Skip to main content

Tag: maize

Building a sustainable hybrid seed market system in Nepal to enhance food security and farmers’ profitability: transforming the seed sector through local capacity development

Hybrid maize seed production field at Kailali district in Nepal (Photo:AbduRahman Beshir/CIMMYT)

Nepal, a Himalayan nation with substantial agricultural potential, has a maize seed market valued at over $100 million. Yet in 2023, only 15% of the national demand for quality maize seed was met. Historically, the country has relied heavily on imports to supply hybrid maize seeds, which account for approximately 15–20% of the cultivated maize area.

To address this challenge, CIMMYT, in collaboration with the Nepal Agricultural Research Council (NARC) and local private seed companies, has embarked on a transformative journey to strengthen domestic hybrid maize seed production and marketing systems. The results have been impressive: winter-season hybrid seed production has increased from just 4.5 metric tons in 2018 — when local hybrid seed efforts began — to 200 metric tons by 2023/24. This growth has been fueled by hybrid maize varieties developed by CIMMYT and released by NARC, which continue to drive this upward trend.

Manesh Patel, President of Asia and Pacific Seed Association (APSA), reflected on his experience on Nepal’s evolving seed industry during the recent International Seed Conference in Kathmandu: “About 10 or 12 years ago, I had the opportunity to interact with the seed stakeholders in Nepal. At that time, the seed sector was not viable, and the role of the private sector was minimal. Now, I am impressed to see such transformative initiatives in Nepal’s seed sector.”

Patel acknowledged the vital role of CIMMYT and other stakeholders, particularly under the Nepal Seed and Fertilizer Project (NSAF) in driving this transformation. The local seed companies have been instrumental in scaling hybrid seed production, by leveraging the technical, human, and institutional capacity development support provided by CIMMYT and partners.

Hybrid seed production hubs — a model to foster agile seed business

Under the NSAF project, CIMMYT partnered with ten Nepalese seed companies and farmers’ cooperatives to establish hybrid seed production hubs. Previously, companies operated in a fragmented and inefficient manner, resulting in elevated production costs. To address this, the project identified strategic production hubs where farmers could pool their land and produce seeds in an adjacent, coordinated seed production. The districts of Dang, Kapilvastu, and Kailali emerged as key hubs, now hosting at least six seed companies working collaboratively to streamline hybrid maize seed production.

Spearheaded by collaborative efforts between public and private stakeholders, these hubs are contributing to Nepal’s seed sector by centralizing resources, technology, and expertise. Since 2020/21, these hubs have served as key focal points for the production of quality hybrid seeds and for advancing improvements across the seed value chain. Notable outcomes of the model include:

  • Bringing breeders, agronomists, and technical experts together for knowledge transfer and streamlined seed multiplication which enhances efficiency.
  • Enhancing seed quality through centralized facilities, and land pooling, which reduces cross-contamination of the seed field and ensures rigorous quality control.
  • Reducing costs through centralized operations, which lowers production cost and makes hybrid seeds more affordable and accessible.
  • Strengthening the supply chain helps to enhance timely seed availability.

The Dang hub stands as a testament to the success of Nepal’s emerging hybrid seed production model. Between 2020/21 and 2023/24, the production area expanded by more than 300%, seed production rose by an impressive 1,450%, and farmer participation increased by 290%.

This extraordinary growth was made possible through a strong public-private ecosystem, including support from the Prime Minister Agriculture Modernization Project (PMAMP), which facilitated mechanization as seed companies scaled their operations. In 2023/24 alone, the hub produced enough hybrid maize seed to plant 10,000 hectares — yielding nearly $25 million in grain value that would otherwise have been met through costly imports.

Tripling farmers’ incomes and creating rural job opportunities

Nepal faces significant rural outmigration, as economic pressures and shifting aspirations drive many men and youth to seek opportunities elsewhere leading to depopulation and increasing abandonment of farmland. In their absence, women now comprise an estimated 60–70% of the rural workforce, often balancing farm labor with household responsibilities. Amid these challenges, the hybrid seed business model is proving transformative. By enabling farmers to generate higher returns from smaller plots and creating rural employment opportunities for both women and men, it offers a path to revitalizing rural livelihoods and strengthening local economies.

A women farmer engaged in detasseling operation of hybrid maize seed field at Kapilvastu district in Nepal (Photo: CIMMYT/Nepal)

Farmers like Ganesh Choudhary and Yuvraj Chaudhary exemplify this success. Ganesh transitioned from wheat farming to hybrid maize seed production at the Kailali hub under a contract with Unique Seed Company. In just one season, his income tripled, earning $1,980 compared to $660 from wheat on the same plot of land. Similarly, Yuvraj, working with Gorkha Seed Company at the Dang hub, earned $2,400 in his second year, three times more than his previous income—after receiving targeted training and technical support.

Additionally, key operations in hybrid seed production, such as detasseling and roughing, have created employment opportunities for rural women, who manage over 60% of these tasks. The financial security offered by buyback guarantees from the seed companies, combined with the efficiency of clustered land management, has provided farmers with a more sustainable pathway to improved livelihoods. This approach not only addresses economic challenges but also helps curb migration and empowers rural communities.

Maintaining the momentum

The modest beginnings of hybrid seed production are ushering in a new era for Nepal’s seed sector and represent a beacon of hope for its broader agricultural transformation. By effectively integrating seed companies, public research institutions, cooperatives, and government support, Nepal is poised to build a resilient seed market system — one that enhances farmer livelihoods and bolsters the national economy.

