Skip to main content

Tag: maize

In Ethiopia, workshop brings together stakeholders on climate risk analysis outputs

CIMMYT and the Global Center on Adaptation, along with the Ethiopian Ministry of Agriculture’s Food Systems Resilience Program (FSRP), presented the results of their joint research on climate risks during a two-day workshop held in October in Addis Ababa.

Participants of the workshop in Addis Ababa (Photo: CIMMYT).

For over a year and a half, agricultural experts, academics and scientists worked together under the project Digital Climate Advisory Services for Priority Agricultural Value Chains in Ethiopia, which aimed to analyze the risks posed by climate change on five value chains – wheat, maize, coffee, soybean and livestock – and to offer practical adaptation options. CIMMYT conducted the studies in collaboration with the Ministry of Agriculture and with the sponsorship of GCA. The workshop was attended by experts from the Ministry of Agriculture, the Ethiopian Institute of Agricultural Research, the Ethiopian Metrology Agency, the Ethiopian Agricultural Transformation Institute, the Food and Agriculture Organization (FAO), the Green Agro Solutions, among other organizations.

From research outcomes to practical solutions

As a prelude to the two-day discussion, CIMMYT senior scientist, Kindie Tesfaye, expressed his hopes that the research findings will be translated into practical solutions in the field. In turn, GCA Food Security senior program officer Mercy Nyambura invited the guests to share their insights, knowledge and expertise on how the joint research outputs could be put to use.

Highlighting that climate variability and climate extreme events are the main two factors undermining food security in Ethiopia, Keberu Belayneh, FSRP’s head at the Ministry of Agriculture, underlined the need for multi-partnerships to respond and adapt to climate change. He farther shared his hope that the program will contribute to the government’s ongoing efforts to ensure food security in the country.

Offering the perspective of a private sector actor, Green Agro Solutions’ executive director Abrhame Endrias hailed the partnership between his company and CIMMYT in five districts where the company deployed its digital platform LERSHA – “for agriculture” in Amharic. LERSHA provides farmers with vital weather forecasts, as well as other services such as farm inputs, mechanization services, and agro-climate advice. In addition, development agents are bridging the literacy gap between the farmers and the digital services, added Abrhame Endrias. In the five districts where CIMMYT and Green Agro Solutions partnered, LERSHA ‘s adoption rates increased, Abrhame Endrias noted.

Vibrant discussions

The results on the five value chains were presented in five different sessions. The first day of the workshop, Debre Markos University’s Dereje Ademe communicated the findings of the studies on the maize and soybean value chains, while  Abate Mekuriaw, associate professor at the Addis Ababa University, introduced the results on the wheat value chain. They were followed on the second day by  Adama Ndour and Mekdes Woldegiorgis, post-doctoral researchers at CIMMYT-Ethiopia, who discussed with the audience their findings on the current and future climate risks for the coffee and cattle value chains.

Echoing Kindie Tesfaye and Mercy Nyambura’s call, the conversations mainly focused on the potential implementation of the research outcomes, with multiple participants voicing their wishes to see the outputs cascading down to district levels.

Keberu Abayneh, the head of the FSRP in the Ministry of Agriculture, gave a closing remark at the end of the workshop thanking CIMMYT, the technical team that carried out the studies, the Ministry of Agriculture and all stakeholders who took part in it.

Following this, the first Regional Climate Risk Analysis Output Communication Workshop was held in Adama, Ethiopia, from November 13-14, 2023.

As highlighted in the first workshop, the research findings needed to be cascaded down to the regional and district level in order to be implemented successfully. To this end, the second workshop brought together the main representatives from regional agricultural offices in the 11 regional states, who engaged in discussions around the research findings, recommendations, and implementation methods. Researchers, agricultural experts, and representatives from the Ministry of Agriculture, Green Agro Solution, CIMMYT and FSRP also took part in the discussions.

Participants of the workshop in Adama (Photo: CIMMYT).

This workshop, held with the aim of engaging participants from 11 regional states in active discussions and gathering feedbacks, is believed to lay the groundwork for cascading down the research results for implementation.

When representatives from regional states presented on their respective areas, they found more common points than differences. Climate change risk on each of the five value chains is felt across Ethiopia due to extremes and variances in rainfall and temperatures, and many regions are shifting cultivating seasons, forwarded by up to three months because of late-onset of rainfall. These incidents are forcing farmers to change conventional cultivation patterns, with those who stick to the conventional schedule at risk of losing their yields. Some farmers have even changed the types of crops they grow as a result.

Participants noted that the recommended adaptation plans are commendable and implementable in their respective areas, with the proper guidance and resources. In order to ensure tangible impact, they asked for the research documents on the priority value chains to be communicated to a wider range of stakeholders in each regional state.

Creating awareness on the climate risk and the adaptation plans, building capacity to ensure the implementation, piloting and then scaling up implementation across the regional states with consistent monitoring and evaluation can bring effective results, stakeholders agreed.

 

Nepal maize farmers share vision of a more profitable future with visiting agriculture officials

In a visit to 5 model sites for maize marketing in midwestern Nepal, 30 federal, provincial and local agricultural authorities were impressed with the coordination and capacity development among market actors, improved supply chain management and leveraging of government support, all of which are benefiting farmers and grain buyers.

