Skip to main content

Tag: food security

Global science partnership promotes climate-smart pathways to address food security and climate crisis

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) is refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

“Zero-tillage and residue management for cereals — that is, sowing the seed directly into unplowed soils and residues from the preceding rice crop — has been adopted on a significant area in the transact of Indo-Gangetic Plain, with positive impacts on crop yields, profitability, and resource-use efficiencies,” said Tek Sapkota, senior scientist in agricultural systems/climate change, CIMMYT.

Continuous maize plot in El Batán, Mexico (Photo: CIMMYT)

 

The paper “Conservation agriculture for sustainable intensification in South Asia,” published in the science journal Nature Sustainability reported that, compared to the conventional practice, conservation agriculture resulted overall in a 4.6% higher grain yield, a 14.6% improvement in water use efficiency, and a 25.6% greater net economic return. The net economic return was 40.5% higher for full conservation agriculture but, given the benefits of partial adoption of the practices, rigid adherence to an “all or nothing” approach to spread conservation agriculture in South Asia does not seem warranted.

Conservation agriculture also offers several ecosystem services. In the study data, global warming potential was reduced by as much as 33.5% in rice-wheat systems, values that are consistent with other research. Moreover, conservation agriculture-based practices provide an economically feasible alternative to burning rice residues, a serious public health threat in northwestern India given the roughly 23 million tons of residues that are burned each year in the region.

“More widespread adoption of zero-tillage in India has been made possible with the development of next-generation tractor-drawn implements that allow direct seeding into heavy residues, as well as business models whereby implement owners contract out with neighboring farmers to sow their crops and provide other services,” said Sapkota. “National governments in South Asia are actively promoting conservation agriculture to address residue burning and other farming sustainability problems.”

Aerial view of maize and wheat breeding plots (Photo: CIMMYT)

Fitting conservation agriculture to maize farming in Mexico

Efforts to adapt conservation agriculture and promote its adoption by farmers operating highly-diverse, mostly rainfed maize-based cropping systems in Mexico have had mixed results. A recent study assessed soil health in 20 trials in starting between 1991 and 2016 in agro-ecologies ranging from handplanted traditional systems to intensive irrigated systems, contrasting conservation agriculture effects with those of local conventional practices, which commonly involve tillage, residue removal, and continuous maize production.

As reported in the 2021 paper “Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico,” published in the science journal Land Degradation and Development, conservation agriculture increased maize yields at most sites by 0.85 tons per hectare, on average. Organic matter and nitrates were higher in topsoils under conservation agriculture and soil aggregate stability was greater, meaning the soil more effectively moved air and water to plant roots. For other soil health parameters, such as nutrient content, pH, or compaction, most values were determined more by local soil type than by crop management.

Maize plot in El Batán, Mexico (Photo: CIMMYT)

“Given the significant variation across agro-ecologies, local adaptive trials are important to assess the effects of conservation agriculture on soil health and fit it to local conditions,” said Simon Fonteyne, a CIMMYT cropping systems agronomist and first author of the paper.

Emissions control

Several recent studies have assessed the costs and potential of various sustainable intensification technologies for reducing greenhouse gas emissions in India, Bangladesh and Mexico. Their findings can help inform national policies on food security, economic development and environment, including those relating to the Paris Agreement.

In the 2019 study “Cost-effective opportunities for climate change mitigation in Indian agriculture,” published in the journal Science of the Total Environment, CIMMYT and partners found that estimated total emissions from Indian agriculture were 481 tons of CO2 equivalent (MtCO2e) in 2012, with crops contributing over 40% and livestock nearly 60%. Under a business-as-usual scenario, agricultural greenhouse gas emissions in India would be 515 MtCO2e by 2030. This annual emissions could be reduced by 85.5 MtCO2e through adoption of mitigation practices and about 80% of that reduction could be achieved through measures that would actually save money and, in many cases, could be implemented with current technology. The efficient use of fertilizer, zero-tillage, and rice-water management could deliver more than 50% of the technical abatement potential.

“Realization of this mitigation potential will depend largely on the extent adoption by farmers,” said Sapkota, who was lead author of the study. “Large-scale adoption of apparently win-win options is not happening, so the government of India will need to apply appropriate policy measures and incentives, consistent with its food security and emission reduction goals.

A similar study in Bangladesh, reported in the 2021 paper “Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh,” published in the journal Science of the Total Environment, found greenhouse gas emissions from agriculture in Bangladesh of 76.8 MtCO2e for 2014–15. Yearly emissions by 2030 under a business-as-usual approach would approximate 86.9 MtCO2e and, by 2050, about 100 MtCO2e. Adoption of realistic, climate-smart crop and livestock management options to reduce emissions offer mitigation opportunities of 9.51 MtCO2e per year by 2030 and 14.21 MtCO2e by 2050. As much as 75% of this potential can be achieved through cost-saving options that benefit smallholder farmers. As is the case for India, realization of this potential largely depends on the degree to which supportive policies and measures can encourage farmer adoption.

