Norman Borlaug was awarded the Nobel Peace Prize in 1970 for leading an agricultural revolution in Mexico, specifically in the Yaqui Valley in Sonora, where he developed high-yield, disease-resistant wheat varieties that helped save the lives of thousands threatened by hunger.
Evangelina Villegas, together with Dr. Surinder Vasal (left) and Norman Borlaug (second from right), share a moment together. (Photo: CIMMYT)
His legacy, driven by CIMMYT in collaboration with the Government of Mexico, has had a profound and lasting impact on global food security. This legacy has inspired and empowered the role of numerous women in agricultural science, encouraging them to lead innovative and essential research to address global food challenges.
Among the women who have stood out due to this influence is Evangelina Villegas, a Mexican scientist whose pioneering work in nutritional maize improvement had a global impact. Together with Dr. Surinder Vasal, Villegas developed quality protein maize (QPM), an innovation that significantly reduced malnutrition and improved nutritional quality for millions of people in developing countries. For these contributions, Evangelina Villegas was awarded the World Food Prize in 2000, becoming the first woman to receive this prestigious honor.
Beyond her scientific achievements, Evangelina Villegas stood out for her commitment to mentoring new generations of researchers, especially women. Her efforts opened doors for more women scientists to participate in high-impact social projects, establishing her as a role model for female leadership in agricultural science.
Villegas’s career clearly reflects the continuation of the social and scientific commitment initiated by Borlaug. Her example highlights how his legacy has not only positively influenced science but also played a crucial role in advancing gender equity within the agricultural and scientific sectors.
An award presented to Evangelina Villegas for the 2000 World Food Prize, recognizing her contribution to global food security. (Photo: Jenifer Morales/CIMMYT)
Today, the life and work of Evangelina Villegas continue to inspire young women researchers, demonstrating how fostering female leadership in agriculture is essential for building sustainable, inclusive, and equitable food systems capable of addressing current and future challenges.
Evangelina Villegas in her laboratory conducting analyses that led to the development of quality protein maize (QPM). (Photo: CIMMYT)
When crop breeding succeeds, the impact is dramatic: improved varieties reach farmers, productivity increases, and resilience to climate change and disease improves. But breeding success doesn’t happen by chance. It relies on modern facilities, cutting-edge tools, and the ability to test and select for complex, evolving traits. That’s where Crops to End Hunger (CtEH) comes in. At CGIAR Science Week, the project team and beneficiaries demonstrated how.
A project designed for exponential impact
Launched in 2019, CtEH aimed to support the modernization of CGIAR’s crop breeding infrastructure, with support from GIZ, the Gates Foundation, the US government, DFID, and ACIAR. As it nears the end of the most recent two-year GIZ funding cycle, the project has made targeted investments in upgrading breeding station infrastructure, equipping them with advanced tools, building capacity across CGIAR and national breeding teams, and developing the foundational systems needed to accelerate the entire breeding process.
Supporting CGIAR Centers’ core functions
At CGIAR Science Week, Bram Govaerts, CIMMYT Director General, explained: “CtEH is crucial for implementing CIMMYT 2030 strategy. Support has increased our breeding capacity for maize, wheat, and newly added dryland crops that complement maize and wheat cropping systems.”
One example is the Groundnut Biotic Stress Screening Network, established with CtEH support. The network has strengthened the capacity of partners in Uganda and Malawi to screen for groundnut rosette disease; a devastating disease spread by aphids can result in 100% crop loss, with annual losses of over $150 million. The screening network will enable development of resistant varieties.
In Kenya, a $2.5 million worth infrastructure upgrade at the KALRO–CIMMYT Crop Research Facility in Kiboko, has accelerated breeding cycles. This investment is enabling the development of new varieties tailored to the needs of East African farmers. Drought-tolerant maize varieties developed through work in Kenya and Zimbabwe have expanded dramatically, from just 0.5 million hectares in 2010 to 8.5 million hectares across sub-Saharan Africa today.
The Kiboko station is also a regional leader in pest and disease resistance. Its advanced screening capabilities for fall armyworm have led to the release of three tolerant maize hybrids, benefiting farmers in Kenya, Malawi, Zambia, Zimbabwe, South Sudan, and Ghana. The development of maize varieties resistant to maize lethal necrosis further demonstrates the station’s critical role in enhancing food security across the region.
Operational improvements: more than bricks and mortar
CtEH isn’t just about infrastructure; it’s also about operational transformation which profoundly change the breeding work. For instance, as Gustavo Teixeira explains, “The installation of reliable irrigation systems, one of CtEH’s key priorities, improves breeding efficiency in several ways. It enables off-season trials, allowing breeders to conduct multiple generations per year. It promotes plot control, ensuring uniformity across trial plots and data quality. Finally, it improves the ability to breed for drought tolerance.”