To sustain and consolidate these gains, continued collaboration and partnership among stakeholders is essential. Building on the strong foundation laid and maintaining momentum will require, among other efforts:

  • Policy support by the government to encourage hybrid seed production and provide necessary resources, particularly to hybrid seed startups.
  • Foster private sector engagement and strengthen partnerships with seed companies to ensure long-term market viability.
  • Institutional capacity building and investment in training programs for farmers, agronomists, and technical staff to maintain and enhance the quality of hybrid seeds.
  • Strengthening research and development, particularly to develop and deploy new hybrid varieties suited to diverse agro-ecological zones and market segments.
  • Enhance financial access to credit and insurance for seed companies, seed growers to mitigate risks and encourage investment.

The remarkable progress in hybrid seed production driven by coordinated public-private efforts marks a pivotal shift for Nepal’s agricultural future. Beyond reducing dependence on costly imports, this momentum is laying the foundation for a resilient, self-sufficient seed sector. It holds the promise of greater food security, increased farmer incomes, and long-term sustainability. With continued investment and collaboration, Nepal is not only transforming its seed systems but also empowering its rural communities and securing a more prosperous agricultural economy for generations to come.

Pairwise Licenses Gene Editing Tools to CIMMYT to Fast-Track Smallholder Farming Systems’ Transformation

Durham, N.C., and Texcoco, Mexico (June 12, 2025) – Pairwise has entered a landmark licensing agreement with the non-profit, international agricultural research organization CIMMYT to provide access to its Fulcrum™ gene editing platform, including the advanced SHARC™ CRISPR enzyme. This partnership will accelerate the development of improved crop varieties for smallholder farmers across 20 countries where CIMMYT implements integrated research and development initiatives.

CIMMYT, based in Mexico and operating in 88 countries, is a key member of the CGIAR network and a global leader in developing sustainable solutions for food and climate security. Under the license, CIMMYT and its National Agricultural Research Systems (NARS) partners will have access to Fulcrum tools in crops including maize, wheat, sorghum, and regionally important staples like pearl millet, finger millet, pigeon pea, and groundnut.

“Advanced breeding techniques replicate what happens in nature in a faster, more focused way. We’re excited to have access to a gene editing technology that allows us to not only develop new traits but also make these traits available to farmers who can benefit from them,” said Sarah Hearne, Chief Science and Innovation Officer at CIMMYT. “CIMMYT is committed to bringing new technologies to smallholder farmers in the Global South, which aims to enhance resilience and nutritional characteristics of crops and help develop livelihoods and communities. Fulcrum will speed up the delivery of the climate resilient varieties that farmers urgently need.”

The Fulcrum™ Platform includes Pairwise-developed gene editing tools for cutting, base editing, and templated editing a toolbox which enables not only turning a characteristic on or off but also tuning it— like a dimmer switch to tailor the trait and deliver the optimum phenotype.

“Our Fulcrum Platform was built to help scientists solve urgent, real-world challenges in agriculture,” said Ian Miller, Chief Operating Officer at Pairwise. “This agreement allows CIMMYT to use our powerful CRISPR tools to deliver real-world improvements for farmers facing food insecurity and climate pressure. We outlicense to organizations like CIMMYT because Pairwise believes this transformative technology should be broadly available to those working to improve agriculture for smallholder farmers.”

Gene editing enables precision improvements in crop yield, resilience, and nutrition that could be achieved through conventional breeding but were impractical due to time and cost restraints.  By making these powerful tools more accessible, this partnership accelerates impactful innovation in regions where food system improvements are most urgently needed. Through CIMMYT’s research network, these tools will be deployed in diverse environments, providing researchers with a flexible alternative for product development and a clear pathway to real-world impact.

About Pairwise
Pairwise is agriculture’s leading gene editing powerhouse, building a healthier world through partnership and plant innovation. Co-founded by the inventors of CRISPR, our Fulcrum™ Platform accelerates the development of climate-resilient, nutritious, and sustainable crops. As trusted partners to global industry leaders and nonprofit institutions, we help breeders move faster while transforming food and agriculture for farmers, consumers, and the planet. Founded in 2017 and based in Durham, NC, Pairwise is committed to delivering innovation that makes food easier to grow — and better to eat. For more information, visit www.pairwise.com.

About CIMMYT
CIMMYT is a cutting-edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.
www.cimmyt.org

 

CIMMYT Media Contact: Jelle Boone
Head of Communications, CIMMYT
Email: j.boone@cgiar.org
Mobile: +52 595 124 7241

Pairwise Media Contact:
Email: communications@pairwise.com

IMIC-Africa Field Day 2025: Where science meets collaboration to accelerate maize innovation in Africa

Regional partners in front of the CIMMYT maize lines displayed during field day. (CIMMYT)

Every year, public and private sector partners participate at The International Maize Improvement Consortium for Africa (IMIC-Africa) Field Day for Southern Africa, a unique event that seeks to transform the maize sector. The 2025 field day, hosted at the University of Zimbabwe farm on April 9th, brought together an eclectic blend of partners from seven African countries, including long-standing collaborators and new entrants such as AMAC Seeds and Grow Trade Seeds. Moving beyond just showcasing key achievements and new germplasm to partners, the field day fostered critical and meaningful discussions and experience sharing among partners, from lab to farm.