The Walmart Foundation and CIMMYT promote crop diversification in Oaxaca, Chiapas, and Campeche, Mexico. (Photo: CIMMYT)

A similar rapid assessment of costs for to mitigate greenhouse gas emissions from crops, livestock, and forestry in Mexico found a national mitigation potential of 87.9 MtCO2eq per year, fully 72.3 MtCO2eq from livestock. As reported in the 2022 paper, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico,” published in the science journal Carbon Management, implementing mitigation potential on Mexican cropland could bring net benefits, compared to livestock and forestry options, which involve net costs. In the 2021 paper “Reduced Water Use in Barley and Maize Production Through Conservation Agriculture and Drip Irrigation” a reduction of emissions caused by lower fuel use in conservation agriculture of 192 kg CO2 ha−1  was measured in farmers fields, as well as an increase in soil carbon and a reduction in water use.

CGIAR Initiative: Crops to End Hunger (CtEH)

Agriculture offers major solutions to several global challenges – most notably the tightly interlinked challenges of meeting Sustainable Development Goals (SDGs) on hunger (SDG2), extreme poverty (SDG1), and climate change (SDG13). CGIAR, in concert with a wide network of partners, has a vital role to play in transforming agri-food and land systems in the face of the climate emergency – ultimately benefiting low-income producers and consumers who are most at risk.

What is Crops to End Hunger?

Crops to End Hunger (CtEH) is a CGIAR initiative to accelerate and modernize the development, delivery and widescale use of a steady stream of new crop varieties. These new varieties are developed to meet the food, nutrition and income needs of producers and consumers, respond to market demand and provide resilience to pests, diseases and new environmental challenges arising from climate change.

CGIAR’s plant breeding program has made major contributions to global food security since the mid 1960s, but there is evidence that the rate of adoption of new varieties has slowed. CtEH will support the acceleration of breeding cycles and application of modern breeding methods needed for both productivity gains and climate change adaptation. Farmers need varieties bred in and for the current climate, but are generally using varieties selected 20-30 years ago. In addition, many new varieties are insufficiently improved to induce farmers to adopt them. Prioritization of crops by specific geographies is based on projected benefits to poverty reduction and nutrition, and is an integral dimension of the modernization effort. Using market research, crop breeders gain greater awareness of the traits preferred by men and women farmers, consumers and others along the value chain, integrating them into “product profiles” that guide breeding. Delivery of varieties is done through integrated partnerships and linkages to seed systems in-country, in which national regulatory agencies take responsibility for the release of improved seeds, while public agencies, community organizations and private seed companies undertake multiplication, distribution and promotion to reach farmers’ fields.

In 2017-18, a multi-Funder group, including the United States Agency for International Development (USAID), the Bill & Melinda Gates Foundation (BMGF), the UK Foreign, Commonwealth and Development Office (FCDO), the German Federal Ministry for Economic Cooperation and Development (BMZ) and the Australian Centre for International Agricultural Research (ACIAR), agreed to launch a modernization program for public plant breeding in lower-income countries. The CtEH initiative will invigorate breeding for the staple crops most important to smallholder farmers and poor consumers.

How does it work?

CtEH supports focused, science-based, well-resourced and long-term CGIAR Programs and investments in modern plant breeding on priority crops, which build on:

  1. CGIAR’s demonstrated impact on food security and poverty reduction through plant breeding;
  2. CGIAR’s comparative advantages in global public goods research on crop breeding and genetics;
  3. CGIAR’s central role and responsibility for the conservation and characterization of the world’s crop biodiversity, which is held in trust by CGIAR Research Centers for the world community.

This initiative aims to accelerate a transition in CGIAR crop breeding to address very different challenges from those faced in the Green Revolution. Twenty CGIAR crops, including cerealslegumes and root crops, have been chosen for this breeding initiative.

One part of this challenge is for breeding to modernize in terms of its objectives beyond pure yield gain – to address the expanding demand for improved varieties to meet biotic and abiotic stresses, such as climate change and environmental degradation, and to include a wider set of nutritional and market traits, as well as traits relevant to both end-users and value chains, which would increase the adoption rate of newly-bred varieties.

The first step towards modernization of breeding programs is to identify the gaps – the areas that need to be addressed or improved. The Breeding Program Assessment Tool (BPAT) has been developed for this purpose. The deployment of BPAT has been administered by the University of Queensland and has now been used to assess the breeding programs across CGIAR Research Centers. Examples of gaps include cross-CGIAR data management tools, access to low-cost genotyping, and sharing high-quality technical advice across programs and with partners.

What will result?

This process of improvement and modernization of CGIAR breeding programs will provide multiple benefits:

  1. For a given level of investment it is anticipated that each breeding program will achieve increased rates of genetic gain and scale of impact – through adoption of farmer-preferred, market-demanded, climate-resilient varieties.
  2. There will be further opportunity to integrate and support allied CGIAR crop programs, and to apply best practices across CGIAR Research Centers.
  3. A stronger partnership and closer cooperation with national breeding programs, including national research institutes, universities and small and medium-sized enterprises in the private sector in low-income countries, as well as multilateral seed companies and advanced research institutes.
  4. Adopting standardized ways of reporting needs, opportunities and progress will provide Funders with a transparent view of where and how they are getting high rates of return for their investment.

With this new initiative, CGIAR will enhance its contributions to the Sustainable Development Goals towards 2030 through high-priority staple crops tailored for the specific needs of targeted regions and their populations.

Rapid modern wheat variety adoption key to supply chain security in Malawi

CIMMYT Director General Bram Govaerts, USAID Special Envoy for Global Food Security Carey Fowler, and USAID staff assess the new wheat variety trials at PYXUS. (Photo: CIMMYT/Tawanda Mthintwa Hove)

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) are helping to scale up wheat production and productivity in Malawi.