In Ghana, Maxwell Asante of CSIR-CRI described how CtEH brought crop-neutral upgrades that have encouraged teams to strategically plan and align resources, enabled cost attribution to specific breeding programs, improving accountability, and fostered cross-location collaboration by making centralized services possible.
These operational improvements are helping CGIAR and national systems move toward truly modern breeding programs that can operate with greater precision, speed, and coordination.
Building for regional collaboration and innovation
Bram Govaerts also emphasized that collaboration is central to the future of breeding, and that CtEH is helping to make that possible.
“Strategic collaborations enhance our impact by leveraging diverse resources and expertise, especially through public-private partnerships that scale research and technology transfer for agricultural transformation.”
Facilities and systems funded by CtEH are helping CGIAR foster cross-disciplinary innovation and strengthen ties with governments, donors, and technology companies. This makes it easier to bridge the gap between research and real-world application – exactly what’s needed to accelerate impact.
Empowering women in breeding
Infrastructure improvements under CtEH have considered inclusivity and gender equity.
Aparna Das, CIMMYT Technical Lead, explained that modernized stations have been upgraded to better support women in breeding roles – such as providing restrooms and expression rooms in remote research stations, often located far from urban centers, which help attract talent.
Why does this matter? Women breeders bring valuable perspectives, particularly in identifying gender-relevant traits, like cooking time, seed size, and ease of harvesting. Diverse, balanced breeding teams also tend to be more dynamic and innovative, leading to better science and more relevant products for farmers.
Targeting the right traits
Breeding for traits farmers need starts with the ability to test and measure those traits under real-world conditions. This can require specialized equipment.
Maxwell Asante emphasized that this is where CtEH makes a difference:
“Testing for traits is fundamental. And now, we’re not just selecting for yield – we’re breeding for disease resistance, climate resilience, cooking quality, and more. The only way to do this efficiently is through modern breeding infrastructure and processes.”
Modern breeding enables scientists to combine multiple traits in a single variety and identify the best candidates with greater accuracy and confidence. This is made possible through CtEH investments in equipment and data analytics, such as Bioflow, the CtEH-funded breeding analytics pipeline developed for CGIAR and its partners.
Long-term impact through smart design
What makes CtEH unique is its sustainability-by-design approach. The project was structured to build long-lasting capacity and to leverage investments from across CGIAR Initiatives, amplifying both the quality of upgrades and their outcomes.
Whether it’s enabling year-round trials, supporting new partnerships, or empowering a more diverse generation of breeders, CtEH is not just upgrading infrastructure, it’s also reshaping CGIAR and partners’ breeding.
As CGIAR continues to respond to climate, nutrition, and food security challenges, projects like CtEH are making sure we have the tools, systems, and people in place to breed for tomorrow – starting today.
MEXICO CITY — CIMMYT and the World Vegetable Center (WorldVeg ) accelerated its global partnership by launching a new WorldVeg office in Mexico at CIMMYT’s headquarters. This joint location will provide improved nutrition, soil health and earning potential for global farmers.
“When vegetables and cereals grow together, the benefits multiply for people and the planet,” said Bram Govaerts, Director General of CIMMYT.
Govaerts said he is eager to scale a proven global track record of collaboration across Mexico, Latin America and the wider world. CIMMYT and WorldVeg’s partnership is already delivering results in Mexico and Central America. For years, the organizations have collaborated to improve production in the traditional milpa system—where maize is grown with beans and squash, often known as the “three sisters.” Collaboration increased yields, helped balance diets and conserved biodiversity.
The collaboration also builds on the more than 100,000 people reached in Sudan, Malawi, Tanzania, and Zambia through CIMMYT and WorldVeg collaboration. These joint projects have improved dietary diversity, soil health and incomes by cultivating both vegetables and cereals. In Tanzania alone, the collaboration has increased the sales of value-added products by 50%.
“This partnership represents tangible, scalable diversification options for farmers,” said Marco Wopereis, Director General of WorldVeg. “Integrating vegetables into cereal systems improves nutrition, raises incomes, and builds sustainability, beginning in Mexico and expanding globally.”
Led by WorldVeg Scientist Roland Schafleitner, the WorldVeg Mexico office in partnership with CIMMYT, local universities, research organizations and farmers will identify and promote adapted vegetable varieties suitable for smallholder production, as well as intercropping systems.
This initiative will improve supply of nutrient-rich vegetables that directly address the pressing global challenge highlighted by a 2020 FAO report—that over 3 billion people worldwide lack affordable access to diverse and nutritious diets.