By offering access to both early- and advanced-generation maize lines, the event was a critical intersection point where public and private players align to tackle the continent’s most pressing agricultural challenges. In addition, members have the opportunity to test their pre-commercial hybrids through CIMMYT-led multi-location trials, ensuring that the products are carefully evaluated across diverse agroecologies and for essential traits such as drought tolerance, pest resistance and high yield potential. It also provides an avenue for suggesting improvements to the demonstrations, ranging from labelling.

We took time to get a clear perspective from CIMMYT scientists, private and public sector representatives.

Q: How important is the IMIC-Africa Field day in addressing maize sector challenges?

“Success of breeding programs is hinged on injection of new genetics that drive gains. Developing high value inbred and donor lines is an expensive process and platforms such as IMIC Africa help reduce product development costs in maize breeding programs of the partners and reduce time taken to deliver solutions to farmers,” emphasized Aparna Das, Senior Technical Program Manager for the Global Maize Program.

“It is rare to get an opportunity to observe and select hundreds of lines in one location as it offers each participant an opportunity to see the performance potential of each line at a glance” said James Gethi, southern Africa Seed Systems Specialist and IMIC Africa southern Africa coordinator.

Mainassara Zaman-Allah, CIMMYT’s Country Representative for Zimbabwe, reflected on the core strengths of the consortium, “It has been 8 years since the launch of the initiative, and one of the core strengths of IMIC-Africa is its inclusivity. Whether from a national agricultural research institution, maize seed company or international agricultural research organizations, IMIC-Africa opens its doors for all involved in maize breeding for the African market. This diversity enables us to leverage a broad range of expertise and resources, to articulate the challenges faced by African farmers.”

Q: What impact have the maize lines had on breeding programs?

“We have seen major improvements in the vigor of materials displayed that open a new frontier for single cross hybrid varieties development” commented Oswell Ndoro from AMAC seeds, a new member of IMIC Africa, signalling optimism for the future.

Walter Trevisan, consultant for Helix Seeds, praised CIMMYT’s Zimbabwe scientists for their collaborative support in selections, “Thank you very much for this outstanding work! We sure appreciate the help of the CIMMYT Zimbabwe scientists in helping us with this task.”

Davison Chaingeni from ARISS, formerly DR&SS Zimbabwe, echoed this, “We continue to see value in getting more DH-based lines. We hope the vigor translates to yield.”

 

 

 

 

 

 

 

 

 

Q: Take us through on what was on offer in the field, where science meets need and demand.

“An array of 624 CIMMYT maize lines were on display, which consisted of 614 new lines from 4 different product profiles providing insights into the performance of different materials. The materials span early-, intermediate, and late- maturity groups to nutritious maize breeding pipelines. A critical component of the field display was trait donor lines where 5 lines were on display for selection. The traits donor lines on display were for drought, drought & heat and Low N & MLN tolerance. This comprehensive showcase enabled seed companies and NARS partners to make informed selections, tailored to their breeding needs,” Gethi explained.

Development of provitamin A-enriched maize (PVA) addresses one of the emerging challenges in combating hidden hunger and animal feed. He further adds, “On display were 126 lines originating from the PVA-enriched maize breeding pipeline. The efforts underscore CIMMYT’s commitment to address regional nutritional needs through targeted breeding initiatives.”

 

IMIC-Africa lines on display showing differences in phenotype for exploitation by partners (CIMMYT)

Q: What improvements would partners like to see moving forward?

Amsal Tarekegne, head of breeding at Zamseed Seed Company, pointed to a practical bottleneck, “It is a challenge understanding the pedigree information provided in the field book due to its length.”

 

 

 

 

 

 

 

 

 

 

Yet, the road ahead still demands refinement.  Lubasi Sinyinda from Zambia Agricultural Research Institute (ZARI), one of the NARS partners in IMIC-Africa since its inception, noted, “I would like to see more fall armyworm (FAW) and heat-tolerant lines displayed.”

For new entrants like Petros Guveya of Grow Trade Seed company, navigating CIMMYT’s updated heterotic groupings was a challenge, underlining the need for improved orientation for first-time participants.

On the brighter side, Themba Mutuvira complimented the design of the fields by indicating they were easy to navigate through. “The fields were well labelled, and we had no challenges at all identifying the materials”

A living laboratory for Africa’s Maize future

The 2025 IMIC-Africa Field Day was not just an event, but a living laboratory of innovation, critique, and partnership. In the face of mounting climate pressures, pest threats, and nutritional gaps, such platforms offer a rare and invaluable opportunity for the maize breeding community to align, adapt, and accelerate. As IMIC-Africa evolves, the call from partners is clear: deepen inclusivity, enhance clarity, and continually refine the experience to ensure that each plot, each line translates into impact on the farm and food on the table. The future of Africa’s maize sector will be built not in silos, but in such collaborative spaces where science meets the lived realities of farmers and seed companies alike.

With Innovations, They Protect Maize Biodiversity

Rural women in Quintana Roo have been guardians of maize for generations. Today, with sustainable innovations and the support of technicians like Esmeralda Andrade, they are strengthening their role in food security and biodiversity conservation.

For generations, native maize has been at the heart of food systems and cultural identity in the Mayan communities of Quintana Roo. The women of these communities, heirs to the legacy of Mesoamerican societies that shaped native maize, have long selected and conserved seeds, ensuring the continuity of the varieties best adapted to their environments. In their hands, maize is not just a crop—it is a legacy.