The political conflict between Russia and Ukraine has disrupted food supply chains globally and Malawi’s wheat supply has been adversely affected. As a response, Pyxus Trading, the biggest agribusiness private company in Malawi, has endeavored to partner with CIMMYT to accelerate the growth of wheat production in the country.

At a recent visit by CIMMYT’s Director General Bram Govaerts, the executive management of Pyxus provided detailed updates of how CIMMYT has facilitated access to 100 improved wheat varieties now undergoing trials in Malawi. The visit was part of the Accelerated Innovation Delivery Initiative (AID-I), a new project funded by the United States of Agency for International Development (USAID).

Attending the Pyxus field visit was United States Department of State Special Envoy for Global Food Security Cary Fowler, Dina Esposito, Assistant to the Administrator at USAID Bureau of Resilience and Food Security, and other USAID staff.

Speaking at a field tour this January at the Pyxus farm headquarters, Commercial Manager John Gait expressed the importance of achieving self-sufficiency in countries like Malawi.

“It’s become very apparent with the global supply chain disruptions of wheat and related commodities that countries like Malawi should rise to a level of self-sufficiency for strategic commodities such as wheat,” Gait said. “Through the help of CIMMYT, we managed to obtain materials for 100 varieties which we have put under trial. Our objective is to select varieties that are most adapted to our agroecology and provide us with satisfactory yields and grain quality sufficient for our processing ambitions.”

CIMMYT Sustainable Agrifood Systems (SAS) Director Sieg Snapp affirmed CIMMYT’s support for private sector companies like Pyxus.

“When they told me they were searching for high performing genetic materials I told them about the Global Wheat Program and how such material could easily be obtained from our headquarters in Mexico,” Snapp said. “I immediately facilitated linkages between Pyxus and CIMMYT headquarters which saw the quick delivery of the varieties. Considering that it was quite recent, I am impressed to see that the trials are already so well established.”

Multiple varieties on display at the Pyxus farm in Malawi imported from the CIMMYT gene bank in Mexico. (Photo: CIMMYT/Tawanda Mthintwa Hove)

Achieving global food security will require cooperation and collaboration between partners from different sectors. One of CIMMYT’s strategic thrusts is to encourage public-private partnerships where national governments can leverage on the competencies and capabilities of the private sector.

“We aim to be catalytic in all our functions. We believe we have a critical role in ensuring that countries like Malawi have access to the best genetics to ensure that they meet their food requirements. I am happy Pyxus identified us a strategic partner to work with in their wheat program, and through working hand in hand with the government and other key players, the quest to achieve food self-sufficiency can have a shortened pipeline,” Govaerts said.

From left: Hambulo Ngoma, Moses Siambe, Bram Govaerts, Siege Snaap and Regis Chikowo observing the wheat trials supported by CIMMYT in Malawi. (Photo: CIMMYT/Tawanda Mthintwa Hove)

In addition to witnessing the wheat trials, Govaerts received a tour of the entire Pyxus operations which included the groundnut and forestry operations. Pyxus staff each took turns explaining the various business models the company was employing to contribute to Malawi’s export earnings and food security.

As a commitment to help Malawi realise increased wheat production, CIMMYT will be closely following the Pyxus trials and providing technical support to ensure that the best varieties adopted are rapidly scaled.

Strengthening partnerships with government and private sector in Malawi

CIMMYT scientists and private sector partners photographed during a dinner hosted by CIMMT Director General Bram Govaerts in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)

Goal 17 of the United Nations’ Sustainable Development Goals calls to “Strengthen the means of implementation and revitalize the global partnership for sustainable development”. The International Maize and Wheat Improvement Center (CIMMYT) answered this call to action by recently hosting a collaborative dinner to strengthen ties between the Center, the private sector and government partners in Malawi.

Hosted by CIMMYT Director General Bram Govaerts, the dinner followed a visit by US Special Envoy for Global Food Security Cary Fowler, Dina Esposito, Assistant to the Administrator, USAID Bureau of Resilience and Food Security and other USAID staff to discuss and witness the new Accelerated Innovation for Delivery Initiative (AID-I) in action.

“The challenges of today do not require a single sector approach but a pluralistic one in which partners from the private, public sectors agree to work hand in hand with science for impact organizations like CIMMYT and other CGIAR centers,” said Govaerts in his keynote address at the event. “I am very grateful for your support and your presence today is a testimony or our harmonious solidarity and spirit of collaboration in addressing food and nutrition security.”

Govaerts engages with government and agro industry captains in a dinner hosted in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)

The meeting was attended by seed industry players, agricultural input distributors, food processors and Government representatives including Director of Agriculture Research Services Grace Kaudzu, who expressed her appreciation for the gathering.

“As government, our role is to create an enabling environment for the private sector to thrive and progressive development partners are always welcome. Such gatherings enable us to hear the needs of colleagues and partners from other sectors to create this environment,” she said.

Malawi has established an ambitious roadmap where legume exports and maize production are to be significantly scaled up. The AID-I project dovetails with this roadmap as it focuses on strengthening maize and legume seed systems and addressing systemic constraints in both value chains.

The dinner further facilitated private sector players to meet various CIMMYT specialists ranging from seed system experts, soil scientists, breeders and plant physiologists. According to Peter Setimela, a seed system specialist at CIMMYT, such meetings are critical as they enable a diversity of partners to know what the other has to offer.