“Whether it is in the field or on plates – cereals and vegetables go better together,” said Govaerts. “This marks an acceleration CIMMYT’s efforts to work with other organizations that share in our mission to advance a more food- and nutrition-secure world for all. We are eager to partner with other organizations that share this focus.”
The strategic alliance between CIMMYT and WorldVeg marks the first of several anticipated collaborations, transforming CIMMYT’s global headquarters into a hub for food and agricultural innovation.
CIMMYT and the World Vegetable Center inaugurate their new office at CIMMYT headquarters (Photo: CIMMYT)
About CIMMYT
CIMMYT is a cutting edge, nonprofit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets and associated crops through applied agricultural science, particularly in the Global South, building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers while working toward a more productive, inclusive, and resilient agrifood system within planetary boundaries. For more information, visit: cimmyt.org.
About WorldVeg
WorldVeg is an international non-profit institute for research and development of vegetable technologies. It mobilizes resources from the public and private sectors to realize the potential of vegetables for healthier lives and more resilient livelihoods. WorldVeg’s improved varieties, production and postharvest methods help farmers increase vegetable harvests, raise incomes in poor rural and urban households, create jobs, and provide healthier, more nutritious diets for families and communities.Headquartered in Taiwan, it operates in 15 countries.More information: worldveg.org.
From the Sierra Norte of Puebla, Fidelia González Galindo has built her story with determination and courage. At 48 years old, González Galindo is responsible for the Cuautempan Research Platform in the state of Puebla and is part of CIMMYT’s Hub Valles Altos. Her work focuses on improving food security and strengthening native maize production—a mission born from her own struggle to access education.
Research platforms, like the one Fidelia coordinates, are spaces where innovative technologies are developed and validated to enhance agricultural production. These platforms explore improved farming practices, efficient soil and water resource management, and strategies for sustainability and food security. Through her work in Cuautempan, Fidelia strives to ensure that these innovations reach rural communities and are adapted to the real needs of women farmers.
Fidelia González Galindo, researcher and head of the Cuatempan Research Platform, discusses strategies to strengthen the participation of rural women in sustainable agricultural production. (Photo: Jenifer Morales/ CIMMYT)
Raised by her grandmother in a community where it was considered normal for women to dedicate themselves to the home and marriage, Fidelia defied these norms—challenging even the authority of the matriarch in her household. With her mother’s support, she pursued a different path, continuing her studies and eventually attending the Autonomous University of Chapingo. There, she faced not only academic challenges but also discrimination due to her Indigenous background and her status as a woman in a male-dominated field. “I never accepted that being a woman was a limitation,” she recalls.
Since returning to her region, Fidelia has tirelessly advocated for the autonomy of rural women, who often take charge of farming while men migrate in search of work. She has witnessed firsthand the challenges they face: limited access to quality seeds, financial constraints, physical disadvantages in labor-intensive tasks, the constant struggle to feed their families, scarce training opportunities, and the overwhelming burden of balancing household responsibilities with agricultural production. “Many times, women have to find additional jobs to support their families, which takes them away from improving their farming systems,” she explains.
To address the many challenges faced by rural women, Fidelia promotes knowledge-sharing on sustainable agricultural practices and works to empower women in decision-making processes. She has helped create support networks among women farmers, facilitated knowledge exchange, and organized training sessions with flexible schedules to accommodate family responsibilities. She also advocates for municipal and government support to fund productive projects, enabling women to generate income independently. “Knowledge is power, and if women learn to manage their resources, they can transform their lives and their communities,” she says.
Fidelia shares knowledge on sustainable agricultural production with local farmers, strengthening the role of rural women in decision-making and farm management. (Photo: Fidelia González)
Fidelia describes rural women as hardworking individuals, proud of their roots and committed to making meaningful changes in their environment. “They are bold women who, when they learn something new, apply it with determination. And the best part is that they don’t keep the knowledge to themselves—they share it with others so that everyone can improve,” she emphasizes. Beyond producing food, these women care deeply about their families’ health, soil conservation, and their children’s future.
Fidelia represents the relentless efforts of rural women who challenge the limits imposed by society. “Farming is not exclusive to men,” she declares with conviction. Her story is a testament to resilience, learning, and transformation. Through her work, she cultivates not only maize but also hope, knowledge, and a more equitable future for women in agriculture—proving that true change begins when women are empowered to lead from the land they know best.
