improved surveillance and control of livestock diseases. While focused on livestock, the project is based on the premise that the performance of the livestock sector depends heavily on crop husbandry. By the same token, the livestock sector has bi-products that directly impact the productivity of crops.

Zimbabwe is a country that is well suited to mixed farming systems. Most smallholder farmers have treated livestock and crop production as mutually exclusive, but the two enterprises can have a significant complementary effect on each other.

CIMMYT Cropping Systems Agronomist Isaiah Nyagumbo is leading the development of crop husbandry innovations aimed at increasing feed production that are poised to benefit smallholder farmers’ crop productivity and enhance the conditioning of livestock, especially cattle.

Despite extension recommendations for farmers not to grow maize in these regions, studies show that 60% of the arable land is still occupied by maize. This is due to maize’s popularity among farmers thanks to its diverse uses.

One solution is to support farmers with the most appropriate cultivars and most effective production technologies to help them be more resilient to climate change induced challenges. To contribute towards LIPS-Zim’s objective for increased feed production, CIMMYT scientists are testing and demonstrating the use of drought tolerant and nutritious maize varieties along with a wide range of leguminous species such as mucuna, dolichos lab-lab and cowpea, which are grown mostly as intercrops. Efforts are also being made to develop innovative water conservation options through reduced or no-till planting basins and tied ridging systems reinforced with different mulching options including conventional organic and synthetic artificial mulches. These are then being compared to traditional conventional mouldboard ploughing systems.

The Nyeketes, proud hosts of the CIMMYT water harvesting technology trial, in Buhera, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

So far, the results are exciting and helping farmers to see the productivity gains from applying different technologies. Mr. and Mrs. Nyekete, smallholder farmers who volunteered to work with CIMMYT on these innovations, are optimistic about widespread adoption once the trials are concluded as the technologies can suit different levels of investment by farmers.

“We have a lot of farmers visiting us as they observe a diversity of technologies on our plot. The artificial mulch concept is one which is very new, and farmers are curious as to how it works. They can observe for themselves that, especially when used with tied ridges, it is very effective in retaining moisture,” said Mr and Mrs Nyekete.

“The same applies to organic mulch. Government extension workers have, over the years, been encouraging us to plant our maize under the Pfumvudza conservation agriculture model, and in it is the use of organic materials as mulch. The level of compliance in areas such as Buhera has been low, where people practice Pfumvudza without fully applying all the principles, especially soil cover. The water conservation trials are providing evidence that when one dedicates themselves to mulching their crop, whether using organic or synthetic mulches, the maize productivity is comparatively higher. As you can see, the maize plots with these water harvesting technologies are showing high vegetative growth in comparison to conventionally planted maize.”

Over the years, there has been a slow adoption of new innovations emanating from scientific research usually conducted on research stations. The use of on-farm research trials and demonstrations helps smallholder farmers to participate in the research process and co-create technologies, which shortens the adoption period and stimulates adoption at scale. This approach enables more farmers, who are not hosts, to benefit from the technologies showcased in the trials and to observe and learn from the trials. As the saying goes, “seeing is believing” and farmers can choose the options most relevant to their own circumstances.  As such, farmers can conclude for themselves which technologies bear results compelling enough for them to adopt.

Despite the artificial mulching technology demonstrating impressive results so far, Nyagumbo cautions that before the technology can be promoted at scale, more research, as well as proof of concept for these systems are needed.

“Firstly, we see that the quality of the material used has a big bearing on the ability to reduce evaporation from the soil. Secondly, some farmers have observed germination challenges due to the synthetic materials creating an attractive habitat for rodents that eat the maize seed before it germinates. Thirdly, the returns from such investments need to be justified by highly attractive economic returns arising from high yields that will also enable farmers to intensify their production systems by producing their food needs from much smaller areas. Further studies and analyses therefore need to be conducted,” said Nyagumbo.

“Furthermore, so far the idea of tied ridging combined with organic mulches also seems to offer a highly attractive option for farmers that will contribute to increased feed productivity from the enhanced grain and crop residues, since increased biomass output also means increased livestock feed availability.”

While breeding excellence is proving to be an effective method for responding to climate change through improved seed varieties and high-performance livestock breeds, new crop and livestock production technologies are required to complement the genetic gains from breeding. The crop production technologies being showcased in in Buhera along with drought tolerant and nutritious maize varieties and legumes, promise to be transformative for semi-arid regions for both crop and livestock systems.