“CIMMYT has a lot of expertise which these private sector partners can take advantage of,” Setimela said.

The AID-I project seeks to scale up existing and high potential innovations, technologies and business models as opposed to initiating new ones. This only makes sense considering that the implementation period is only two years and scaling up existing innovations give greater prospects for success.

CIMMYT Regional Representative Moses Siambi labelled the event a success citing the huge turnout of the partners.

“The effectiveness of our interventions is dependent on the strength of the relationships we have with our partners. Such a massive attendance is indicative of cordial relations between CIMMYT and the private sector in conjunction with the government,” Siambi said.

Govaerts closed the event by stressing that through harnessing the potential of convening power, the future is bright regardless of the reality of climate change and geopolitical conflicts.

China, Pakistan launched joint wheat breeding lab

On March 2, the China-Pakistan Joint Wheat Molecular Breeding International Lab (“Joint Lab”) was launched, funded by the Science and Technology Partnership Program, Ministry of Science and Technology of China, with the joint support from China‘s Ministry of Agriculture and Rural Affairs, National Agriculture Research Center of Pakistan and the International Maize and Wheat Improvement Center (CIMMYT).

The joint lab aims to develop new varieties with high yield and resistance to disease, enhancing breeding capacity and wheat production in Pakistan, where wheat is the largest food crop.

Read the original article: China, Pakistan launched joint wheat breeding lab

Government of Zimbabwe recognizes CIMMYT for beneficial collaborations

Dr Dumisani Kutwayo (second left) receives state of art Maize Lethal Necrosis test kits from Dr Wegary Dagne (second from right). (Photo: Tawanda Hove/CIMMYT)

The best results in combating pests and diseases exacerbated by climate change and protecting agricultural food systems originate from strategic partnerships between national governments and international research organizations. Such a synergy between Zimbabwe’s Department of Research and Specialist Services (DRSS) and the International Maize and Wheat Improvement Center (CIMMYT) was recognized for its effectiveness at an event hosted by Zimbabwe Plant Quarantine Services on January 9, 2023.

“The mandate of ensuring that Zimbabwe is protected from plant diseases and invasive pests is one which cannot be attained by government alone, but together with partners such as CIMMYT,” said Dumisani Kutywayo, Chief Director of DRSS.

Dagne Wegary Gissa, CIMMYT senior scientist in maize breeding, presented Kutywayo with the latest advanced PCR testing kits for detecting maize lethal necrosis. “We are committed to ensuring that we support Zimbabwe with improved maize and wheat varieties but also with rapid disease detection,” said Gissa.

Kutywayo and senior directors were given a tour of the plant quarantine services station, where they observed where all introduced maize seed is quarantined and tested before being incorporated into the local seed systems. Tanyaradzwa Sengwe, a seed health and quality expert, summarized the quarantine procedures and explained how the day-to-day operations between the two institutes are being implemented. This involves the management of imported seed, protocols of seed management and biosafety measures for the quarantine facility.

Government officials take part in a field visit of the quarantine facility set up by CIMMYT in Mazowe, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Expanding partnerships

Zimbabwe can now accelerate its crop improvement programs, Gissa indicated, because CIMMYT has provided the government access to doubled haploid (DH) technology. This technology significantly shortens the breeding cycle from seven years to approximately 3-4 years. DH technology has become an integral part of many commercial maize breeding programs, as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide.

CIMMYT-Zimbabwe has facilitated access for Zimbabwe’s maize breeding program to a CIMMYT DH facility in Kenya. Busiso Mavankeni, the head of the Crop Breeding Institute, related how it was very expensive for governments of developing countries to keep up with the latest breeding technology trends and so collaborating with CIMMYT is helping Zimbabwe. “Having access to the DH facility has been a great boon to our breeding program,” said Mavankeni.

CIMMYT and Zimbabwe are also engaged in capacity building exercises; involving training sessions across a variety of food system frameworks. Nhamo Mudada, Head of Plant Quarantine Services, acknowledged the multiple trainings ranging from disease identification and prevention systems to entomology related concepts. “Our technical capabilities have increased significantly, and we strongly attribute this to CIMMYT’s knowledge sharing mandate,” Mudada said.

“This sustainability is enabled by ensuring that our systems can screen genetic materials coming into the country and detect diseases which may be foreign to the agroecological region. CIMMYT has, over the years, supported the government not only from a financial perspective but also from a technical capacity perspective.

“Having reliable partners such as CIMMYT who generously invest in government priorities helps our country to be well positioned against threats to our food security,” said Kutywayo, “The key for creating and maintaining sustainable innovation is for development partners like CIMMYT to work within existing national frameworks,” said Kutywayo. “As the adverse effects of climate change intensify, such strategic partnerships are the only way to establish appropriate responses.”

“Our goal is to serve as critical partners for Zimbabwe’s agrifood programs. We have dedicated ourselves to be a long-term partners and will provide as much support as we can to ensure Zimbabwe’s food security,” Gissa said.

African smallholder farmers hit hard by global food shortage: expert

At the 2023 Dryland Legumes and Cereals Review and Planning Meeting, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), explained why African smallholder farmer families are most impacted by food shortages and high food prices.