Joe Akombaetwa shows the improved no-till multi-crop planter fitted with a T-bar and furrow kits (Photo: CIMMYT)
In Dumba Camp, a small farming community in Mazabuka District, Joe Akombaetwa is proving that even in the face of unreliable rains and poor soils, small shifts in how farmers work the land can make all the difference. A farmer since 1992, Joe has lived through the growing impacts of climate change, its frequent shocks to the rain-fed systems, and the high risks it brings to farming families in Zambia’s Southern Province. For the past five years, he has worked as one of the earliest mechanization service providers (SPs) under the European Union-funded Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project. As a SIFAZ service provider, Joe acquired a set of machinery, including a two-wheel tractor, a trailer, a multi-crop thresher, and a sheller in 2021. Since then, he has been offering paid mechanization services to farmers in his community. But more than a service provider, Joe is an innovator, a machinery fabricator, and a businessman, creating tailor-made climate-smart mechanization solutions with the support of the SIFAZ project, responding directly to the challenges faced by farmers in his community.
Grounding innovation in reality
Joe’s innovations aren’t conceived in a lab—they’re forged in the field, shaped by the lived realities of his fellow smallholder farmers. One of his earliest breakthroughs came when he collaborated with SIFAZ engineers to design a T-bar to modify the Chinese single-row, no-till multi-crop planters into a double-row planter for a two-wheel tractor, allowing simultaneous planting of two rows instead of just one.
The original single-row planters, while functional, were slow and inefficient. “We wanted to save time and get the work done faster,” Joe explains. “So, we created the T-bar so that two planters could work together in tandem.”
But the innovation didn’t stop there. Joe received feedback from the farmers on the issue of high side separation between the seed and fertilizer openers on the planter. This high side separation of about 120 mm might be useful to reduce seed burning in an irrigated system for which the planter was developed, but Joe and his client farmers in the rain-fed system noticed reduced early plant growth, evidently resulting from delayed nutrient access by young seedlings of the crops. Further, the furrow covered by the press wheels of the planter was not optimum (leaving some seeds uncovered with soil), leading to germination failures.
With his own hands and tools, together with the SIFAZ engineers, Joe redesigned the seed placement system by better aligning the seed and fertilizer openers (with 50 mm side separation) and developing a flexible seed-covering kit fitted before each press wheel on the planter. These modifications addressed what agronomists refer to as “placement efficiency”, but for Joe, it was simply about “getting the seed and fertilizer placed close to each other for the plants to access the fertilizer early and firmly cover the seeds for optimum emergence.” To further improve performance, he added a balancing bar to help stabilize the planter across uneven ground, making the machine more practical for Southern Province’s uneven terrains and varying soil textures.
Joe demonstrates his two-wheel tractor mini boom sprayer to the CIMMYT mechanization team (Photo: CIMMYT)
Bridging science with farmer-led solutions
Joe’s hands-on creativity is not new. Back in 2010, he was part of the team that co-developed an animal-drawn ripper, a widely adopted tool that aligns with Conservation Agriculture (CA) principles by reducing soil disturbance.
With a background in blacksmithing and metal fabrication from Kasisi, and early career exposure to seed certification at ACCI in Chilanga, Joe has long moved between formal agriculture and on-the-ground adaptation. Joe is aware of declining draft animals and the aging of the farmers in Zambia, which adds to the challenges faced by smallholder farmers. He sees a declining interest of rural youths in agriculture who do not want to walk behind the beasts or do labor-intensive manual work. Observing the ease with which large-scale commercial farmers operate rippers and boom sprayers, Joe wondered, “Why not adapt this to smallholder needs?”
Joe designed a double-row ripper and a mini boom sprayer for use with a two-wheel tractor. Compared to the traditional animal-drawn single-row rippers or the knapsack sprayers, the two-wheel tractor double-row ripper saves not only time, costs, and drudgery, but also makes farming interesting. “In just ten minutes, I can finish spraying a 16 m by 39 m field,” he says. It’s a leap in efficiency, and for farmers, who often juggle time, labor, and resource constraints, it’s a game-changer! Joe has sold a few rippers and boom sprayers to his neighboring farmers and different projects. The demand for the machinery is on the rise, which encourages him as a rural manufacturer.
Business with a purpose
Joe isn’t only an innovator; he’s also a sharp businessman. From ripping and planting to boom spraying and shelling maize, his mechanization services are in high demand among farmers in and around Dumba Camp. “Ripping has been the most profitable,” he notes. “Almost every farmer now wants it because of the sustainable farming practices introduced by SIFAZ.” He charges based on plot size and crop type, typically around ZMW 200–450 per hectare (approximately US$7–16) for services like no-till planting. But he also knows the realities farmers face. “Sometimes, I negotiate. I don’t want the price to scare away the farmers.” Demonstration days and field shows are his marketing lifeline. From the Cotton Development Trust-organized mechanization field days to local radio promotions, Joe has built a network of trust and visibility. He’s become a go-to name in the Dumba Camp and beyond.