Mini-tillers bolster Nepal maize farmers’ food supplies and profits, new study shows

Use of lightweight, 5-9-horsepower mini-tillers by smallholder farmers in Nepal’s mid-hills cut tillage costs and boosted maize yields by facilitating timely maize cultivation, thus enhancing food self-sufficiency and farm profits and reducing rural poverty, a new study by an international team of scientists shows.

Published in the Journal of Economics and Development, the study reports findings of an on-farm survey involving more than 1,000 representative households from 6 districts of the mid-hills, a region of steep and broken terrain where rainfed maize is a staple crop, outmigration of working-age inhabitants makes farm labor scarce and costly, and farmers on small, fragmented landholdings typically till plots by hand or using ox-drawn plows.

“Conventional two- or four-wheel tractors are difficult to operate in the mid-hills’ rugged topography,” said Gokul P. Paudel, researcher working together with the International Maize and Wheat Improvement Center (CIMMYT) and Leibniz University, Hannover, Germany, and lead author of the study. “Farms are small and the mini-tillers are a good fit. Very small farms — those comprising less than 0.4 hectares of land and normally not served by hired farm labor or larger machinery — benefited the most from mini-tiller adoption.”

The paper is the first to provide empirical linkages between small-scale farm mechanization and the UN Sustainable Development Goals, particularly No Poverty (SDG-1) and Zero Hunger (SDG-2).

“Given its rural poverty and the resulting outmigration from farm areas to cities and to other countries, Nepal has increasingly become a labor-exporting country,” explained Paudel, who partnered in this study with researchers from the Asian Development Bank Institute and Cornell University. “Our research can help guide investments by Nepal and other developing countries in scale-appropriate farm mechanization, supporting those who wish to remain on rural homesteads and make a go of it.”

Machine operators starting the mini-tiller in the Kavrepalanchok district in the mid-hills of Nepal. (Photo: CIMMYT)

The science team found that farm size, labor shortages, draft animal scarcity, and market proximity were major factors that facilitate the adoption of appropriate mechanization in Nepal, according to Tim Krupnik, CIMMYT systems agronomist and study co-author.

“Smallholder farms dominate more than two-thirds of agricultural systems globally,” Krupnik said. “Interest in scale-appropriate farm mechanization is growing rapidly, particularly among donors and governments, and practical empirical measures of its impact are crucial.” The findings of the latest study fill this knowledge gap and provide sufficient evidence to prioritize the spread of appropriate technologies among smallholder farmers.

Krupnik noted that, through its office in Nepal and strong shared research and capacity-building activities, CIMMYT has worked for almost four decades with Nepali scientists and development partners, including the Nepal Agricultural Research Council (NARC) and the Ministry of Agriculture and Livestock Development (MoALD), to raise the productivity and sustainability of the country’s maize- and wheat-based farming systems.

In addition to strong government partnerships, CIMMYT works closely in Nepal with a range of non-government organizations, and importantly, hand-in-hand with private farm machinery manufacturers, retailers, and mechanics.

The study described was supported by the Bill & Melinda Gates Foundation, the US Agency for International Development (USAID), the Academy for International Agricultural Research (ACINAR) commissioned by the German Federal Ministry for Economic Cooperation and Development (BMZ) and carried out by ATSAF e.V. on behalf of the Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH, the One CGIAR Regional Integrated Initiative Transforming Agrifood Systems in South Asia (TAFSSA), and generous funders who contribute to the CGIAR Trust Fund.

Read the study: The contributions of scale-appropriate farm mechanization to hunger and poverty reduction: Evidence from smallholder systems in Nepal

Cover photo: In the Palpa district in the mid-hills of Nepal, a woman farmer tills the soil for maize seeding. (Photo: Gokul Paudel/CIMMYT)

Farmers harvested double yield by adopting Wengkhar Hybrid Maize 1 in Bhutan

The planting of maize hybrid Wengkhar Hybrid Maize 1 (WHM-1) has helped farmers in the Mongar district of Bhutan double their maize yield.

WHM-1 was developed in partnership with the International Maize and Wheat Improvement Center (CIMMYT) and became the first maize hybrid to be released in Bhutan to combat the negative effect of increasing temperature or extreme heat events on maize.

The hybrid was designed with characteristics of heat and drought tolerance, as well as a resistance to stem and root lodging. It also had additional stay-green traits after cob maturity and produced a high yield.

The success of the implementation in Bhutan is leading to an increased production of WHM-1, which will aim to meet national demand and work towards country’s self-sufficiency.

Dechen Yangden is one of the smallholder beneficiaries in Tsakaling, a sub-district in Mongar in the east of the country, who have boosted their maize yield by planting WHM-1. “My attempt to grow WHM-1 has doubled my maize production compared to last season where I cultivated some other maize varieties (2.5 metric tons (mt) in one hectare (ha)),” she said.