Following visits to commercial maize fields and hearing stakeholders’ perceptions of progress and key lessons, the authorities proposed additional funding for irrigation, machinery, grain grading and crop insurance, among other support, and promised to help expand activities of the model sites, which were established as part of the Nepal Seed and Fertilizer (NSAF) project.

Led by CIMMYT with funding from the United States Agency for International Development (USAID) and in its second-last year of operation, the project is working to raise crop productivity, incomes and household food and nutrition security across 20 districts of Nepal, including 5 that were severely affected by the catastrophic 2015 earthquake and aftershocks which killed nearly 9,000 and left hundreds of thousands homeless.

Participants at Sarswoti Khadya Trader, Kohalpur, Banke. (Photo: CIMMYT)

The visitors included officials and experts from the Ministry of Agriculture and Livestock Development (MoALD); the Department of Agriculture (DoA); the Ministry of Land Management, Agriculture and Cooperatives (MoLMAC); the Agriculture Development Directorates (ADD) for Lumbini and Sudurpaschim provinces; the Agriculture Knowledge Centres (AKC) of Banke, Kailali, Kanchanpur, Dang, and Kapilvastu districts; the Prime Minister Agriculture Modernization Project (PMAMP) offices of Dang and Bardiya; and the National Maize Research Program; the Department of Livestock Services; along with NSAF project team members.

The participants interacted with farmers, cooperative leaders, traders, rural municipality officials and elected representatives, and feed mill representatives. Sharing their experiences of behavioral change in maize production, farmers emphasized the benefits of their strengthened relationships with grain buyers and their dreams to expand spring maize cultivation.

Shanta Karki, deputy director the General of Department of the DoA lauded CIMMYT efforts for agriculture growth, improved soil fertility and sustainable agriculture development through NSAF.

Madan Singh Dhami, secretary, MoLMAC in Sudurpaschim Province, emphasized the importance of irrigation, building farmers’ capacities and interactions with buyers, and applying digital innovations to catalyze extension.

CIMMYT scientists have been based in CIMMYT’s office in Nepal and worked with Nepali colleagues for more than three decades to boost the productivity, profitability and ecological efficiency of maize- and wheat-based cropping systems and thus improve rural communities’ food security and livelihoods.

Fall armyworm research, development and extension for horticulture

Breeding for fall armyworm resistance in maize: an update from CIMMYT

Staff from the Queensland Department of Agriculture and Fisheries (DAF)Agriculture VictoriaFood and Fibre Gippsland, and Bowen Gumlu Growers Association joined B.M. Prasanna (Maize Program Director at CIMMYT & CGIAR Plant Health Initiative Lead) on 19th October 2023 to learn about CIMMYT’s efforts and experiences with fall armyworm management at the global scale, and to build partnerships between CIMMYT and Australian institutions for future collaboration on plant health management.

At the online meeting, Prasanna shared CIMMYT’s research and development on FAW management in maize, including breeding for insect-pest resistance, screening maize germplasm against FAW under artificial infestation, and collaborative approaches on integrated pest management of FAW.

Key points from the discussion:

  • Collaborative efforts are important in managing FAW, and international R&D collaboration is as important as country-level research efforts.
  • CIMMYT has made significant progress in breeding FAW-tolerant maize hybrids (with native genetic resistance); three such hybrids have been released by national partners in Kenya, Zambia, Malawi, South Sudan, and Ghana, and several more countries in Africa are in the pipeline for release and deployment of these hybrids.
  • Insect resistance management is critical wherever Bt maize varieties have been already released or in the process of release.
  • Both conventionally derived and Bt-based resistant maize varieties have their own importance in FAW management.
  • Need to intensify breeding activities for developing elite maize germplasm with FAW resistance together with other important traits, and fast-track deployment of FAW-tolerant elite maize hybrids.
  • Possible to achieve synergies between host plant resistance and other IPM approaches for sustainable management of FAW.
  • Researchers interested in accessing germplasm from CIMMYT’s breeding program can source through a standard material transfer agreement.

Dr Prasanna responded to several queries from the participants of the meeting. Australian researchers and CIMMYT showed interest in further research collaboration. Dr Ramesh Raj Puri, DAF Extension Officer, facilitated the meeting.

Integrating gender into crop breeding

The Seed Production Technology for Africa (SPTA) project, led by CIMMYT, has been selected by the CGIAR Gender Impact Platform as a successful case study of integrating gender into crop breeding.

The case study, published in Frontiers in Sociology, is one of fourteen that the CGIAR Genetic Innovation Gender strategy is drawing on to showcase lessons learned from practical experience. These case studies form a critical part of the efforts to pursue gender responsive or gender-intentional breeding and explore how these can inform larger breeding pipelines.

Maize is widely grown by both women and men in Africa. Evidence of gender-differentiated preferences for maize varieties remains inconclusive; however, there is evidence of gendered differences in management practices. Hybrids produced using SPTA segregate 1:1 for pollen producing and non-pollen producing plants referred to as 50% non-pollen producing (FNP) varieties. Previous research showed FNP offered a yield benefit under low input conditions. In the early stage of its inception, the project quickly recognized the potential implications of hybrids produced using SPTA for women and other resource-constrained smallholders in Africa.