Joe stands with his 80-year-old client, who, thanks to hiring the no-till soybean planting service, is able to keep his family farm running despite his children’s absence. (Photo: Md A Matin, CIMMYT)
Staying afloat in tough seasons
Last season, the El Niño-induced drought was a huge blow in farmers’ fields. Poor and uneven rainfall and economic strain slashed demand for mechanization services. But Joe stayed afloat by leaning on his farmer instincts. He didn’t sell off all his harvest, but instead, he stored 100 bags of maize and sold another 100 bags to have money for living. That food sovereignty, paired with diversified income from shelling and ripping, kept his business breathing through the drought.
A legacy in the making
Behind the machines and modifications is a father of five, two of whom are already following in his footsteps, bringing civil engineering skills into the family’s growing innovation portfolio. It’s a quiet generational shift powered by resilience, knowledge sharing, and an openness to adapt. Joe’s story reminds us that the future of farming isn’t only shaped by distant policies or global climate models, but also built, welded, and tested in the fields of Southern Zambia, where farmer-innovators like Joe bridge the gap between science and local adaptation.
In February 2025, leading voices in the global food and agricultural system came together on the occasion of the Munich Security Conference to discuss how to achieve food security in an increasingly insecure world.
Biological diversity is key to food and nutritional security, but all too often neglected. The loss of agricultural biodiversity (which includes crop diversity) threatens not just the resilience of global food systems but also their productivity. This in turn undermines rural livelihoods and economic activity, increasing the likelihood of migration. It also heightens the risk of price spikes and restricts the availability of staple food products, which may hamper trade in important commodities as governments seek to shore up sufficient stockpiles for domestic markets.
Compromised food systems and agricultural biodiversity loss destabilize and damage communities, potentially to an existential level, while preserving agricultural biodiversity and investing in resilient farms are the foundations for peace and prosperity. Stakeholders across the international community, including the security community, civilian agencies, civil society and businesses, should act to preserve and use agricultural biodiversity and promote sustainable agriculture by putting farmers first.
As the ultimate providers of life-sustaining nutrition, farmers are indispensable global security partners. Farmers provide a steadying economic force, but only if they have adequate safety, and access to land, investment, innovation, and functioning markets. It is imperative to provide farmers with the support, investment, and opportunities for innovation to adapt to changing global environmental conditions and persevere through social unrest and conflict. Farmers must be able to employ agricultural practices that concurrently promote nutrition, water security, human health, and biodiversity preservation. Prioritizing the delivery of nutrient-rich foods and bio-based products in ways that respond to water and weather stress is essential.
Crucially, for farmers to be successful, they need continued access to agricultural biodiversity. To ensure that, genebanks must be seen as a shared strategic strength.
Reliable, sufficient, and nutritious food for the current and future population depends on the crop diversity that underpins critical research and breeding efforts. Despite its increasing importance in light of a changing climate, the conservation and availability of crop diversity is increasingly at risk: it is declining in farmers’ fields and in the wild, and genebanks are chronically underfunded. Growing food demands, land degradation, and geopolitical tensions threaten crop diversity, and more generally agricultural economies.
Given their essential role in food security, genebanks should be strategically protected and funded. Sufficient attention and resources should be available to ensure an effective and efficient global system of genebanks under the policy umbrella of the International Treaty on Plant Genetic Resources for Food and Agriculture.In addition, the security community should incorporate food security and agricultural biodiversity into national and international security risk assessments and strategies.
Call to Action
It is our duty to alert the world to the threats to security and state stability posed by compromised food production systems and the loss of agricultural biodiversity. We wish to highlight the need for greater attention and investment from all stakeholders across governance, including the security sector, as well as civil society and the private sector.
Leading international organizations in agricultural biodiversity conservation and agricultural research, philanthropies, multinational corporations, and representatives from governments share this concern and endorse this statement arising from discussions at the 2025 Munich Security Conference.
Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security
Victor Munakabanze in his field sharing his scaling story with scientists and district agriculture officers (Photo: CIMMYT)
Each annual field tour offers a fresh perspective on the realities farmers face. It’s a window into how different agroecological conditions shape farming experiences and outcomes, revealing what works in farmers’ fields and what doesn’t under an increasingly unpredictable climate.
This year, in Zambia’s Southern Province, the story is promising, as good rains have set the foundation for a favorable crop—a stark contrast to the past season, marked by the El Niño-induced drought.
In the Choma district’s Simaubi camp, Conservation Agriculture (CA) trials paint a picture of resilience and adaptation. The area experiences a semi-arid climate with erratic rainfall averaging 600–800 mm annually, often prone to dry spells and drought years, such as the last, when only 350–400 mm were received. The soils are predominantly of sandy loam texture, with low organic matter and poor water retention capacity, making them susceptible to drought stress.