Farmer holds up a maize cob of WHM-1 in Waichur hamlet, Mongor, Bhutan. (Photo: ARDC)

Farmers’ experiences of WHM-1

Since its official release in 2020, the national maize program based at Agriculture Research & Development Center (ARDC) started producing hybrid seeds and maintaining parental lines. To test the success of the ARDC’s work, planting was carried out in the Tsakaling and Waichur hamlets in Mongar districts, covering an area of six acres.

Maize farmers in Tsakaling shared that although the crop was affected by the insect fall armyworm during the early vegetative stage, the productivity of the crop was not affected, as it recovered at later stage.

Meanwhile, ARDSC Khangma carried out yield monitoring during the harvest, where WHM-1 yielded 5.8 mt ha-1, which is noticeable rise on the national average of 3.7 mt ha-1.

Following the conclusion of their harvest, farmers in the two localities shared their views on the newly released maize in order to review the effect of the implementation of WHM-1. Both sets of growers reported an improved performance from the use of WHM-1 and noted that, unlike other maize varieties, the hybrid has shorter and uniform plant height along with a higher resistance to lodging, which is an essential trait given the conditions it is grown in. Furthermore, the stay-green trait of the hybrid after maturity of cobs gave farmers an added advantage of green fodder, which can be used for feeding their cattle.

In Waichur, the growers found that this hybrid had a tight husk and fully filled kernels. They shared similar views to growers in Tsakaling, reporting positive lodging resistance in the hybrid.

Both communities expressed their interest in continuing to use WHM-1, given the availability and accessibility of the seeds. As a response, the National Maize Program at ARDC Wengkhar, is looking to deploy the newly released hybrid on a larger scale, which will ultimately contribute towards enhancing maize self-sufficiency in the country.

WHM-1 was developed through partnership of the National Maize Program at Wengkhar and CIMMYT under the Heat Stress Tolerant Maize for Asia (HTMA) project for germplasm and technical assistance and the Commercial Agriculture and Resilient Livelihoods Enhancement Program (CARLEP-IFAD/MoAF) for on-farm research and intensification.

Feasibility mapping for WHM-1 showed that its adaption stretches along the southern foothills and some parts of eastern district. The National Maize Program, sister research centers, and farmers are currently working on upscaling the seed production for intensification of national maize production to meet the domestic demands.

Cover photo: Women farmers tagging their first choice of maize crop, WHM-1, in Tsakaling hamlet, Mongor, Bhutan. (Photo: ARDC)

Harvest of hybrid WHM-1 maize. (Photo: ARDC)

This story is written by P.H. Zaidi of CIMMYT and Passang Wangmo and Tsheltrim Gyeltshen of the National Maize Program, ARDC Wengkhar, Bhutan.

Digital Press Briefing with U.S. Special Envoy for Global Food Security Dr. Cary Fowler, and USAID Global Food Crisis Coordinator Dina Esposito

Cary Fowler, Special Envoy for Global Food Security, and Dina Esposito, the United States Agency for International Development (USAID) Global Food Crisis Coordinator, discussed the US strategy for addressing the global food security crisis and their ongoing visit to Malawi and Zambia at a digital press briefing on January 19.

“We’ve recently supported a new project which will be operating in a number of countries, including Zambia and Malawi, that will be coordinated by the International Maize and Wheat Improvement Center, and by the International Institute of Tropical Agriculture,” said Fowler.

“They’ll be establishing innovation hubs where they’ll bring together the best and most appropriate technologies and information to help small-scale farmers with a whole variety of issues that they confront. This will give the farmers access, for example in Zambia, to drought-tolerant maize, which they’re really clamoring for. This is maize which, on a year-in and year-out basis, on average will yield about 30 percent more, rotated with legumes, which provide protein and also enrich the soil and reduce the need for fertilizer. But also other technologies and assistance in establishing markets for those products and lengthening out the value chain so that farmers are not just – and small businesses are not just dealing with raw commodities but are taking those commodities and making something more valuable and more useful to a broader population.”

Read the original article: Digital Press Briefing with U.S. Special Envoy for Global Food Security Dr. Cary Fowler, and USAID Global Food Crisis Coordinator Dina Esposito

‘Farmers now more aware about climate resilient agri’

A workshop in New Delhi on the Climate Resilient Agriculture (CRA) programme explored solar harvesting, carbon credit, crop residue management, climate resilient cultivars, millets and pulses in cropping systems, and maize drying and processing.