Understanding gender-based differences

From the start, the SPTA team conducted a gender review that underscored the fact that women in the region often use less fertilizer than men, a challenge that is further compounded by cultivation of smaller plots and lower quality soils. This review led the breeding team to explicitly target women and resource-poor farmers with an ambition to increase yields on women’s fields. From here henceforth, SPTA made it a priority to understand gender-based differences in performance and preference for new FNP maize varieties. This process involved ensuring both women and men farmers host trials to evaluate and attest to the performance of the FNP hybrids.

But these efforts were not without challenges. The team also found significant gender differences, particularly among women farmers in crop management practices and between farmers’ stated preferences during participatory varietal selection exercises and the varieties they used at home. This suggested that initial on-farm evaluations were not adequate for predicting real world demand for varieties. Moving forward, the evaluation strategy of SPTA evolved to enable variety evaluations under farmers’ preferred management practices.

The success of the SPTA team in ensuring that gender considerations were strongly embedded into the breeding program is attributed to strong collaboration across disciplines that included social scientists and gender researchers working closely with breeders, allocating funding to allow exploration, testing of gender topics and responsive variety evaluation tools and strong buy-in from leadership and donors. As the SPTA case highlights, there is value in starting small, building productive partnerships and collaborating to pilot and develop proof of concept for new models.

Empowering women smallholder farmers in Africa with climate-resilient and nutritious maize varieties

In the vast landscapes of sub-Saharan Africa, where agriculture is the backbone of many communities, the quest for improved maize varieties is a vital step for ensuring food security in the face of climate change. Women, who represent approximately half the clients of maize breeding programs, have been essential in the realm of agricultural research. While significant gender-based differences in trait preferences exist in many African-staple crops, these appear less drastic in maize. However, there are gendered differences in management practices and productivity in maize-based systems.

After decades of work on maize improvement projects, CIMMYT has made a bigger commitment to researching, supporting and delivering drought and heat tolerant maize to smallholders in Zimbabwe. (Photo: CIMMYT)

Recognizing the need to bridge this gap, the CIMMYT-NARES (National Agricultural Research and Extension Systems) regional maize breeding networks in eastern and southern Africa have embarked on a transformative journey to empower farmers, especially women, through their innovative approach to maize breeding. The breeding networks are focused on ensuring smallholder farmers have access to a steady stream of climate-resilient and nutritionally enriched maize varieties that thrive in today’s stress-prone environments. To ensure these new maize varieties meet the needs of diverse users, including women, the breeding networks continue to adapt approaches to increase gender-responsiveness.

Linking science with the realities on the ground

Testing the performance of potential new maize hybrids coming from the breeding pipelines within farmers’ realities is critical to the ultimate success of these new varieties. In collaboration with over 400 farmers in southern Africa, the CIMMYT-NARES maize breeding network conducts extensive on-farm trials to evaluate the performance of these new maize varieties. A similar approach is adopted in eastern Africa. What sets these trials apart is the fact that over 40% of these trials are led by female plot managers. Farmers evaluate these varieties within the context of their own realities, including their own management practices, and provide valuable feedback to the breeding teams on the potential of new varieties.

By involving women in decision-making processes, CIMMYT-NARES networks ensure that their preferences and needs are considered when selecting the most promising hybrids for product advancement, announcement to partners, varietal releases and ultimately commercialization. This inclusive approach not only empowers women but also harnesses the collective knowledge and experience of the farming community. CIMMYT’s research recently showed that there is a relatively high degree of joint management within maize plots, and since 2022, the on-farm trials included a target of approximately 30% jointly managed plots.

Gender is only one axis of social difference that impacts agricultural production, variety selection, and end uses. Social differences including marital status, age, education level, ethnicity, wealth, access to capital, market access and livelihood orientation do play a role in the adoption of new varieties and farm productivity. By embracing the diversity within farming communities, CIMMYT-NARES networks are actively working towards understanding different farm types, while ensuring that the improved maize varieties are tailored to meet the diverse demands of the regions.

As the CIMMYT-NARES maize breeding networks continue to make innovative strides in breeding climate-resilient and nutritionally enriched maize varieties, they are not only transforming agriculture but also empowering individuals and communities. Through collaborative efforts, with the woman farmer at the heart of the approach, they are paving the way for a future where farming communities can thrive and contribute to food and nutritional security.

Exploring alternative solutions: the case for synthetic mulch in a changing world

Food security remains elusive for most smallholder farmers reliant on rainfed crop production, given the erratic rainfall patterns induced by climate change in Southern Africa. Among others, conservation agriculture (CA) is a concept often considered to be effective to adapt to these erratic rainfall patterns, enabling farmers to cope better with the prolonged dry spells that are characteristic of the semi-arid regions in Zimbabwe.

Conservation agriculture essentially involves three key pillars, namely, reduced soil disturbance, the use of crop rotations or intercrop associations, and the provision of permanent soil cover. The soil-cover component often requires the use of previous crop residues or other organic materials as a surface mulch. However, local farmers consider this task to be the most laborious aspect of implementing CA, which poses a significant challenge to its widespread uptake.