Women from Quintana Roo during a workshop held as part of the project between the state government and CIMMYT (Photo: Yucatán Peninsula Hub)

Today, however, this legacy faces growing threats. High production costs, competition with less diverse farming systems, and increasing pressure from climate change are putting the biodiversity of native maize at risk. In response to these challenges, the Food and Nutritional Security for Rural Communities in the State of Quintana Roo project—promoted by the state government and CIMMYT—is working to strengthen agricultural productivity, seed conservation, and the sustainability of maize-based systems. At the center of these efforts are women.

In Quintana Roo, 74% of agricultural production units use native or criollo maize seeds, making the state a stronghold of maize biodiversity. However, data from INEGI’s 2022 Agricultural Census also reveal that only 17.9% of these units are headed by women. Despite their traditional role in conserving seeds, managing storage, and selling in local markets, the gender gap in agriculture remains significant.

To help close this gap, the project has prioritized training for women farmers—equipping them with scientific knowledge and technical tools to improve crop productivity and market access. These initiatives provide spaces for women to exchange seeds, learn improved agronomic practices, and build stronger support networks. Community seed houses and native maize multiplication plots have been established to support these efforts.

Esmeralda Andrade, one of the project’s technicians, promotes the integration of traditional knowledge with scientific approaches. “Many of our producers grow native maize, and use the lunar calendar to guide planting and management activities. They’ve also adopted innovations like optimal planting arrangements, seed treatment, and agroecological pest management,” says Esmeralda, highlighting how innovation can strengthen tradition.

Participants in one of the workshops to promote sustainable practices for the conservation of native maize (Photo: Yucatán Peninsula Hub)

This blend of knowledge strengthens food security and reduces the vulnerability of communities to climate change. “One of the key changes we’ve seen is that farmers now have a more sustainable outlook. They understand the importance of soil conservation and the quality of their agricultural products,” she adds.

The project has also been a platform for breaking down gender barriers in agriculture. As a female technician, Esmeralda has faced the challenge of working in communities where agricultural decisions have traditionally been made by men. “In the area where I work, due to customs and traditions, it is mostly men who attend meetings and workshops, so it can be difficult to engage with them,” she explains. However, the support of community leaders has been key to building trust and fostering inclusion.

Thanks to these efforts, more and more women producers are increasingly participating in decisions related to agricultural production and family food security. “The impact of women technicians is clear. Rural women are participating more in production activities and financial education. This fosters teamwork in rural households, where women are now making decisions—not just helping in the fields,” says Esmeralda.

The Food and Nutritional Security for Rural Communities in the State of Quintana Roo project not only aims to improve productivity and market access—it is also planting a seed of change in the role of women in agriculture. By providing them with tools to strengthen their role as guardians of maize, it is also enhancing their economic autonomy, community participation, and capacity to shape the future of agriculture in the region.

Producer during a grain moisture measurement activity (Photo: Yucatán Peninsula Hub)

“My message to other women interested in becoming technicians or leaders in the agri-food sector is: don’t forget your worth and your abilities. Believe in your value—and above all, know that you’re not alone. You are supported every step of the way. There’s still a long road ahead,” Esmeralda concludes.

With projects like this, the rural women of Quintana Roo are showing that the best way to ensure the future of maize is through training, organization, and empowerment. In their hands, the legacy of native maize will continue to flourish.

Shaping a CIMMYT maize program to serve at-risk farmers: A tribute to Ernest W. Sprague (1925-2025)

Photo caption: Ernest W. Sprague, director of CIMMYT’s maize program during 1970-1983 (Photo: CIMMYT)

Architect of CIMMYT maize research during the 1970s, Ernest W. Sprague pulled together a coherent global program from diverse regional and country initiatives in Latin America, Asia, and eastern Africa, building partnerships with national maize research programs to serve smallholder farmers.

On 25 February, Ernest W. Sprague, who served as Maize Program Director at CIMMYT from 1970 to 1983, passed away at the age of 100.

Sprague led the development and adoption of systematic approaches for breeding improved maize populations adapted to the tropics and subtropics, including the international testing of varieties and crosses at scale.

After leading the Inter-Asian Corn Program established by the Rockefeller Foundation in Thailand in 1966, Sprague joined CIMMYT, where he vigorously championed the role of open-pollinated maize varieties (OPVs) for smallholder farmers in rain-fed maize cropping areas. These farmers often faced diseases, pests, and drought and lacked access to or could not afford hybrid seed or large quantities of fertilizer.

OPVs generally yield less grain than maize hybrids but are often preferred by smallholders for their suitability in local foods. They can also be grown by saving and sowing seed from previous harvests without sacrificing yield or other qualities—a problem that arises when grain harvested from hybrids is replanted.

In Thailand, Sprague had witnessed a thriving maize sector powered by the widespread adoption of an improved OPV known as “Suwan 1.” Conversely, he believed that hybrid seed systems designed to serve small-scale farmers were lagging in many other countries where CIMMYT worked.

“From the late 1980s, CIMMYT has worked successfully to develop and share hundreds of maize inbred lines—parents for high-yielding hybrids that feature farmer-preferred traits—as well as supporting and partnering with competitive private seed sector companies that truly benefit smallholder maize farmers,” said Bram Govaerts, CIMMYT Director General. “Still, population improvement in the OPV breeding program under Sprague’s leadership clearly contributed to the success of CIMMYT’s hybrid research by increasing the average performance of lines extracted from those populations.”