“The world is in the middle of a food crisis, driven by the supply chain disruptions during and post-Covid, climate change with increased storms, temperatures, and drought, and the Russia-Ukraine crisis, leading to a shortage of fertilizers for food crop production, which have all led to the high cost of food,” said Govaerts, highlighting that smallholders are dealing with multiple challenges at once.

He continued by describing how the aforementioned challenges to food security are worsening poverty for vulnerable people in Africa, especially smallholder farmers.

However, harnessing the continent’s potential for food production could help to alleviate poverty and food insecurity. Govaerts cited examples of where smallholder farmers have returned to producing nutritious indigenous crops such as millet, sorghum, guinea corn, groundnut, cowpeas and chickpeas, which are reaping tremendous results.

Through investments in crops, farming practices, and agricultural technologies, the potential for food production in Africa can have a huge impact on hunger and poverty.

Read the original article: African smallholder farmers hit hard by global food shortage: expert

More than a drop in the bucket: addressing food security in Nepal through improved sustainable irrigation

Agriculture is always impacted by war. However, Russia’s war in Ukraine, fought between two major agricultural producers in an era of globalized markets, poses unprecedented implications for global agriculture and food security. Russia and Ukraine are significant exporters of maize, wheat, fertilizers, edible oils and crude oil. These exports have been compromised by the war, with the greatest impact being on poor and low-income countries that rely most on food imports. Partly because of the Ukraine-Russia conflict and partly due to the decline in agricultural production caused by the climate emergency, food prices have increased between 9.5 and 10.5 percent over the past ten years. 

Nepal, where one in four families is impoverished, is an example of a low-income country impacted by the war’s disruption of trade in agricultural goods and inputs. Although wheat, maize and rice are staples, vegetables are also important for nutrition and income, and Nepal imports fuel and fertilizer for their domestic production. Uncertainty in global supply chains, combined with the Nepali rupee’s significant depreciation against the US dollar, has resulted in a 500% increase in the cost of diesel since 2012. ­­

Irrigation to boost homegrown production

Land irrigation is crucial to crop growth and to the capacity of famers to withstand the effects of the climate emergency and economic shock. However, the majority of Nepal’s groundwater resources are underutilized, leaving ample room for increasing climate-resilient agricultural production capable of withstanding an increasing number of drought events. With the right kind of management of its groundwater, Nepal can increase its domestic output, and bolster smallholder resilience and food security in times of economic and climate crisis.

As part of the first prong of this approach, the Cereal Systems Initiative for South Asia (CSISA) advises farmers (particularly women), governments and donors on the targeted support available to enable them to access existing low-cost and fuel-efficient engineering solutions. These solutions can contribute to the immediate goals of increasing agricultural productivity, intensifying groundwater irrigation and improving rural livelihoods. CSISA informs small producers about ways to access irrigation and develop water entrepreneurship. It also and empowers farmers, especially women, to improve service provision and gain access to services and irrigation pumps, including through access to finance.

Policymakers, businesses, researchers and farmers (especially women, youth and marginalized groups) will collaborate to co-create business models for sustainable and inclusive irrigation with development partners and Nepali public and private sector actors. While there are more than one million wells and pumps in Nepal, many of these are not used efficiently, and social barriers often preclude farmers from accessing services such as pump rentals when they need them. To address these constraints and support private investment in irrigation and water entrepreneurship models, CSISA will work with existing infrastructure investment programs and local stakeholders to build a dynamic and more inclusive irrigation sector over the course of the next year, positively impacting a projected 20,000 small farming households.

At the macro-level, these water entrepreneurship models will respond to prioritized irrigation scaling opportunities, while at the farm level they will respond to irrigation application scheduling advisories. CSISA will also create policy brief documents, in the form of an improved farm management advisory, to be distributed widely among partners and disseminated among farmers to support increases in production and resilience. CSISA’s sustainable and inclusive irrigation framework guides its crisis response.

Scaling digital groundwater monitoring to support adaptive water management

In growing resilience-building irrigation investments, there is always a risk of groundwater depletion, which means that accurate and efficient groundwater data collection is vital. However, Nepal doesn’t currently have a data or governance system for monitoring the impact of irrigation on groundwater resources.

To tackle the need for low-cost, context-specific data systems which improve groundwater data collection, as well as mechanisms for the translation of data into actionable information, and in response to farmer, cooperative and government agency stakeholder demands, the Government of Nepal Groundwater Resources Development Board (GWRDB) and CSISA have co-developed and piloted a digital groundwater monitoring system for Nepal.

In a recent ministerial level workshop, GWRDB executive director Bishnu Belbase said, “CSISA support for groundwater monitoring as well as the ongoing support for boosting sustainable and inclusive investments in groundwater irrigation are cornerstone to the country’s development efforts.”

A pilot study conducted jointly by the two organizations in 2021 identified several options for upgrading groundwater monitoring systems. Three approaches were piloted, and a phone-based monitoring system with a dashboard was evaluated and endorsed as the best fit for Nepal. To ensure the sustainability of the national response to the production crisis, the project will extend government monitoring to cover at least five Tarai districts within the Feed the Future Zone of Influence, collecting data on a total of 100 wells and conducting an assessment of potential network expansion in Nepal’s broad, inner-Tarai valleys and Mid-Hills regions. The goal is to utilize this data to strengthen the Feed the Future Zone of Influence in Nepal by increasing GWRDB’s capability to monitor groundwater in five districts.