Collecting insights on influence of synthetic mulch. (Photo: CIMMYT)

Traditionally, farmers are advised to use organic mulch, such as maize residues, for soil cover. However, in most communal areas, there is a growing scarcity of organic mulches as they are predominantly used as livestock feed in mixed crop-livestock farming systems. Ironically, semi-arid regions that benefit from the use of crop residues as soil cover are also regions where the residues are the scarcest due to competing uses as livestock feed or as firewood. These competing interests pose a dilemma, as it is essential to cover the soil while also necessary to feed the animals. In neighboring countries like Malawi, maize residues are also used as fuel for firewood, further increasing the demand. It is clearly important, therefore, to develop alternative solutions to address this pressing issue.

“Since I embarked on my journey in conservation agriculture back in 1998, the matter of residues has been a topic of discussion. It is imperative that we walk the talk and develop practical solutions to meet the needs of farmers who rely on residues to feed their animals. One potential solution we are exploring is the use of synthetic mulches to cover the soil. By employing this method, we can cover the soil, apply fertilizer, and hopefully witness a positive impact. We certainly must develop synthetic materials that can be used sustainably as surface mulches in the semi-arid environments where organics are most scarce yet most needed,” stated Isaiah Nyagumbo, regional cropping systems agronomist.

To test such innovations, some water-conservation experiments were established in Buhera and Mutoko, Zimbabwe, during the last two seasons, and the results have been encouraging.

“I am grateful to work with the CIMMYT team on these water conservation trials, and I hope they continue. Before the trials, we were using organic mulch, but after using the synthetic approach and comparing it with organic mulches and none at all, we are seeing so many positive results. But there are challenges we can’t escape, including affordability. But I have seen higher yield returns this year as I harvested close to 15 by 50kgs of maize,” said Nyawasha, a farmer from Mutoko, Zimbabwe, ward 16.

Further detailed studies to understand these systems have also been established in the current dry season at the CIMMYT campus in Harare, to test the effectiveness of these synthetic mulches under conditions of severe moisture stress. The different treatments include clear synthetic mulch, black synthetic mulch, organic mulch and no mulch. So far, for the maize crop now at flowering stage, the growth and yield are strikingly better in plots under the synthetic mulches compared with the organic and no mulch plots. This clearly shows the importance of finding viable alternatives. The crop with synthetic mulches also developed much faster, all the way from crop emergence.

Exploring the tied-ridging system

In these trials, mulching treatments are being tested in conventionally tilled plots, CA basins (pfumvudza basins) and under the tied-ridging system. Tied ridging has been developed in Zimbabwe for use by smallholder farmers since the 1980s and is well known for its effectiveness in reducing sheet erosion and water run-off. This system employs ridges 15–20 cm high, with crossties in the furrows at 1–2 m intervals that trap rainwater and prevent runoff and soil erosion. However, in a typical rainfed system, poor germination challenges can arise when planting on top of these ridges due to excessive drying of moisture from the raised ridges. Furthermore, during prolonged dry spells, the exposed ridges tend to cause crops to wilt more than flat-planted conventional crops. To address these issues, scientists at CIMMYT in Zimbabwe are also exploring innovative ways to improve the tied-ridging system through ways that minimize water loss through direct soil evaporation.

“This has been one of the shortcomings of the tied-ridging system, and we need ways to overcome this excessive moisture evaporation. Once the water has gone into the soil, it should only leave through plant uptake and not be wasted through direct soil evaporation,” said Nyagumbo.

Integrating synthetic mulch into the tied-ridge system. (Photo: CIMMYT)

One approach being considered is incorporating mulch into the system to reduce evaporation and ensure that captured water is retained. The results are evident in the vibrant greenery of the plants with mulch compared with those without. Observing the number of plants with tassels and silk, it is clear that the plots with clear synthetic material have faster growth and reach maturity sooner compared with the plots with black synthetic mulch.

“My outlook on the use of synthetic mulch on ridges is that they are much more effective, as it makes the soil very loose for good aeration to the plant and encourages high growth rate. I noticed that plants germinated in three days and the little water provided will directly benefit the plant without escaping. I am encouraged to continue doing this tied ridge approach using synthetic material,” said Nyekete, a farmer in Buhera, Zimbabwe, ward 7.

While exploring various options, it has also been important to prioritize and focus on one aspect at a time. The initial focus has been on maize residue, as it is a valuable resource for both soil cover and livestock feed. However, the scarcity of maize residue poses a significant challenge for many farmers, especially in regions like Buhera, Mberengwa and Shurugwi, where animals consume all available resources. Placing maize residues in open fields is not a very viable solution, as freely roaming livestock will just consume it. Fencing or creating structures to protect the residues from livestock also requires substantial effort and resources, thereby making this mulching a daunting task for farmers.

Food for thought

While the challenges faced in providing mulch for conservation agriculture are multifaceted, there is a growing need to develop innovative solutions that address the scarcity of organic mulch and explore alternative methods such as synthetic coverings. By continuously adapting and refining our practices, we can ensure the sustainability of agriculture in this region and improve the livelihoods of farmers.