Arun Kumar Joshi from the Borlaug Institute for South Asia (BISA) highlighted the potential of the programme if more farmers embrace CRA technology.

New technologies and innovations are essential in helping farmers adapt to changing climate conditions and reduce reliance on greenhouse gases (GHG).

Read the original article: ‘Farmers now more aware about climate resilient agri’

CIMMYT-China workshop aims to facilitate future collaborations to battle climate change

Hybrid maize seed and ears of the Yunrui 88 variety, developed using CIMMYT and Chinese germplasm. It is high-yielding, resistant to important diseases, and drought tolerant, and farmers report that the ears can be stored for longer and are better for animal feed. It was released in 2009 and is now the most popular hybrid in the area. (Photo: Michelle DeFreese/CIMMYT)

The negative effects of climate change on food systems are felt across political boundaries, so creating sustainable remediation steps are best accomplished through global collaboration. In that spirit, the International Maize and Wheat Improvement Center (CIMMYT) and the Chinese Academy of Agricultural Sciences (CAAS) convened the China-CIMMYT Workshop on Climate Change & Food Crops Production on December 6, 2022.

Participants included principal investigators of China’s National Key Technology Research and Development Program, representatives of Chinese agricultural universities, CIMMYT scientists and representatives from a variety of international organizations. The agenda featured discussions regarding research priorities, efforts to establish best practices in classifying and prioritizing climate risks and identifying potential crucial points for future cooperation between CIMMYT and China.

After the welcome address from Wheat Breeder and Country Representative for China Zhongzhu He, Thomas Lumpkin, CIMMYT Director General Emeritus provided the introduction to global climate issues and their effects on agriculture, particularly staple crops like wheat.

“All climate change mitigation strategies must account for their effect on food production systems, the aim of this convening was to facilitate discussions among climate change scientists, crop breeders and agronomists,” said Lumpkin. “Global issues require global solutions and so collaboration among institutions is pivotal.”

Tek Sapkota, CIMMYT Agricultural Systems and Climate Change Scientist, presented a framework for quantifying GHG emissions and mitigation potential for food systems, key research objectives of the One CGIAR initiative MITIGATE+, an initiative aimed to reduce annual global food systems emissions by 7% by 2030.

Three other CIMMYT scientists presented at the workshop. Wei Xiong, Senior Scientist, Crop Modeler, focused on genotype-environment interactions and its implication on breeding. Urs Schulthess, Remote Sensing Scientist, presented state-of-the-art results on the effects of temperature and vapor pressure deficit on radiation use efficiency of wheat. Huihui Li, Scientist, Quantitative Geneticist, discussed expanding genome wide association mapping and genomic selection to include climatic factors, highlighting novel methods to bring genes and climate together to accelerate breeding cycles.

In the workshop’s closing remarks, Wei reiterated CIMMYT’s commitments to continued collaboration with Chinese institutions and outlined next steps, such as CIMMYT’s commitment to increasing global agricultural resilience via novel research, partnerships, and increased engagement. Wei also detailed methods to identify new mechanisms and funding channels to promote global cooperation, such as One CGIAR initiatives and funding from national partners, including the CAAS.

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

Partnership approach to maize development praised in new study

Using data from 1995-2015, an empirical study from the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), led by Vijesh Krishna, CIMMYT Lead Adoption – Impact Economist, has estimated the economic benefits of new varieties in 18 major maize-producing countries in sub-Saharan Africa.

Kevin Pixley, Deputy Director General for Research (Breeding and Genetics), a.i., and Director of the Genetic Resources Program, said, “This was not easy due to the challenges of gathering and analyzing complex data, but it’s a very important milestone for CIMMYT. Peer review in a highly respected journal is a gold standard that gives external critique and endorsement to the impact assessment methods used and estimates reported for CIMMYT and IITA’s work with partners in Africa.”

Around 60 percent of the 1,345 maize varieties released in this twenty-year period had a known CGIAR parentage.

Approximately 34 percent of the total maize area in 2015 was cultivated with CGIAR-related maize varieties from 1995 onwards, equivalent to 9.5 million hectares (ha); 13 percent of the maize area was under CGIAR-related varieties released before 1995.

The new maize varieties hold an economic benefit for the region, with an estimated value of US $1.1-1.6 billion in 2015 equally attributed to CGIAR, public-sector national research and extension programs, and private sector partners. With maximum annual investment in CGIAR maize breeding sitting at US $30 million, the estimated benefit-cost ratio for investment was between 12:1-17:1, depending on the underlying assumptions.