The area around Simaubi hosts seven mother trials, where a wide range of technologies are tested, and 168 baby trials, where a subset of favored technologies are adapted to farmers’ contexts. Each trial tests different maize-legumeintercropping and strip cropping systems against conventional tillage-based practices. As adoption steadily rises, more farmers are experiencing firsthand the benefits of sustainable intensification.
A Champion in the Making
Meet Victor Munakabanze, a farmer with decades of experience and a passion for learning. He began his CA journey as a baby trial implementer, experimenting with the four-row strip cropping system on a 10 m by 20 m plot, with four strips of ripped maize and four strips of ripped groundnuts. Starting in the 2020/21 season—despite a slow start—he persevered. Instead of giving up, he and his wife embarked on a learning journey that led them to scale up and champion CA technologies in their community.
Victor has been part of CA trials under the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project in the Southern Province for five years and has seen the power of small steps in driving change. His initial trial plots sparked hope, showing him that improved yields were possible even under challenging conditions. Encouraged by these results, he expanded his CA practices to a 1.5-hectare plot during the 2024/2025 cropping season, investing in his farm using income from goat sales. He successfully integrated livestock within the cropping system, using goat manure to complement fertilizers—an approach that has not only improved soil fertility but also strengthened the farm’s sustainability.
From Experimentation to Expansion
Victor’s decision to adopt CA at scale was driven by tangible results. He found that intercropping maize and groundnuts in well-spaced rip lines could optimize overall yields better than conventional methods.
However, the transition wasn’t without challenges. In the first season, he started late and harvested little. The following year, delayed planting resulted in just four bags of maize from the 200 m². The El Niño event during the 2023/24 season wiped out his harvest completely. But through each setback, he refined his approach, improving his planting timing and weed management by incorporating herbicides when needed.
Now, his farm serves as a learning hub for fellow farmers from the surrounding community in Simaubi camp. They are drawn in by his success, curious about his planting techniques, and impressed by his ability to integrate crops and livestock. With 23 goats, a growing knowledge base, and a determination to share his experience, Victor embodies the spirit of farmer-led innovation. His story is proof that CA can be practiced beyond the trial plots—it is about ownership, adaptation, and scaling what works.
Inspiring Adoption, One Farmer at a Time
Victor’s journey highlights a crucial lesson: when farmers see the benefits of CA on a small scale, they are more likely to adopt and expand these practices on their own. His resilience, coupled with a keen eye for what works, has made him a role model in his community. From testing to real-world application, his success is growing evidence of the replicability of CA technologies. As adoption spreads, stories like Victor’s pave the way for a future where sustainable farming is not just an experiment—but a way of life.
Away Hamza, a young and ambitious farmer in Arsi Zone, Oromia region, proudly tends to his wheat field (Photo: CIMMYT)
Wheat plays a pivotal role in Ethiopia’s agricultural landscape. As the country’s second most important staple crop, it is crucial to national food security. Traditionally, wheat cultivation has been concentrated in Ethiopia’s highlands, but this has changed with the introduction of the ADAPT-Wheat project—an initiative designed to address the production challenges faced by Ethiopia’s irrigated lowland areas. Led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR), the project aims to tackle key issues such as the lack of stress-tolerant wheat varieties and limited access to reliable seed sources.
Transforming wheat farming in Ethiopia’s lowlands
The Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project focuses on bridging critical wheat production gaps and introducing innovative solutions for smallholder farmers, particularly in the Afar and Oromia regions. By improving wheat production through new varieties and modern technologies, the project is not only increasing agricultural productivity but also transforming farmers’ livelihoods. The initiative aims to directly benefit 1,000 households, with a much wider impact expected across the two regions.
Financially supported by BMZ, the project aligns with Ethiopia’s broader goal of achieving food self-sufficiency. Researchers and national partners have witnessed a significant shift in wheat production practices, demonstrating the success of innovative agricultural technologies and improved collaboration among stakeholders.
Insights from researchers and partners
Bekele Abeyo, CIMMYT-Ethiopia Country Representative and project leader:
“The ADAPT-Wheat project marks a major milestone in Ethiopia’s wheat production journey. It introduces viable wheat technologies that are well-suited for the irrigated lowlands, enhancing both production and productivity in the pursuit of food and nutritional security.”
Tolossa Debele, senior researcher and EIAR–DG representative:
“For years, CIMMYT has been instrumental in advancing Ethiopia’s wheat production system by introducing germplasm, improving varieties, and offering financial, equipment &technical support and training for both researchers and farmers. With the ADAPT-Wheat project, we’ve seen another tangible difference in the livelihoods of smallholder farmers, particularly in the Afar and Oromia regions. The project’s support, including the introduction of modern farm machinery, has not only enhanced mechanization at the farm level but has also contributed significantly to the broader objectives of national agricultural development.”