In addition, much of CIMMYT’s research on hybrid breeding for tropical maize in the 1980s and 1990s was led by Surinder K. Vasal, an Indian maize scientist brought to CIMMYT by Sprague.

Vasal’s pre-biotech research, together with CIMMYT cereal chemist Evangelina Villegas, led to the development of quality protein maize (QPM), whose grain contains enhanced levels of two amino acids essential for human protein synthesis. This groundbreaking work—initiated by Sprague—was recognized with their joint reception of the 2000 World Food Prize.

Building up partners and partnerships

Sprague was a strong proponent of in-service training at CIMMYT headquarters in Mexico for young researchers from partner countries. These courses were formally organized and scaled up in the early 1970s as a major component of CIMMYT’s maize program. Participants worked for several months within the main breeding or production programs, usually in the lowland tropics of Mexico, gaining hands-on skills in the field through activities such as laying out on-farm trials, selecting germplasm, making crosses, and evaluating results. By 1982, the program had graduated 650 maize scientists from 61 countries. Many alumni rose to influential positions in national programs or the private sector, thereby strengthening regional cooperative maize research networks.

“Ernie was my boss when I first arrived as a postdoc to CIMMYT in 1976, and I was always amazed at his commitment to high-quality field work,” said Greg Edmeades, a maize physiologist whose research accomplishments included methods to select for drought tolerance in maize. “I will always remember Ernie as a friend and a great supporter of the task we faced in Ghana, where I worked as a maize agronomist and lived with my family during 1979–84. He thought often of the challenges that we as a family faced with frequent water and power cuts and generously provided support. I was always amazed at his stamina and his capacity to survive and keep fit and well on black coffee alone in the mornings and no major meal until evening.

“Sprague’s contributions to CIMMYT were significant. The setting up of the international testing system was his baby and a masterpiece in getting CIMMYT germplasm out to national programs. He elevated the status of national programs in all sorts of ways, not the least of which was training.”

The CIMMYT global community joins in remembering Ernie Sprague and extends heartfelt condolences to his family.

Colombia moves toward a more sustainable agriculture with the Hub methodology

In Colombia, the path towards a more sustainable and resilient agriculture is gaining unprecedented momentum. Thanks to the implementation of the Sustainable Agrifood Colombia project, various national and international institutions are collaborating to strengthen food security and agricultural productivity through technological innovations and knowledge management models. Among these collaborations is the Hub methodology, an innovation management model developed in Mexico by CIMMYT, in conjunction with various stakeholders, which is already being successfully replicated in Guatemala, Honduras, and several African countries.

Researchers from CIMMYT engage in dialogue with Colombian technicians and producers (Photo: Sustainable Agrifood Colombia)

The project, coordinated by the Bioversity & CIAT Alliance, has 18 strategic partners for its execution, among which Agrosavia, CIMMYT, and Fenalce contribute to the maize production system. The objective is to transform the Colombian agri-food sector through the adoption of sustainable agricultural technologies and the strengthening of collaboration networks among producers, researchers, and other key stakeholders.

To this end, pilot regions have been identified where the Hub methodology is implemented, promoting knowledge sharing, validation of innovative practices, and capacity building.

The project articulation meetings and field visits were held in Colombia’s main corn-producing regions: northern Valle del Cauca, Tolima, and Córdoba. During these visits, teams from the Bioversity & CIAT Alliance, AGROSAVIA, Fenalce, and CIMMYT evaluated production conditions, identified strengths and areas of opportunity, and designed strategies for consolidating the innovation territories.

One of the most significant results of these evaluations was the definition of a training plan for producers, researchers, and technicians. This plan, which has already taken its first steps, seeks to provide local stakeholders with tools to improve maize crop yields through sustainable agronomic practices, pest management, and seed conservation.

In November, three workshops were held in different regions of the country. The first two were held in La Unión, Valle del Cauca, and in Montería, Córdoba, with the aim of identifying and involving key stakeholders in the maize production system. The third, held in Vereda Nueva Platanera, Tierralta, Córdoba, focused on seed production and conservation for small producers. Based on these events, a mapping of actors was carried out in order to analyze the interactions within the maize production network. This exercise made it possible to evaluate the degree of innovation adopted by farmers and the influence of different actors, such as technicians, companies, universities, and government institutions, in the dissemination of knowledge and the adoption of sustainable technologies.

The results of these workshops have been encouraging. To date, 220 people have been trained on key issues such as pest management (particularly Dalbulus maydis, which has recently been a serious problem), seed production and conservation, and climate change adaptation strategies. In addition, stakeholder mapping has facilitated the identification of opportunities to strengthen collaborative networks and promote the adoption of innovations in the production system.

One of the key lessons learned has been the importance of constant monitoring in the implementation of sustainable management strategies. Workshop participants have highlighted the need to generate training spaces from the initial stages of cultivation, including the preparation of plots for planting, to maximize the benefits of sustainable practices.

The Hub approach, which has proven to be an effective model in Mexico and other countries, is making significant progress in Colombia. By connecting the actors in the maize value chain, facilitating the generation and socialization of knowledge, and driving innovation from the local level, this methodology represents a comprehensive solution to address the country’s agricultural challenges.

With the coordinated work of institutions, producers, and scientists, Colombia is laying the foundations for a more resilient and competitive agri-food sector. CIMMYT’s experience in implementing the Hub methodology in different regions of the world is an example of how science, innovation, and collaboration can transform the future of Colombian agriculture.