“This paper is a valuable contribution to literature on impact assessment, highlighting the real challenges and approaches to quantify impact of work that is a collaboration among many,” continued Pixley. “Both the methodologies and impact estimates will be valuable to researchers and funders of plant breeding programs.”

Read the study: Impact of CGIAR maize germplasm in Sub-Saharan Africa

Cover photo: Farmer Chana Filimoni harvesting maize in his field in Chakwawa village, Salima District, Malawi. (Photo: Peter Lowe/CIMMYT)

Analyzing 25 years of maize supply and demand in the Global South

Over the next 10 years, maize is due to become the most widely grown and traded crop globally and is already the cereal with the highest production volume. Its versatility offers multiple purposes – as a livestock feed in both developed and developing economies, as a key component of human diets in several low- and middle-income countries in sub-Saharan Africa, Latin America and Asia, and for an array of non-food uses worldwide.

To analyze the changes in the supply and demand for maize in the last 25 years, scientists at the International Maize and Wheat Improvement Center (CIMMYT) conducted a review of maize production, consumption, and international trade.

The study primarily focused on the Global South, where intensive work is being done to transform the agrifood systems in which maize plays a key role. Through scientific advancements over time, maize yields have increased, although heterogeneously, while the area under cultivation of maize has also expanded due to sharply growing demand.

Research determined that this transformation offers opportunities for investment in maize research and development (R&D) to determine ways that production and productivity can be significantly improved without expanding maize area or creating negative impacts on the environment.

Read the study: Global maize production, consumption and trade: trends and R&D implications

Cover photo: Maize diversity in Tlaxcala, Mexico. (Photo: Thomas Lumpkin/CIMMYT)

Achieving sufficiency and sustainability in maize production

The International Maize and Wheat Improvement Center (CIMMYT) Director General, Bram Govaerts, participated in a panel discussion on applied maize science to sustainably feed the world as part of the International Maize Congress on October 19-20, 2022 in Argentina. 

The congress was organized by the governments of Córdoba and of the Central Region provinces of Argentina, together with the Argentine Maize and Sorghum Association (MAIZAR) and the Córdoba Grain Exchange. 

Other panelists for the session included representatives from Argentina’s National Agricultural Technology Institute (INTA), the National Scientific and Technical Research Council (CONICET), and the National University of Mar del Plata. 

In his presentation, Govaerts highlighted CIMMYT’s scientific efforts to improve the resilience of grain-based systems and produce sufficient, nutritious, and sustainable diets. He also shared CIMMYT’s determination to adopt a collaborative and future-proof approach to research, factoring in climate change to support effective decision-making processes for food producers and to meet demand for innovations and technologies. 

Refresher webinar on fall armyworm management in South Asia

Banner for the refresher webinar on fall armyworm management in South Asia. (Photo: CIMMYT)

The fall armyworm is a destructive polyphagous pest that feeds on more than 300 crop species, with a particular appetite for maize. The pest was first reported in Asia in 2018 and has been spreading in the region since then, especially in maize-producing countries of South Asia.

Several campaigns on identifying and managing fall armyworm have been conducted in South Asia, yet the challenge to control the pest remains. The damage caused by fall armyworm to farmers’ fields was reported widely during the 2022 spring maize season in Pakistan and Nepal’s Terai region. Many maize farmers complained about the current economic downturn, price hike of agricultural commodities and the unavailability of safe pesticides to reduce crop losses.

On 21 July 2022, the International Maize and Wheat Improvement Center (CIMMYT) initiated a refresher webinar to share the latest scientific advances and best practices for identifying and managing fall armyworm in South Asia. The platform extended an opportunity for the participants to understand and learn about effective integrated pest management (IPM) approaches being practiced in the region. It also addressed the importance of enabling policies that are crucial to foster innovations to reduce crop yield loss and save the environment from hazardous effects of toxic pesticides.

The Nepal Seed and Fertilizer Project (NSAF) team, supported by the United States Agency for International Development (USAID) and implemented by CIMMYT, organized the virtual event in collaboration with Nepal’s Plant Quarantine and Pesticide Management Center, the Nepal Agricultural Research Council, Nepal’s National Maize Research Program, the Maize and Millet Research Institute in Pakistan, the University of Agriculture Faisalabad and CGIAR’s Plant Health Initiative.

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development and Jason Seuc, director of the Economic Growth Office at USAID Nepal, delivered their opening remarks during the inaugural session. The Secretary emphasized the use of safer methods, including but not limited to mass rearing and releasing of natural enemies of fall armyworm and the deployment of fall armyworm tolerant maize varieties.

“USAID will continue working with partners to advocate and promote IPM practices till the pest becomes of non-economic importance,” said Seuc.