Ensuring food security

These activities will be continued for next two years. During that time CSISA will increase GWRDB’s capacity to monitor groundwater and apply this to five districts in Nepal’s Feed the Future Zone of Influence, using an enhanced monitoring system which will assist planners and decision-makers in developing groundwater management plans. As a result, CSISA expects to support at least 20,000 farming households in gaining better irrigation access to achieve high yields and climate-resilient production, with 40 percent of them being women, youth and/or marginalized groups. This access will be made possible through the involvement of the private sector, as CSISA will develop at least two promising business models for sustainable and inclusive irrigation. Finally, through this activity government and private sector stakeholders in Western Nepal will have increased their capacity for inclusive irrigation and agricultural value chain development.

CSISA’s Ukraine Response Activities towards boosting sustainable and inclusive irrigation not only respond to crucial issues and challenges in Nepal, but will also contribute to the regional knowledge base for irrigation investments. Many regions in South Asia face similar challenges and the experience gained from this investment in Nepal will be applicable across the region. Given the importance of of groundwater resources for new farming systems and food system transformation, the project is mapped to Transforming Agrifood Systems in South Asia (TAFSSA), the One CGIAR regional integrated initiative for South Asia, that will act as a scaling platform for sharing lessons learned and coordinating with stakeholder regionally towards more sustainable groundwater management and irrigation investments.

Cover photo: Ram Bahadur Thapa managing water in his paddy field in Dailekh district of Nepal. (Photo: Nabin Baral)

Rear fish in a rice paddy? Old ways can future-proof food production

In an op-ed for the South China Morning Post, Bram Govaerts, Director General at the International Maize and Wheat Improvement Center (CIMMYT), and Essam Yassin Mohammed, Interim Director General of WorldFish and acting Senior Director of Aquatic Food Systems of CGIAR, explore the role of the research community in developing future-proof strategies to address challenges to the global agrifood system.

Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.

This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.

Read the original article: Rear fish in a rice paddy? Old ways can future-proof food production

Food systems that work for people and the environment

Alice Ruhweza, International Maize and Wheat Improvement Center (CIMMYT) Board Member and Africa Regional Director for the World Wide Fund for Nature (WWF), presented on Nature Positive Food Systems for People and Planet on November 22.

Ruhweza has extensive experience working at the intersection of conservation and development in Africa and globally, fostering successful partnerships with a wide range of international institutions. She sits on the Board of The Global Ever-Greening Alliance and on the steering committee of the Future Earth Water-Food-Energy Nexus working group.

Agriculture has a growing environmental footprint, explained Ruhweza, and food emissions are expected to double by 2050. Exponential action is needed to find ways for food systems to co-exist successfully alongside biodiversity, while providing and maintaining healthy diets for humanity.

Ruhweza suggested three solutions for re-thinking the relationship between agriculture and nature: protecting the remaining natural habits from conversion to agriculture; managing agricultural landscapes in a way that support agriculture to enhance the richness and abundance of biodiversity and ecosystem functions, reduces greenhouse gas (GHG) emissions, and enhances resilience to climate change; and restoring degraded agricultural lands and soils to healthy natural habitats or to support sustainable food production.

Organizations like CIMMYT have an opportunity to close the triple gap: producing enough healthy good for a growing population on the same extent of cropland available today, while reducing farm level emissions.

Feature: Reciprocal cooperation between China, int’l agricultural research agency safeguards food security

Collaboration between China and the International Maize and Wheat Improvement Center (CIMMYT) is an example of a mutually beneficial partnership working to safeguard global food security.

Wheat pathologist and geneticist Zhognhu He explained the spread of plant diseases such as wheat scab, which is spreading due to factors such as climate change and could threaten grain security and food safety. His work in wheat disease resistance using the vast germplasm resources in China is helping farmers worldwide.

China has also provided thousands of wheat germplasm resources to CIMMYT’s genebank in Mexico, contributing towards the development of new varieties.

Read the original article: Feature: Reciprocal cooperation between China, int’l agricultural research agency safeguards food security

Shared priorities and plans for partnership

CIMMYT Director General Bram Govaerts with representatives from ATI and EIAR. (Photo: Enawgaw Shibeshi/CIMMYT)

In early September 2022, the International Maize and Wheat Improvement Center (CIMMYT) Director General Bram Govaerts made a brief visit to Ethiopia — his first since taking on the role in 2021. Over two days in Addis Ababa he met with a number of government representatives, donors and partners, including the Agricultural Transformation Institute (ATI), the Ethiopian Institute for Agricultural Research (EIAR), Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, and The Development Fund.

Discussions centered around South-South cooperation and how CIMMYT’s strategic priority to transform agrifood systems can support efforts to improve the livelihoods of resource poor farmers in Ethiopia and national food security. Through longstanding collaboration with local partners, CIMMYT has continued to support the country through maize and wheat germplasm supply, joint technology generation and demonstrations at scale, but the visit provided an opportunity to identify shared priorities and key areas for partnership.

Supporting a plan for self-sufficiency

In a meeting with representatives from the ATI and EIAR, the CIMMYT delegation were briefed on the elements of the Government of Ethiopia’s ten-year development plan and its targets to achieve food self-sufficiency by 2030, with commercialization, advocacy on land ownership, and financial sector reform emerging as key areas of focus.