Zimbabwean farmers face crop-munching armyworm after drought

Zimbabwean farmers are facing severe crop losses due to the combined impacts of climate change, drought, and fall armyworm infestations, threatening food security and livelihoods. CIMMYT’s expertise in climate-smart agriculture is crucial in tackling these challenges, as highlighted by Dr. Christian Thierfelder, who emphasizes sustainable pest management strategies such as intercropping, regenerative farming, and biological control methods. These approaches not only reduce reliance on pesticides but also enhance resilience against climate-driven pest outbreaks. With maize yields at risk, integrating CIMMYT’s research-driven solutions can help smallholder farmers adapt, ensuring more sustainable and productive farming systems in Zimbabwe and across sub-Saharan Africa.

Read the full story.

How more inclusive maize breeding can yield better outcomes for women farmers in Zimbabwe

Farmers in Zaka with their recent harvest of drought tolerant maize (Photo: CIMMYT)

In Zimbabwe, CGIAR, through CIMMYT, runs a maize breeding program to strengthen food security and livelihoods in a country where maize is a staple crop. The program spans diverse testing plots – managed exclusively by men, women, or both – providing crucial insights into real-world farm dynamics. A significant component of our work is the extensive on-farm trials conducted across various regions, helping us understand how men and women farmers interact with and benefit from new maize varieties. Here are two ways we ensure that women-managed plots reap the same benefits as those led by men in Zimbabwe.

Increasing Women’s Representation in Crop Breeding Trials

In many developing economies, women tend to have limited access to fertilizers, leading to lower soil fertility and faster land degradation.

At the same time, although men and women may express similar preferences for improved maize varieties, when faced with the same options, women tend to grow varieties that better meet their specific needs – requiring less fertilizer, for example.

This dichotomy highlights the importance of on-farm trials in the crop development process, as they provide insights into the diverse needs and realities of different farmer groups.

Zimbabwe’s maize breeding program has expanded on-farm trials significantly over the past few years, by over five-fold. However, women-managed plots are often underrepresented in participatory approaches. Research from Kenya also showed that trial participants are often wealthier and more educated, benefiting from stronger access to information and agricultural networks.

Training to Ensure Inclusive Farmer Representation

CGIAR and CIMMYT often rely on partners with direct connections to farming communities to select host farmers for breeding trials. Recognizing the risk of bias and underrepresentation of women farmers in this process, we designed a training program for extension officers to ensure a more representative selection of women farmers from different socioeconomic backgrounds in the country.

Without intentional representation, trial results may skew toward wealthier, male-managed farms – limiting their relevance for the broader farming population. In addition, in Zimbabwe, women-managed households are not a homogeneous group. Our research identified two distinct categories, each with unique challenges and needs. One group was wealthier in terms of agricultural assets and livestock, with a greater area under maize production. The second group of women-managed households was more resource-poor, with smaller livestock herds and greater use of intercropping within maize fields.

Using data from a survey of over 2,000 farmers, we worked to validate farmer selection processes, ensuring that women farmers were accurately represented. Today, this training is conducted annually and has become a key component of our program’s approach.

For too long, on-farm trials did not adequately reflect the diversity of farming realities. Through this gender-sensitive approach, we are now able to fine-tune recruitment methodologies to account for socioeconomic disparities. By ensuring that all groups are included in trials, we can develop and promote maize varieties that truly serve the diverse realities of Zimbabwean farming households.

Farmer in Murehwa District with her drought tolerant maize variety (Photo: Jill Cairns/CIMMYT

Incorporating Gender and Social Considerations into the Testing of Novel Genetic Technologies

In hybrid maize seed production, both male and female plants are planted side by side to facilitate controlled pollination. A critical step in this process is detasseling – the removal of male flowers (tassels) from the female plants to prevent self-pollination. If detasseling is not done correctly, the resulting seeds will not express hybrid vigor, ultimately affecting yield and performance.

This process presents two major challenges. Incomplete detasseling can result in hybrid purity issues that can lead production fields to either being rejected or farmers unknowingly paying for lower-quality seed that impacts productivity. Accidental leaf loss during the detasseling process also reduces female seed yields by approximately 14%.

To address these challenges, a Gates Foundation-funded project we implemented has explored ways to simplify the process of hybrid maize seed production by removing the need to detassel through a novel genetic technology. This technology also had a clear benefit for women farmers.

Why This Matters and How to Scale the Innovation

Although seed production involves multiple steps, this innovation has direct benefits, especially in resource-limited settings. Since only 50% of plants produce pollen, this approach optimizes yield—particularly under low-nitrogen conditions, where many smallholder farmers struggle. The technology is adaptable across different maize varieties, making it a scalable solution.

Ultimately, women farmers, who tend to manage smaller plots with fewer resources, stand to gain from improved seed access and yield stability.

To validate this approach, we conducted station trials, followed by on-farm testing. These trials are helping us understand how both men and women farmers adopt and benefit from these varieties, particularly in drought-prone areas, where women are more likely to recycle seeds.

With the knowledge that in drought-prone years women were more likely to recycle hybrid seed, we refined our testing strategy to evaluate potential yield benefits if recycled. We found the technology provided a small, yet significant yield benefit should a farmer choose to recycle hybrid maize seed in an anticipated drought season.

Our approach provides insights into how gender and social inclusion considerations can be incorporated into breeding testing strategies. By evaluating variety performance across real-world farm conditions and gathering insights to refine and optimize future breeding efforts, new varieties will meet the needs of men and women farmers in Zimbabwe.