Preventing nitrogen loss in maize

The widespread availability of chemical nitrogen fertilizers is a prime driver of the vast improvement of crop yields over the past 50 years. However, their use has come with a price, as nitrogen escaping into surrounding soil and air has negative impacts on the environment and human health, including water pollution, depletion of soil-fertility, and greenhouse gas emissions.

Researchers from CIMMYT and JIRCAS (Japan International Research Center for Agricultural Science) examined ways to curtail the leakage of nitrogen into ecosystems, through a process called biological nitrification inhibition (BNI) in the paper “Genetic variation among elite inbred lines suggests potential to breed for BNI-capacity in maize,” published in the journal Scientific Reports on August 17, 2023.

César Daniel Petroli, leader and specialist in high-throughput genotyping/sequencing at the Genetic Analysis Service for Agriculture (SAGA) laboratory at CIMMYT with scientists. (Photo: Alfredo Sáenz)

BNI is a plant-based natural process that reduces nitrogen losses, which can reduce fertilizer demand while sustaining agricultural systems. The roots of plants that exhibit BNI activity release natural substances that inhibit the activity of nitrifying bacteria in soil, thus reducing the amount of nitrogen lost to the surrounding ecosystem. Many plant species have natural BNI activity in their roots.

Although synthetic chemical nitrification inhibitors are commercially available to reduce nitrogen losses, the high costs of this approach have limited its adoption. By contrast, breeding new varieties with increased natural BNI activity can offer a practical and economical approach to reduce nitrogen fertilizer need and waste.

“We are in the discovery phase regarding BNI activity and its determining traits for maize. Such information is crucial to pave the way for breeding programs and genetic improvement efforts,” said Kevin Pixley, co-author of the paper and former director of CIMMYT’s Genetic Resources Program. “We need to identify genetic markers for BNI compounds including ‘zeanone’, which will enable breeders to develop maize varieties that require and waste less nitrogen fertilizer, while achieving high yields.”

Doubles haploids prepared for evaluation and further analysis at CIMMYT’s headquarters, El Batán, Mexico. (Photo: Araceli Balderas)

This research identified 18 single nucleotide polymorphisms (SNP) that act as genetic “signposts” for breeders to use to accelerate and increase the accuracy of breeding to increase BNI activity for maize. The researchers also identified six “candidate” or putative genes associated with BNI activity and related to nitrogen use efficiency, thereby enhancing the understanding of the genetics controlling BNI activity.

“Our identification of SNPs and genes that regulate how maize processes nitrogen begins to draw a road map to guide the development of molecular markers for use in breeding new maize varieties that meet farmer and consumer needs at a lower environmental cost,” said senior author Cesar Petroli. “Building on the results obtained and reported in our recent publication, we are developing maize (doubled haploid) populations to refine the genetic map for BNI activity in maize”.

This research was conducted with partners from JIRCAS and the Universidad de la República, Uruguay.

Harnessing new high-resolution satellite imagery to plant breeding

In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.

This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bands—blue, green, red, and infrared—which can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.

High-resolution RGB orthomosaic of wheat experiments, assessing the effect of plot size and spacing in the spectral signature, collected from SkySat satellite images. (Photo: Gilberto Thompson)

The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellites—such as the SkySat constellation—now offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmer’s fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.

To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.

Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.

Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.

Read the full study: Satellite imagery for high-throughput phenotyping in breeding plots

This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.

El Niño event declared: Impacts on the Limpopo river basin in Southern Africa expected

The International Water Management Institute (IWMI) and CIMMYT call on policymakers and research-for-development organizations to stay informed about the evolving El Niño event and its potential implications in the Limpopo Basin. El Niño is considered the biggest climate oscillation on Earth. IWMI and CIMMYT have utilized various methodologies and climate models to project and assess the potential impacts of the El Niño event.

What are the crucial practices, especially under the changing climatic conditions about the evolving El Niño event?

Read the full story.

Hard work pays off

Nepal is an agricultural country, where the sector provides the major source of income for half the population. Despite this, the sad reality is that the country is not able to produce enough crops to meet its needs, and major grains like rice, maize, and cereals are mostly imported.

One factor influencing this is an aging population of farmers, alongside decreasing interest in agriculture among the country’s youth. Many young people do not see agriculture as a viable option for employment, opting instead for work opportunities outside the country. However, there are still some youth who see agriculture as a profitable business, like Pradeep Morya.

“It is better to work hard in your home country rather than going abroad and working tirelessly every minute and hour,” says Morya, a 24-year-old farmer from Banke, Nepal, who finds happiness in living close to his family and helping to support national food security. “I love being in the field,” he explains. “I have cultivated spring maize on one hectare. My day-to-day business is to provide care to the spring maize along with pumpkins and beans that I have added for additional income on a small plot of land.”

Morya grows spring maize, pumpkin, and beans (Photo: CIMMYT)

Working alongside his eldest brother, Morya has cultivated 30 kattha of land (equivalent to 0.36 hectares) using the spring maize varieties Pioneer 1899 and DK 9108. His brother, a member of Mahatarkari cooperative in Duduwa, western Nepal, has been providing him with the knowledge and expertise needed for maize cultivation.