In terms of policy change, explained ATI Director General Mandefro Nigussie, there are ten core agendas that the government has set and plans to implement in the coming years. These include land governance and advisory; public-private partnership; marketing and infrastructure; and digital agriculture. The continued need for capacity building emerged as a key concern, as high staff turnover has meant many of those trained by CIMMYT previously had now left their posts.

Govaerts thanked ATI and EIAR for their collaboration so far, noting that this would surely continue as CIMMYT planned to double engagement, collaboration, production and partnerships in the coming years. Addressing the concerns raised around capacity building, particularly the training of experts, he explained that training opportunities had been limited in the last two years because of the COVID-19 pandemic and budget constraints, but capacity building for research and extension was included in the list of future action points, including a ministerial visit to CIMMYT offices in either Mexico or India.

The discussions were productive, and participants reached agreement on several other points, including collaboration on the establishment of a One Stop Shop by ATI; supporting EIAR’s data warehouse development that will provide farmers with access to an agronomy advisory services hotline; and supporting the breading of wheat for heat tolerance and Ethiopia’s irrigated wheat initiative.

Representatives from The Development Fund, a non-government organization (NGO) from Norway, meet with Govaerts. (Photo: Enawgaw Shibeshi/CIMMYT)

Strengthening collaboration

Govaerts later met with several representatives from The Development Fund, including Country Director for Ethiopia Ulf Flink, to discuss opportunities for strengthening partnerships for greater impact. The Development Fund’s Ethiopian portfolio has evolved over four decades from supporting relief work by one Tigrayan organization to supporting multiple projects with several organizations in Tigray and Afar, with a focus on socio-economic development to alleviate poverty, and improve food security and natural resource management in dryland areas.

While the organization has recently encountered challenges in Tigray, with several programs disrupted by instability, Flink noted that the implementation of The Development Fund’s collaborative projects with CIMMYT are progressing well and pointed out opportunities to scale-up joint operations in the region, where more than 5,000 farmers have been supported so far.

Govaerts thanked The Development Fund for the strong collaboration so far and emphasized CIMMYT’s need for continued strategic partnership in South-South collaboration that can make a difference to smallholders in the country. He also pointed to CIMMYT’s aim of doubling impact and coverage, highlighting that changes in partners’ thinking and ways of intervening could be opportunities to strengthen collaboration with The Development Fund.

Cognizant of the limitations imposed by major challenges such as funding modalities — which are shifting towards humanitarian rather than development assistance — and the increasing price of mechanization, meeting participants were able to agree on a number of action points to support future collaborative work. These include continued support to project implementation in Tigray when the security situation allows; exploring opportunities to strengthen collaborations in other countries such as Malawi; and supporting research-based advocacy at both regional and zonal levels.

Additionally, CIMMYT will share its methodology for Integrated Development and research-based humanitarian development support, and work with The Development Fund to provide improved crop varieties and grain with smallholder famers in drought- and conflict-affected areas where projects are being implemented.

Is food security possible without peace?

The intersection between agriculture and peace has been brought to the forefront of the news agenda this year due to the Ukraine crisis, which has caused widespread disruption to wheat supply chains – disruptions that are contributing to food insecurity for millions of people worldwide.

Agriculture was therefore a compulsory topic for the International Week of Science and Peace, and formed the main theme for an online fireside chat between Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), and the Hon. Sharon Burke on November 8.

Burke was the director of New America’s Resource Security program and a senior advisor to New America’s Future of War project in the Department of Defense. She served in the administrations of Barack Obama, George W. Bush, and Bill Clinton.

Futureproofing security and food

“[Food] is a foundational element of all security,” explained Burke, when asked about the connection between the two. “We are facing global pressures. Everything that’s made us successful has also made us vulnerable – with biodiversity loss, with climate change. The challenge of having that foundational element of food security has never been harder than it is right now.”

This is a central vision of CIMMYT as a Wallace center, which Burke referenced to highlight how conflict and food insecurity drive one another: “It’s this terrible knot where things are connected. But when we add in climate change, biodiversity loss and pollution and other elements of our modern life, it’s more important than ever to understand how these elements fit together.”

“Peace, prosperity, and equity… are more relevant than ever in the environment we are working in,” agreed Govaerts.

Govaerts then invited Burke to offer recommendations for the development of CIMMYT’s new strategy. She suggested three points to consider:

  • How is climate change going to shift what agricultural production and productivity means – 10 years from now, 20 years from now, 30 years from now?
  • In that world, how does that reflect through your research and development priorities?
  • How do you continue to have that dialogue with farmers, so that you affect them, and they affect you, and what are the ways to make sure that you deepen that and the equity that’s inherent in that conversation?

Govaerts reflected on recent examples from history where conflict destabilized the global food system, such as the Arab Spring as provoked by consecutive droughts that heavily impacted wheat crops. Burke agreed that it was essential to build peace and secure food supplies simultaneously, always having peace as the end goal before any conflict even begins, and the importance of showing the systems effect to donors to encourage future investment.

“One of the reasons that I really love what CIMMYT does, is that you’re talking about not just food security as some abstract concept but as the people and the places where it’s created,” shared Burke.

CIMMYT’s role in peacebuilding

Burke highlighted the commitment from the United States Government to invest money in food security and food assistance, not just for necessary emergency aid but also for improving food production, farming, and last mile technology.

“How can we leverage this investment that is being made now in an emergency to be one that also builds resilience for this longer-term emergency that we are all facing?” she asked, encouraging research and development organizations to always evidence the impact of their work.