Conclusion

When promoting the adoption of new maize varieties and technologies, gender is one factor among many that shape adoption. Early- and late-stage on-farm trials are essential in bridging the gap between scientific innovation and real-world impact, ensuring that the varieties we develop are not only high-performing in research settings but also practical, accessible, and beneficial for all farmers.

To achieve this, a transdisciplinary approach is key. Integrating social scientists into breeding and development strategies provides deeper insights into how different farming groups interact with new technologies. By refining our selection process, testing, and deployment, we can ensure that both women- and men-managed farms benefit equitably, ultimately driving food security and better livelihoods.

Farmer Tariro from Gokwe South prepares maize for milling (Photo: CIMMYT)

Resources: 

  • Snapp, Sieglinde. (2002). Quantifying Farmer Evaluation of Technologies: The Mother and Baby Trial Design. 

*** 

Written with Julie Puech, Breeding for Tomorrow and Accelerated Breeding.

Main image: Farmers in Zaka with their recent harvest of drought tolerant maize.

Photo credit: CIMMYT.

We express our gratitude to the CGIAR research funders for their invaluable contributions to the CGIAR Trust Fund. 

Tecnologico De Monterrey Develops Nutraceutical Corn to Address the Global Food Crisis and Improve Health

CIMMYT collaborated with Tecnologico de Monterrey’s FEMSA Biotechnology Center in the development and validation of nutraceutical corn. By leveraging Mexico’s maize diversity through the world’s largest germplasm bank, CIMMYT contributed expertise in crossbreeding to help incorporate traits such as higher protein, fatty acids, and antioxidants, supporting advancements in food security and sustainable agriculture.

Read the full story.

Four New CIMMYT maize hybrids available from LATAM Breeding Program

CIMMYT is happy to announce four new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM22LAPP1A-10 Intermediate maturing, white, high yielding, and resistant to TSC, MLB and Ear rots Lowland tropics
CIM22LAPP1A-11
CIM22LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM22LAPP2A-28 Intermediate-maturing, white, high-yielding, and resistance to GLS and Ear rots. Mid-altitudes/

Spring-Summer season

 

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 31st, 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the LT23-STG5-THW, LT23-STG5-THY, and 01-23MASTCHSTW Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

 

Five New CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce five new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM23SAPP1A-02 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM23SAPP1A-11
CIM23SAPP1B-02 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22NUVA-75 Across maturity groups, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CIM23NUVA-13

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2021/22, 2022/23, and 2023/24 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline for submitting applications to be considered during the first round of allocations is 10 January 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023/24 Southern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored especially for smallholder farmers in stress-prone agroecologies of Southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

 

APPLY FOR A LICENSE

 

 

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

Prof. Jianbing Yan, Former CIMMYT maize scientist, appointed as the new President of Huazhong Agricultural University, China

Huazhong agricultural university (Photo: Wallhere)

Prof. Jianbing Yan, a former maize scientist at CIMMYT, has been appointed as the President of Huazhong Agricultural University (HZAU) in Wuhan, China on 20th August 2024. Jianbing was part of the CIMMYT family working on maize genetics and molecular breeding from 2006 to 2011. He worked as a Joint Post-Doctoral Associate between CIMMYT and Cornell University from October 2006 to September 2008, as an Associate Scientist from October 2008 to August 2009, and as a Scientist from September 2009 to March 2011. Due to his excellent work on Provitamin A biofortification in maize grain, Jianbing received the Japan International Award for Yong Agricultural Researchers in 2010, and the DuPont Young Professor Award in 2011. He also received the Outstanding CIMMYT Alumnus Award in 2014.

Jianbing joined HZAU as a full professor in April 2011. He served as the Vice Dean of the College of Life Science and Technology of HZAU from 2013 to 2017, as the Dean of the College of Plant Science and Technology of HZAU from 2017 to 2020, and as the Vice President of HZAU from 2019 to 2024.

Prof. Jianbing Yan

Jianbing is renowned in the research areas of maize genetics, genomics, and big data-driven breeding. He was the winner of the 2022 L. Stadler Mid-Career Award from the Maize Genetics Cooperation; the award is given to an outstanding maize scientist who has been in a permanent position for between nine and 20 years and has an outstanding track record of discovery research in maize genetics. Jianbing also received multiple national awards, including the National Natural Science Foundation for Excellent Youth in 2012, the National Youth Top-notch Talent Support Program in 2013, the National Science Fund for Distinguished Young Scholars and the Chair Professor of Cheung Kong Scholars Programme in 2015, etc.

Huazhong Agricultural University is recognized as a first-class agricultural university worldwide. It has a total of 14 disciplines listed as the Top 1% of ESI (Essential Science Indicators), including Plant & Animal Science, and Agricultural Sciences. HZAU and CIMMYT jointly hosted a webinar on Intelligent Agriculture in 2020. CIMMYT is one of the four funder institutes for the Global Food Security Association for Young Scientists hosted by HZAU, which was officially launched in December 2022 to connect young scientists around the world, working in the fields of food security. The 1st and 2nd Global Food Security Forums for Young Scientists were co-organized by HZAU and CIMMYT in Wuhan in 2022 and 2023, respectively, to inspire future generations of scientists to communicate and exchange ideas on cutting-edge agricultural research. Dr B.M. Prasanna, Director of CIMMYT Global Maize Program, CIMMYT, has been serving as the member of the International Advisory Committee of HZAU since 2022.