BM Prasanna, director of CIMMYT’s Global Maize Program and OneCGIAR Plant Health Initiative lead emphasized the importance of IPM practices to manage the pest. Prasanna discussed the global efforts to control the pest and shared the progress of fall armyworm tolerant maize seeds which are being released and deployed by CIMMYT partners to help resource poor farmers, especially in Africa.

AbduRahman Beshir, NSAF’s seed systems lead, emphasized the importance of the event and acknowledged the participation of approximately 525 attendees from public and private research institutions, academicians, civil society, private sector, policy decision-makers, CGIAR centers and USAID Nepal. The webinar gathered attendees from 15 countries, including Nepal, India, Bangladesh, Pakistan, Thailand, Myanmar, Sri Lanka and China.

Experts from South Asia presented on a range of topics including the status of fall armyworm and its management in Nepal, Pakistan, Bangladesh and the Pacific Region, IPM practices and experience of using safe pesticides, breeding for native genetic resistance to fall armyworm, and biological control and push-pull strategies. The experts emphasized on the need for collective efforts to strengthen national and international coordination, favorable policies, deployment of fall armyworm tolerant maize varieties, and best response interventions to help farmers battle the fall armyworm and limit its spread.

Efforts to mitigate the impact of fall armyworm attacks are still ongoing. CIMMYT is continuously working to alert farmers and stakeholders on the IPM practices of fall armyworm in the region.

Elite maize seeds handed over to seed sector stakeholders in Nepal

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development hands-over diverse maize seed inbred lines acquired by CIMMYT to the National Agricultural Research Council. (Photo: Bandana Pradhan/CIMMYT)

Maize is Nepal’s second most important crop for food security. Although the country’s diverse ecology can support maize production throughout the year, maize seeds and other grains, are largely imported each year.

Access to quality maize seed is one of the issues. Almost 85% of Nepalese farmers are unable to access quality certified maize seeds leaving them vulnerable to lower productivity. Traditional seeds, for example, are often unable to withstand extreme weather conditions induced by climate change. Nepal also has low seed replacement rates — around 20% for major cereals, which means that over 80% of farmers are either recycling seeds or use substandard quality seeds for each cropping season.

Over the past four years, researchers from the International Maize and Wheat Improvement Center (CIMMYT), through Nepal Seed and Fertilizer (NSAF) project supported by the United States Agency for International Development (USAID), have been assisting the National Agricultural Research Council (NARC) and private seed company partners to test market ready and multiple stress tolerant hybrid and synthetic maize varieties at various locations across Nepal and evaluate their suitability for cultivation. These maize varieties have come from CIMMYT’s maize breeding hubs in Mexico, Zimbabwe, Colombia and India as well as the International Institute of Tropical Agriculture (IITA).

After over two years of testing and identifying the best performing varieties, Secretary of the Ministry of Agriculture and Livestock Development, Govinda Prasad Sharma handed over the seeds of selected maize varieties to NARC and seven partner seed companies for further testing, variety registration and seed scale up in Nepal. The handover ceremony took place on August 18, 2022 at the Quality Hybrid Seed Production and Seed Business Management International Training Workshop, which gathered together a diverse range of maize stakeholders from Nepal and South Asia.

These new high-performing, climate-resilient varieties will help Nepal increase their national maize yield, enhancing food security and livelihoods.

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development hands over diverse maize seed inbred lines acquired by CIMMYT to one of the private seed company partners of the NSAF project. (Photo: Bandana Pradhan/CIMMYT)

Nutritious and climate resilient

The maize seeds include varieties enriched with provitamin A and zinc, aflatoxin tolerant synthetics, white and yellow kernel hybrids, and sweet and popcorn maize varieties. As well as being good for nutrition, the seeds are high yielding. Synthetic varieties have the potential to yield 6-7 metric tons (t) per hectare, while the hybrid varieties may yield over 10t — a significant increase from 3-5t of local seeds.

Climate change resilience is a vital trait for modern crops. Climate change is posing a threat to crops, with traditional varieties often unable to withstand extreme weather conditions. Included in the handover were climate resilient, early maturing seeds which take less than 100 days to mature in the summer season, reducing their exposure to drought. Among the handed over seeds were varieties tolerant to fall armyworm — a devastating pest threatening maize production in Nepal.

Stress tolerant and high yielding varieties suitable for such extreme conditions are needed now more than ever to increase on-farm yield levels. Nepal also needs a vibrant last mile seed delivery system and mechanisms to support and serve under-reached populations, including women and smallholder farmers. Sharma acknowledged CIMMYT’s support in sharing these elite and diverse maize seeds, which will contribute towards the government’s efforts of self-sufficiency in major cereals including maize.