In her closing words, Burke expressed high levels of admiration for our scientists. “You get to actually touch the problem and deliver the solution and work in that two-way dialogue with farmers and that you get to bring that all together – how we think about a problem, how we come up with novel science and technology for solving the problem, and then you get to actually carry it to the field and make it work.”

“You’re not just thinking about peace or researching about peace – you’re delivering it!”

Sustainable Agrifood Systems Approach for Sudan (SASAS)

Sustainable Agrifood Systems Approach for Sudan (SASAS) takes a modular and multi-crop approach, implementing an integrated agrifood system that supports food security, employment, and equity. The project focuses on soil fertility management integrated with agrifood systems based on smallholder farmer productivity gains, leveraging both One CGIAR and non-CGIAR innovation partners to support scaling on the ground by last-mile partners.

SASAS moves beyond humanitarian response and resilience to inclusive agriculture-led economic growth and enables landless and under resourced people to participate in functional and gender-sensitive high-production value chains.

This work contributes to six of the United Nations Sustainable Development Goals (SDGs): Zero Hunger; Good Health and Well-Being for People; Gender Equality; Decent Work and Economic Growth; Responsible Consumption and Production; and Climate Action.

SASAS Feature Film 

Technical Overview: Interventions and Food Security Initiative

Abdelrahman Kheir, chief of party for SASAS, highlights the project’s rapid deployment of agricultural technologies across Sudan.

Imtithal Ali Atta Allah from the El-Harram Cooperative

Ali Atta Allah, a farmer, talks about her recent financial gains from selling vegetables cultivated with SASAS-provided seeds.

Aziza Haroun from the El-Harram Cooperative

Aziza Haroun shares her story working with Mercy Corps and SASAS who have provided her with improved seed, doubling her crop yields compared to previous years.

The critical role of smallholder farmers of the Eastern Gangetic Plains in the global food chain

The Eastern Gangetic Plains (EGP) are vulnerable to climate change and face tremendous challenges, including heat, drought, and floods. More than 400 million people in this region depend on agriculture for their livelihoods and food security; improvements to their farming systems on a wide scale can contribute to the Sustainable Development Goals (SDGs).

The Australian Centre for International Agricultural Research (ACIAR) has been supporting smallholder farmers to make agriculture more profitable, productive, and sustainable while also safeguarding the environment and encouraging women’s participation through a partnership with the International Maize and Wheat Improvement Center (CIMMYT). On World Food Day, these projects are more important than ever, as scientists strive to leave no one behind.

The EGP have the potential to significantly improve food security in South Asia, but agricultural production is still poor, and diversification opportunities are few. This is a result of underdeveloped markets, a lack of agricultural knowledge and service networks, insufficient development of available water resources, and low adoption of sustainable farming techniques.

Current food systems in the EGP fail to provide smallholder farmers with a viable means to prosper, do not provide recommended diets, and impose undue strain on the region’s natural resources. It is therefore crucial to transform the food system with practical technological solutions for smallholders and with scaling-up initiatives.

Zero tillage wheat growing in the field in Fatehgarh Sahib district, Punjab, India. It was sown with a zero tillage seeder known as a Happy Seeder, giving an excellent and uniform wheat crop. (Photo: Petr Kosina/CIMMYT)

ACIAR: Understanding and promoting sustainable transformation of food systems

Over the past ten years, ACIAR has extensively focused research on various agricultural techniques in this region. The Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project sought to understand local systems, demonstrate the efficacy of Conservation Agriculture-based Sustainable Intensification (CASI) approaches, and create an environment that would support and scale-up these technologies.

To establish a connection between research outputs and development goals, the Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar) project expands on previous work and partnership networks. This is a collaborative venture with CIMMYT that demonstrates inclusive diversification pathways, defines scaling up procedures for millions of smallholder farmers in the region, and produces a better understanding of the policies that support diversification.

Building the future and inspiring communities

Men and women both contribute substantially to farming activities in the EGP of India, Bangladesh, and Nepal, but gender roles differ according to location, crops and opportunities. It is a prevalent perception supported by culture, tradition, and social biases that women cannot be head of the household.

In Coochbehar, India, the unfortunate passing of Jahanara Bibi’s husband left her as head of her household and sole guardian of her only son. Though a tragic event, Bibi never gave up hope.

Going through hardships of a rural single female farmer intensified by poverty, Bibi came to know about CASI techniques and the use of zero-till machines.

Though it seemed like a far-fetched technique at first and with no large network to rely on for advice, Bibi decided to gather all her courage and give it a try. Being lower cost, more productive, adding income, and saving her time and energy all encouraged Bibi to adopt this zero-till machine in 2013, which she uses to this day. Today, she advocates for CASI technology-based farming and has stood tall as an inspiration to men and women.

“I feel happy when people come to me for advice – the same people who once thought I was good for nothing,” said Bibi.

With no regrets from life and grateful for all the support she received, Bibi dreams of her future as a female agro-entrepreneur. Being a lead female farmer of her community and having good contact with the agriculture office and conducive connection with local service providers, she believes that her dream is completely achievable and can inspire many single rural female farmers like herself to encourage them to change perceptions about the role of women.

Cover photo: Jahanara Bibi standing by her farm, Coochbehar, India. (Photo: Manisha Shrestha/CIMMYT)