Mahatarkari is one among 50 cooperatives working in partnership with the Nepal Seed and Fertilizer project (NSAF), which is implemented by CIMMYT. NSAF works with the cooperatives to provide technical knowledge and training to farmers, to hone their potential and support them in the adoption of modern technologies which can improve their livelihoods. After participating in programs organized by NSAF, Morya makes sure that the suggestions he receives — on soil preparation, weed management, harvesting, and more — are implemented in his field.

Returning to the family farm

A few years back, the situation was different. Like many youths in the country, Morya also went abroad to try his luck on the international job market. He worked hard for two years in Malaysia but was forced to return to Nepal during the COVID-19 pandemic.

“I had imagined my shining future abroad. However, when I reached there, the reality was different,” recalls Morya. “I returned to my own country just before the lockdown in April 2021 with some small savings. Upon my arrival in Nepal, I was clueless about my future. I dropped my education after grade five. With no educational qualifications and skills in hand, it was difficult to get a decent job.”

Agriculture has provided Morya with a sustainable source of income in his home country. (Photo: CIMMYT)

Since the country was in lockdown, Morya chose to stay at home and support his family on the farm. It was here that his eldest brother guided him into farming, and Morya soon learned the knowledge needed to run the farm and began earning money from it. This attracted him towards farming as a longer-term career option, and he has now discovered a prosperous future in agriculture.

“Agriculture needs continuous effort,” he says. “With the support of technology, it is easy and efficient to work. I work every day so that I can reap crops on a large scale to make a profit. I manage weeds, irrigation, and control pests.”

“I also have livestock. I get adequate fodder for my cows and buffalo from weeds and from the spring maize. I sell milk in the market. In addition to this, I also make sure to produce off-season vegetables so that I receive a decent price for additional income.” With the support of his family, Morya has recently purchased an e-rickshaw, which he uses to transport and sell his produce.

To further support his endeavors, Morya has also been participating in Nepal’s Maize Commercialization Network and using the Geo Krishi mobile app to learn about current market prices. “Before knowing about the commercialization of crops, it was hard to receive good amounts from buyers,” he explains. “Now, I make a call to the local retailers and buyers to learn the best value of my grain. Sometimes I also explore the market. Then, I analyze the rate and sell my maize.” He uses a similar system for his off-season vegetables, selling either in the local market or directly to consumers for a premium price. “I make a saving of around 1500 Nepalese rupees (approximately US$ 11) per day,” he says.

A prosperous life

With the profits from his agricultural business, Morya has been able to fulfill his dream of purchasing a bike, as well as contributing to the construction of a new eight-room house, where his family is now living comfortably. “I love to roam on my bike with my friends in the evening. I also take my mother for a ride,” says Morya with a bright smile. “Now, I have a dream to live a prosperous life with my family.”

Morya fulfilled his dream of buying a bike. (Photo: CIMMYT)

Thanks to the support provided by the NSAF project with generous funding from USAID, young people like Morya can pursue a better life for themselves and their families. Agricultural training programs have not only helped young people fulfill their basic needs, but also to achieve their dreams. It is hoped that ongoing efforts to empower farmers through science and innovation will continue helping young farmers like Morya break the chain of unemployment, for both their own benefit and that of Nepal.

CIMMYT announces 2030 Strategy

The world’s food systems are under threat by escalating armed conflicts, economic stagnation, the effects of the climate crisis and natural resource degradation. Against this backdrop, the next seven years are crucial in meeting the challenges of keeping the world’s growing population fed and secure.

Recognizing that business as usual will not be sufficient, CIMMYT has embarked on a journey to proactively face the new challenges of the 21st century. This novel approach to agrifood systems is the core of CIMMYT’s 2030 Strategy, which has the potential to shape the future of agriculture.

Ethiopian Seed Enterprise maize crop for multiplying seedlings of DT maize. (Photo: Peter Lowe/CIMMYT)

“We understand that the challenges facing food security are complex, varied and rapidly changing. For instance, the effects of COVID-19 and Ukraine-Russia conflict on food systems are still being felt today. With that in mind, we set out to develop a strategy that is both robust and nimble. The best way to create a sustainable and inclusive strategy was to engage directly with CIMMYT scientists and staff, the people on the front lines of this effort to deliver food and nutrition security to the world,” said CIMMYT Director General Bram Govaerts.

Looking back to move forward

The first step in crafting the 2030 Strategy was looking at where does CIMMYT want the world to be in 2100. In answering this question, CIMMYT crafted a long-term vision of how it wants to engage in a changing world and achieve the transformation to a food and nutrition secure world within planetary boundaries. CIMMYT has integrated the use of foresight and specifically a set of 2030 Food and Agriculture scenarios to explore potential changes in intervention areas over the strategic period and help prepare engagements in different contexts across the globe. These scenarios are a decision-making tool that has underpinned the development of the strategy to ensure that it is context-driven and focused on the most pressing challenges facing the agrifood systems in which CIMMYT operates.

From the future CIMMYT looks back at its history and examines how its core business has evolved over the years to proactively meet ever-changing needs across the world.

At each stage of CIMMYT’s evolution, it has taken its strengths and the skills it has built and added to its experience, and expanded on what it delivers while maintaining the core strengths.