Tolossa Debele, senior researcher and EIAR-DG representative (Photo: CIMMYT)
Major milestones and achievements
1. Building capacity for sustainable change
One of the project’s most significant accomplishments has been its strong emphasis on capacity building—both human and physical—to empower local communities in wheat farming. Key capacity-building initiatives include:
Training for researchers: Software and scientific writing training to enhance technical skills and scientific contributions.
Training of trainers (TOT) for agricultural experts: Development agents and district-level subject matter specialists were trained to share knowledge with farmers.
The project also included seed distribution, experience-sharing visits, and field days to disseminate knowledge and encourage peer learning. A notable outcome has been informal seed exchange among farmers, amplifying the project’s impact.
Through these efforts, the project successfully reached approximately 4,300 households and engaged a wide range of stakeholders, contributing to human capacity development, seed production and distribution, technology diffusion, and sustainable farming practices.
Additionally, infrastructure development—such as the construction of a quarantine facility and installation of air conditioning units at the Werer Research Center—has strengthened research capacity and maintained high standards for agricultural innovation. The procurement of essential farm machinery has also set the stage for more sustainable wheat farming in Ethiopia’s lowlands.
2. Introducing elite wheat lines
The project introduced 505 elite bread wheat lines and 235 durum wheat lines. From these, 111 bread wheat and 49 durum wheat genotypes were identified for their promising traits, including heat stress tolerance, early maturity, and superior yield components. These lines were rigorously tested across diverse agroecological zones to ensure adaptability.
3. Demonstrating modern irrigation technology and mechanization
The project didn’t stop at improving wheat varieties—it also introduced modern mechanization practices to enhance efficiency and yield. In the Afar and Oromia regions, pilot farms demonstrated advanced machinery such as:
Subsoilers
Bailers
Land levelers
Planters
Ridge makers
Multi-crop threshers
These technologies have been showcased at various farm sites to facilitate adaptation and scaling.
4. Releasing and adapting wheat varieties
The project identified eight wheat varieties (four bread wheat and four durum wheat) suited for Ethiopia’s lowland irrigated conditions.
Additionally, two new wheat varieties—one bread wheat and one durum wheat—were officially registered and released for large-scale production. These releases mark a significant milestone in Ethiopia’s efforts to strengthen wheat production systems.
5. Seed production and distribution
Ensuring the availability of high-quality seeds has been another key priority. Through partnerships with research centers, early-generation seeds were provided to private seed producers and farmers’ cooperative unions. Field monitoring ensured seed quality at harvest, resulting in the production of 430 quintals of certified seed.
Women and youth empowerment strategy
The ADAPT-Wheat project has made a deliberate effort to empower women and youth by ensuring they have access to high-quality seeds, training, and technical support. Notably, women comprised 32% of seed distribution beneficiaries, strengthening their role in improving food security and livelihoods.
Voices from the field: Farmers share their stories
Damma Yami from Jeju district, Alaga Dore village
Farmer Damma Yami, has carefully monitors her thriving wheat crop as it nears harvest (Photo: CIMMYT)
Damma Yami’s story is a powerful example of how innovative agricultural initiatives can transform communities, especially in regions facing harsh environmental conditions.
“For many years, we have lived in arid conditions where livestock farming was our primary livelihood. However, with the challenges posed by weather trends, our traditional systems were no longer sufficient to maintain our livelihoods. The introduction of the ADAPT-Wheat project in recent years has reversed this trend. The project brought us wheat cultivation, as a new and golden opportunity for the farming community. We received high-yielding seeds, training, and technical support on farming practices, and soon we began to see impressive results. The benefits of the project are clear: it provides food for our families, generates income to send children to school, and helps meet other basic needs. As a farmer who engaged in this project, I can confidently say that the project has reshaped our future livelihood.”
Yeshiwas Worku from Oromia region, Arsi Zone, Merti district, Woticha Dole village
Farmer Yeshiwas Worku actively monitoring the growth and performance of his wheat crop on his plot, ensuring optimal results through the support of the ADAPT project (Photo: CIMMYT)
Yeshiwas Worku, a 40-year-old farmer was among those who benefited from the project.
Yeshiwas explains that before the project, wheat cultivation was not traditionally practiced in his area, but it has now become a game-changer for the community. The introduction of modern farming tools, machinery, and access to improved crop varieties has been key to their success. With the help of the project, wheat production has not only become their main source of income but has also helped farmers gain confidence in their ability to sustain their livelihoods.