“USAID is pleased to be collaborating with both the Government of Nepal and private sector partners through the NSAF project to enhance maize production and productivity at the farmer level,” said Jason Seuc, director of the Economic Growth Office at USAID.

“Once the range of maize seeds become widely available in the market, these varieties will play a major role in enhancing the food and nutrition security to millions of farmers who use maize directly or indirectly in the food chain, especially for those living in the hills.”

The exclusive allocation of the new products to partners complements the project team’s efforts to support private seed companies who have recently acquired research and development licenses and can subsequently register varieties under their own brands.

“We are handing over not only seeds and technologies to our partners but also responsibility, so that these varieties can make it to the farmers’ field in the shortest time possible,” said AbduRahman Beshir, NSAF’s seed systems lead at CIMMYT.

This crucial initiation also supports Nepal’s efforts to compete with imports and promote self-sufficiency through the private sector-led hybrid seed industry. Ultimately, farmers will have better access to quality maize seeds and increase crop productivity and income.

Nestlé Mexico and CIMMYT expand their collaboration for responsible sourcing through Plan Maíz

Nestlé and CIMMYT executives at CIMMYT HQ. (Photo: Francisco Alarcón/CIMMYT)

In the framework of National Maize Day, Nestlé Mexico, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), strengthens its commitment to support the development of farmers in Mexico, through the Plan Maíz initiative, which aligned with the goals of the Sustainable Development Goals (SDGs), seeks to boost productivity, increase and improve the practices of regenerative agriculture to positively impact food security, environmental impact and social inclusion of the Mexican fields.

In Mexico, maize is not only a staple food, but also a fundamental component of the gastronomic and cultural heritage and identity of Mexicans. For this reason, since 2017, Nestlé Mexico and CIMMYT signed a collaboration agreement to work together and contribute not only to improve the quality of life of farmers, but also to take care of the resources that produce one of the most important grains for our country, for the world and for the agrifood sector.

The event, Plan Maíz, commitment to regenerative agriculture and sustainability, was attended by Bram Goavaerts, director general of CIMMYT, and Julieta Loaiza, Vice President of Communication and Corporate Affairs of Nestlé Mexico, as well as representatives and managers of both institutions, in order to present progress and ratify the agreements for the future, with the aim of continuing to combine resources and actions for the development of agriculture in Mexico.

“At Nestlé we are committed to the sustainability and development of the Mexican fields. We have more than 90 years of work, commitment and experience in this beautiful country, so we will expand our support for the development and training of farmers to improve their production processes through regenerative agricultural practices for the care of natural resources and food security in Mexico,” said Loaiza.

Govaerts said, “At CIMMYT we are very committed to maize and wheat producers in Mexico, so this Nestlé-CIMMYT alliance allows us to multiply the impact to protect and conserve Mexico’s agricultural resources and strengthen the food security of Mexicans.”

The results of Plan Maíz obtained to date are significant: 400 farmers have benefited by adopting sustainable practices for the production of both maize and wheat, since they attended training and demonstration events that promoted a more sustainable commercial production model.

Thanks to the agreement’s training, the volume of maize and wheat produced grew to a cumulative total volume of more than 193,000 tons of maize and 21,690 tons of wheat. The project impacted more than 9,000 hectares of maize and wheat. In total, and during eight productive cycles, the accumulated number of hectares impacted amounted to more than 19,000, where there is a record of at least the adoption of sustainable practices such as: integral fertility, integral and responsible management of fertilizers and phytosanitary products, among others.

Nestlé has aimed to achieve zero net emissions in its operations by 2050. In this regard, it focuses its efforts on acting on climate change by supporting and expanding regenerative agriculture. This means refining and growing agricultural sustainability programs in key commodities.

To achieve this, they are intensifying their commitment to farmers so that the solutions they create for and with them achieve a positive and sustainable change both in their agricultural processes and in the main raw materials. Therefore, the goal is for 20% of maize and wheat from Plan Maíz to come from regenerative agriculture practices by 2025 and 50% by 2030, thus continuing to build on the commitment to develop the full power of food to improve the quality of life, today and for future generations.