CIMMYT looks forward to building strong partnerships with HZAU in strategic and applied research of crop improvement, sustainable agrifood systems, and capacity building of next-generation agricultural researchers.

 

Enhancing farmer’s crop productivity with resilient maize varieties tailored to their needs

Dorothy Mandaza, local farmer from ward 19 of Seke District, inspecting her maize cobs (CIMMYT)

Maize productivity in eastern and southern Africa faces numerous challenges, including biotic and abiotic stresses, as well as socio-economic factors. To tackle these constraints, CIMMYT, in collaboration with partners, has been developing elite multiple stress-tolerant maize hybrids for different market segments. The hybrids are rigorously evaluated in research stations under managed stresses, especially those faced by farmers, including drought, heat, and low nitrogen. The process is complemented with evaluations conducted in actual farmer conditions through a participatory approach, which enables researchers to identify traits preferred by farmers.

Over the years, and through consistent engagement with farming communities, CIMMYT and partners have established a large on-farm testing network to allow farmers to test the best-performing hybrids within their own fields and management. This ensures that new varieties selected for commercialization suit the needs, constraints, and priorities of smallholder farmers.

Centrality of ROFT in the variety development process
Regional on-farm trials (ROFTs) are a crucial step towards maximizing the impact of breeding investments. ROFTs help scientists understand the performance of pipeline hybrids under diverse management conditions. The data and insights gathered from these trials, led by district leads, are instrumental in identifying the best varieties to release. In Zimbabwe, the extensive on-farm testing is conducted with support from Zimbabwe’s government extension arm, the Department of Agricultural, Technical, and Extension Services (Agritex), and selected seed companies.

To help track the progress or challenges in varietal performance evaluation at the farm level, CIMMYT has been convening feedback sessions with district agriculture extension officers (DAEOs) across 19 districts. These sessions have been instrumental in strengthening the collaboration with Agritex, standardizing data collection, and improving data quality and returns from the established on-farm testing network.

Conversations with district agriculture extension officers in Harare during a feedback session. (Photo/CIMMYT)

The ROFT trials have been ongoing in Zimbabwe for over a decade across 19 districts, located in natural regions I, II, and III. These trials have been implemented by more than 137 AEOs and have involved over 1,000 farmers. The network deliberately included a diverse range of farmers, with around 40% being female plot managers, to encompass a wide range of smallholder farming practices.

Participatory engagement is key
Every year, CIMMYT produces improved varieties that are then taken up by partners, including National Agricultural Research System (NARS) partners and seed companies. The on-farm trials aim to generate agronomic performance data in comparison to the widely grown commercial varieties and farmers’ own varieties. This data is used for a rigorous advancement process, where varieties that pass the test are then furthered for licensing and possible commercialization by CIMMYT’s partners.

Farmer involvement at the final stage of the variety selection process is key to the success of these trials. Farmers evaluate the varieties based on their specific needs, on their farms. This step is crucial as it empowers farmers to have a say in the variety development process. CIMMYT actively uses this participatory selection approach, seeking input from farmers and refining breeding targets as necessary. Farmers communicate their preferences and feedback through the farmer evaluation sheets, helping breeders fine-tune their targets and develop varieties that meet farmers’ needs.

Another key element of the on-farm trials is that they help assess breeding progress in farmers’ fields in terms of crop productivity and return on investment.

Intercropping

The Intercropping project aims to identify options for smallholder farmers to sustainably intensify wide-row crop production through the addition of short-duration, high-value intercrop species and to help farmers increase their productivity, profitability and nutrition security while mitigating against climate change.

The focus is on intensification of wide-row planted crops: dry (rabi) season maize in Bangladesh, eastern India (Bihar and West Bengal states) and Bhutan, and sugarcane in central north India (Uttar Pradesh state). The primary focus is to sustainably improve cropping system productivity, however, the effects of wide-row, additive intercropping at the smallholder farm level will be considered, including potential food and nutrition benefits for the household.

There are many potential benefits of wide-row, additive intercropping, beyond increased cropping system productivity and profitability: water-, labor- and energy-use efficiencies; improved nutrition and food security for rural households; empowerment for women; and (over the longer term) increased soil health.

Little research has been conducted to date into wide-row, additive intercropping (as distinct from traditional replacement intercropping) in South Asian agroecologies. To successfully and sustainably integrate wide-row, additive intercropping into farmers’ cropping systems a range of challenges must be resolved, including optimal agronomic management and crop geometry, household- and farm-scale implications, and potential off-farm bottlenecks.

This project aims to identify practical methods to overcome these challenges for farming households in Bangladesh, Bhutan and India. Focusing on existing wide-row field crop production systems, the project aims to enable farmers to increase their cropping system productivity sustainably and in a manner that requires relatively few additional inputs.

Project activities and expected outcomes:

  • Evaluating farming households’ initial perspectives on wide-row, additive intercropping.
  • Conducting on station replicated field trials into wide-row, additive intercropping, focusing on those aspects of agronomic research difficult or unethical to undertake on farms.
  • Conducting on farm replicated field trials into wide-row, additive intercropping.
  • Determining how wide-row, additive intercropping could empower women. Quantify the long-term benefits, risks and trade-offs of wide-row, additive intercropping.
  • Describing key value/supply chains for wide-row, additive intercropping. Determine pathways to scale research to maximize impact.
  • Quantifying changes in household dry season nutrition for households representative of key typologies in each agroecological zone.