Norman Borlaug teaching trainees. (Photo: CIMMYT)

In CIMMYT’s earliest days, the mission was developing and improving germplasm and agronomic practices, then CIMMYT began working more closely with farmers (1980s), broadened emphasis in genetic improvements (2000), embarked on sustainable multidisciplinary projects (2010s), and most recently, advancing technologies in participatory innovation systems (2015-2022). All leading to the mission codified in the 2030 Strategy: accelerating food systems transformation by using the power of collective action.

Now, in 2023, CIMMYT’s progress is being shaped by the CGIAR mission statement: “To deliver science and innovation that advance the transformation of food, land, and water systems in a climate crisis.”

Building the Strategy

To define the 2030 Strategy, CIMMYT responded to the following core questions:

  • What does success look like?
  • Where can CIMMYT deliver the most value?
  • How can CIMMYT deliver value for communities?

“As an organization, we have concentrated on strategies that foster collaboration and adapt them for a non-profit international organization whose vision is not to grow as an institution but to deliver greater value for the communities they serve, to innovate for the end users of their products and to ensure a better future for our global community,” said Govaerts.

The tools used to develop the elements of this strategic plan leveraged the framework provided in the CGIAR Research and Innovation Strategy to guide the process. Staff from across the Center engaged in a consultative process to develop the objectives for following strategic components: Excellence in Science and Innovation, Excellence in Operations, Talent Management, Resource Mobilization, Partnership, and Influence.

Developing the Excellence in Science and Innovation component serves as an example of this collaborative, bottom-up approach. Planning was led by the Emerging Thought Leaders Group, made up of 24 early and mid-career scientists across the breadth of CIMMYT’s global and program portfolio. The group worked collaboratively with CIMMYT researchers and staff to first delineate the challenges facing agri-food systems and then workshopped solutions which now serve as the foundation of the 2030 Strategy.

Workshop participants study seed samples in CIMMYT’s Seed Health Laboratory. (Photo: Xochiquetzal Fonseca/CIMMYT)

“Each component complements the others,” said Govaerts. “This is our answer to the core questions. Only by working collectively can we initiate sustainable solutions that reach everyone.”

Together, the components create a network to support CIMMYT’s three pillars: Discovery (research and innovation), SystemDev (working collaboratively to innovate foundational systems), and Inc. (incubating startups and new ways of doing business in the agri-food system space).

CIMMYT is leading the way in shaping a sustainable and prosperous agricultural landscape

The goal to facilitate food security where sustainable agriculture is part of the solution to the climate crisis and agriculture provides an avenue to build household resilience and enables communities to pull themselves out of poverty requires the strategic use of resources. CIMMYT’s 2030 Strategy, built from the bottom up on a foundation over 50 years’ experience and the expertise of scientists, staff, and farmers maximizes resources, enhances dynamic partnerships, and both retains and recruits a world-class staff in a world of growing challenges to food security.

Read the 2030 StrategyScience and Innovation for a Food and Nutrition Secure World: CIMMYT’s 2030 Strategy 

CIMMYT Director General reaffirms commitment to Zambia

Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.

Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)

“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.

CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”

Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.

Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.

Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”

Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)

Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.

A seed systems success story

Stewards Global, trading as Afriseed, is a Zambia seed systems intervention success story. Thanks to support from the International Maize and Wheat Improvement Center (CIMMYT) and other partners such as the United States Agency for International Development (USAID) and the Alliance for a Green Revolution in Africa (AGRA), Afriseed is transforming rural farmers’ livelihoods through supplying drought tolerant maize seed.

What began as a start-up in 2007 has since grown to be one of the leading companies in Zambia’s seed industry. “I started this company with a team of three people. We did not have much, but we had a compelling vision,” says founder Stephanie Angomwile. “Initially, we were multiplying and distributing legume seed to the market as we had observed the deficit where it was very difficult for any serious farmer to procure improved and high-performing seed.”

“Having set up the business, we were fortunate to get AGRA’s support to secure proper industrial premises where we could focus our operations and serve the Zambian market,” she explains. “Using a basic drum seed dresser, we were able to churn out 100 metric tons of seed per season, which was quite impressive considering how rudimentary our equipment was.”

At this point, USAID bought into their vision and furnished Afriseed with a processing plant that could handle, sort, treat, and package seeds for both legume and maize. The company then pivoted to working with maize seed, based off the observation that most farmers were obtaining yields lower than the genetic potential of existing varieties.

“To do so,  it was quite clear that we needed an institution that could help us break into the maize seed industry dominated by large multinational seed companies,” Angomwile explains. “This led us to partner with CIMMYT, which is a partnership that still exists today and has enabled us to accelerate our market penetration strategy through providing us with high-performing drought-tolerant genetics which are growing in popularity among farmers.”

Stephanie Angomwile gives a tour to representatives from the USAID special envoy and CIMMYT during a visit to Afriseed. (Photo: Tawanda Hove/CIMMYT)

The impact of CIMMYT support

Since 2017, CIMMYT has been working with Afriseed to help smallholder farmers access new and improved varieties that are drought-tolerant and can withstand seasonal weather variations induced by climate change. “As CIMMYT, our role is not only to breed improved genetic material that farmers can take up, but also to support business development for the private sector through intensive capacity building programs that position such entities to be sustainable and to excel in the absence project support,” explains Hambulo Ngoma, an agricultural economist working with CIMMYT. The organization has provided Afriseed with two high performing varieties so far: AFS 635 and AFS 638. In addition, CIMMYT has supported Afriseed in stimulating demand within the smallholder farmer market through facilitating the establishment of demonstration plots and designing targeted seed marketing strategies.