About Grupo Nestlé Mexico:

Nestlé is the world’s largest food and beverage company. It is present in 187 countries around the world, and its 300,000 employees are committed to Nestlé’s purpose of improving the quality of life and contributing to a healthier future. Nestlé offers a broad portfolio of products and services for people and their pets throughout their lives. Its more than 2,000 brands range from global icons to local favorites. The company’s performance is driven by its nutrition, health and wellness strategy. Nestlé is headquartered in the Swiss city of Vevey, where it was founded more than 150 years ago. With 90 years of presence in Mexico, Nestlé is also the leading Nutrition, Health and Wellness company in the country, with the support of 32 global Research Centers, 17 factories in 7 states and 16 distribution centers, where 13,000 jobs are generated. Visit: www.nestle.com.mx

About the International Maize and Wheat Improvement Center (CIMMYT):

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

Press contacts:

Nestlé Mexico: Norma Vázquez | norma.vazquez@mx.nestle.com

Hill+Knowlton Strategies: Aremi de la Cruz | aremi.delacruz@hkstrategies.com

Read this article in Spanish.

The world cannot ignore the global food crisis and its consequences

Climate change is an undoubted contributor to the global food crisis. Natural disasters and poor weather is leading to 193 million people facing acute food insecurity.

While food aid is vital, improving food systems and reducing reliance on food imports is the route to a long-term solution. In an article for the Des Moines Register, Cary Fowler, US government food security envoy, details the importance of developing reliable local production and well-functioning markets to support farmers.

The United States government’s Feed the Future initiative is addressing some of these challenges, such as by supporting the International Maize and Wheat Improvement Center (CIMMYT) to develop drought-tolerant maize, which is now planted on 17 million acres in Africa. This variety is making a significant difference to food security.

Read the article: Opinion: The world cannot ignore the global food crisis and its consequences

Tracking improved crop varieties

Participants of the IMAGE National Advisory Committee launch event in Ethiopia. (Credit: EIAR)

Coordinating the development and deployment of improved seed varieties is a complex task involving many stakeholders, including government agencies, public and private seed sector organizations, and ultimately, farmers and farmer groups. Cooperation among these groups is vital to assess and measure the impact of improved varieties and to guide decision making for future crop breeding efforts.

The Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) project, funded by the Bill & Melinda Gates Foundation and managed by Context Global Development, is a five-year program operating in Nigeria, Tanzania, and Ethiopia designed to increase the efficacy of variety deployment by establishing, institutionalizing, and scaling up routine monitoring of improved variety adoption and turnover using genotyping technologies, focusing on wheat, maize, teff, and the common bean.

The International Center for Maize and Wheat Improvement (CIMMYT), in collaboration with the Ethiopian Institute of Agricultural Research (EIAR), launched Ethiopia’s IMAGE National Advisory Committee (NAC) February 25, 2022, in Addis Ababa.

Feto Esemo, the Director General of the Ethiopian Institute of Agricultural Research (EIAR) officially opened the workshop.

Esemo underscored in his opening remarks the NAC’s mission to promote the application of DNA fingerprinting for an accurate assessment and understanding of the adoption of improved maize and wheat varieties by small-holder farmers in Ethiopia and resolve data discrepancy among researchers.

The NAC is the highest advisory body for IMAGE’s implementation in Ethiopia and comprises seven institutions: Ministry of Agriculture (MoA), Ministry of Planning and Development (MPD), Agricultural Transformation Institute (ATI), EIAR, Central Statistical Agency (CSA), Ethiopian Biodiversity Institute (BI), and the Ethiopian Biotechnology Institute (EBI).

Kindie Tesfaye, CIMMYT senior scientist, emphasized the application of DNA fingerprint data on maize and wheat in Ethiopia and summarized the IMAGE Project.

“IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization,” said Tesfaye.

He added the IMAGE Project provides the opportunity to leverage past monitoring pilots and cross-country lessons while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years.

National maize and wheat genotyping studies in Ethiopia proved the feasibility of using DNA fingerprinting for variety monitoring at scale and CIMMYT and EIAR presented the findings to seed system and policy stakeholders with an emphasis on demonstrating how varietal identity based on genotyping compares with farmers’ elicitation, the area-weighted average age of varieties, germplasm attribution, and varietal performance.

Chilot Yirga, Deputy Director-General, Capacity Building and Administration of EIAR, emphasized the functional and structural roles of the National Advisory Committee (NAC), Country Team (CT), and Technical Working Group (TWG) of the project in the country.

EIAR, the Holetta National Agricultural Biotechnology Research Center, CSA, and CIMMYT comprise the Country Team.

Yirga also briefed the participants on the details of the Committee’s mandate and indicated the roles of all stakeholders and policymakers, specifically in DNA fingerprinting.

The workshop concluded by electing a chairperson and vice-chairperson of the committee among its members and co-project leaders from CIMMYT and EIAR.