During CIMMYT Director General Bram Govaerts’ recent visit to Zambia, Ngoma highlighted that the organization is aware that small-to-medium enterprises may be constrained with regards to marketing budgets and market development investments. “As such, when we are convinced that there is a business case and an opportunity for a food security transformation, we usually support promising entities such as Afriseed with knowledge and resources to stimulate demand,” he said. “This is of extreme importance as farmers growing old, recycled seed from ancient varieties need to transition to new, improved varieties.”

Govaerts said, “We are happy we could contribute to the success of Afriseed in our own small way and we hope our partnership will take you to the next level.”

Afriseed has since grown and now comprises nearly 200 workers: 90 permanent staff and 110 casual workers during the peak season. Production has surged to an excess of 10,000 metric tons per season and there is a growing customer base stretching throughout all regions of the country. Angomwile is very grateful to have had a partner like CIMMYT, which facilitated Afriseed’s membership to the International Maize Consortium (IMC), a global body that provides access to an expanded genetic pool bringing exposure to new genetic gains. “Being a member of IMC is definitely an advantage for us as an entity because the seed supply market is highly competitive,” she explains. “So, we can now quickly become aware of the new genetic materials available and ask our research and development team — established through the immense support from CIMMYT — to develop new varieties for our target market.”

Through a series of exchange visits and trainings, CIMMYT has mentored the research and development team who are now in a position to breed their own varieties without external support. “The number of farmers in high potential areas that are remotely located that are still growing recycled seed is still quite large,” says Peter Setimela, a seed systems specialist who was part of the mentoring team. “We need to continuously render extensive support to entities such as Afriseed such that the seed quality deficiency gap can be greatly reduced.”

As the rains have been in abundance during this 2022/23 season, there is high anticipation that farmers who have grown seed from reputable seed suppliers such as Afriseed, are set for a bumper harvest.

Cover photo: Afriseed staff preparing legume seeds for processing in Zambia. (Photo: Agricomms)

Strengthening partnerships with government and private sector in Malawi

CIMMYT scientists and private sector partners photographed during a dinner hosted by CIMMT Director General Bram Govaerts in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)

Goal 17 of the United Nations’ Sustainable Development Goals calls to “Strengthen the means of implementation and revitalize the global partnership for sustainable development”. The International Maize and Wheat Improvement Center (CIMMYT) answered this call to action by recently hosting a collaborative dinner to strengthen ties between the Center, the private sector and government partners in Malawi.

Hosted by CIMMYT Director General Bram Govaerts, the dinner followed a visit by US Special Envoy for Global Food Security Cary Fowler, Dina Esposito, Assistant to the Administrator, USAID Bureau of Resilience and Food Security and other USAID staff to discuss and witness the new Accelerated Innovation for Delivery Initiative (AID-I) in action.

“The challenges of today do not require a single sector approach but a pluralistic one in which partners from the private, public sectors agree to work hand in hand with science for impact organizations like CIMMYT and other CGIAR centers,” said Govaerts in his keynote address at the event. “I am very grateful for your support and your presence today is a testimony or our harmonious solidarity and spirit of collaboration in addressing food and nutrition security.”

Govaerts engages with government and agro industry captains in a dinner hosted in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)

The meeting was attended by seed industry players, agricultural input distributors, food processors and Government representatives including Director of Agriculture Research Services Grace Kaudzu, who expressed her appreciation for the gathering.

“As government, our role is to create an enabling environment for the private sector to thrive and progressive development partners are always welcome. Such gatherings enable us to hear the needs of colleagues and partners from other sectors to create this environment,” she said.

Malawi has established an ambitious roadmap where legume exports and maize production are to be significantly scaled up. The AID-I project dovetails with this roadmap as it focuses on strengthening maize and legume seed systems and addressing systemic constraints in both value chains.

The dinner further facilitated private sector players to meet various CIMMYT specialists ranging from seed system experts, soil scientists, breeders and plant physiologists. According to Peter Setimela, a seed system specialist at CIMMYT, such meetings are critical as they enable a diversity of partners to know what the other has to offer.

“CIMMYT has a lot of expertise which these private sector partners can take advantage of,” Setimela said.

The AID-I project seeks to scale up existing and high potential innovations, technologies and business models as opposed to initiating new ones. This only makes sense considering that the implementation period is only two years and scaling up existing innovations give greater prospects for success.

CIMMYT Regional Representative Moses Siambi labelled the event a success citing the huge turnout of the partners.

“The effectiveness of our interventions is dependent on the strength of the relationships we have with our partners. Such a massive attendance is indicative of cordial relations between CIMMYT and the private sector in conjunction with the government,” Siambi said.

Govaerts closed the event by stressing that through harnessing the potential of convening power, the future is bright regardless of the reality of climate change and geopolitical conflicts.