“We are now familiar with modern farming tools, machines, and practices thanks to the implementing partners of the ADAPT project. We also have access to improved crop varieties, which are crucial for better production and increased income. Now, wheat production has become the main source of our livelihood. This alternative farming opportunity has not only boosted our confidence but has also allowed us to secure a more sustainable livelihood for my family and me. I am deeply grateful to the project implementing partners for playing such a crucial role in transforming our lives. The impact has truly been transformative.”
A transformative impact on wheat production
The ADAPT-Wheat project, alongside CIMMYT’s ongoing work in Ethiopia, has significantly improved wheat production systems and enhanced the livelihoods of smallholder farmers in the lowland regions. More than just a This project is technological intervention, the project serves as a lifeline for smallholder farmers. By introducing innovative wheat technologies, improving seed availability, and empowering local communities, it directly contributes to Ethiopia’s food security goals while fostering economic growth and resilience in rural areas.
As Ethiopia continues its journey toward agricultural self-sufficiency, the success of the ADAPT-Wheat project serves as a model for sustainable agricultural development.
CIMMYT and Nepalese delegation and Debre Zeit Agricultural Research Center research team in the field (Photo: CIMMYT)
Soil health is fundamental to agricultural productivity, food security, and climate resilience. In Ethiopia and Nepal, deteriorating soil conditions—driven by acidity, nutrient depletion, and land degradation—pose a significant challenge to farmers and policymakers alike. Addressing these issues is not just a technical necessity but a pathway to ensuring long-term agricultural sustainability and economic stability.
Recognizing these shared challenges, CIMMYT facilitated a South-South exchange between Ethiopia and Nepal to foster collaboration, exchange knowledge, and explore innovative solutions for improving soil health.
Shared challenges, shared solutions
Both Ethiopia and Nepal face persistent soil health challenges that hinder agricultural productivity. In Ethiopia, soil degradation—stemming from issues like soil acidity, salinity, and nutrient depletion—has become a barrier to achieving higher agricultural productivity. Similarly, Nepal is navigating soil health concerns amidst small landholdings, urban migration, and climate impacts.
For both nations, sustainable soil management is critical to strengthening their agricultural sectors. This exchange provided an opportunity for researchers, policymakers, and agricultural experts to learn from each other’s experiences, leveraging successful approaches to improve soil quality and boost productivity.
CIMMYT and Nepalese delegation listening to explanations by Experts and technicians about the various activities taking place at the soil and plan analysis laboratory (Photo: CIMMYT)
A unique exchange of knowledge
From November 25–28, a Nepalese delegation—including CIMMYT scientists and representatives from Nepal’s Ministry of Agriculture and Livestock Development (MoALD) and the Nepal Agricultural Research Council (NARC)—visited Ethiopia to gain insights into its soil health initiatives.
Ethiopia has made significant progress in soil management through collaborations between government agencies, research institutions, and international partners. With CIMMYT’s support, the country has developed a National Soil Information System (NSIS), a comprehensive data-driven approach that guides interventions to improve soil health, increase productivity, and enhance food security.
During the visit, the Nepalese delegation met with leading Ethiopian institutions, including:
The Ministry of Agriculture (MoA)
The Ethiopian Institute of Agricultural Research (EIAR)
The Agricultural Transformation Institute (ATI)
The Holeta Agricultural Research Center
The National Agricultural Biotechnology Research Center
Through site visits and discussions, the delegation explored Ethiopia’s Vertisol management strategies, sub-soil acidity solutions, and data-driven soil health policies—areas that could be adapted to Nepal’s agricultural landscape.
A shared commitment to agricultural innovation
Beyond knowledge exchange, the visit served as a catalyst for long-term collaboration between the two countries. CIMMYT has been working in Ethiopia for over three decades, supporting research and technology development to enhance soil health and food security. In Nepal, CIMMYT scientists collaborate with national partners to strengthen agricultural commercialization and climate resilience.
During their visit, Nepalese delegates expressed particular interest in Ethiopia’s Geo-Nutrition approach, which connects soil quality to human health by analyzing how soil nutrients influence the nutritional value of crops. Nepal sees great potential in adopting this model to enhance both agricultural and public health outcomes.
Shanta Karki, Joint Secretary at Nepal’s Ministry of Agriculture and Livestock Development (Photo: CIMMYT)
Shanta Karki, Joint Secretary at Nepal’s Ministry of Agriculture and Livestock Development, reflected on the visit: “The insights we gained in Ethiopia will be instrumental in improving our soil health strategies.
We see great potential for collaboration between Ethiopia and Nepal in tackling common challenges like soil acidity and water management.” She added that another key area of learning was Geo-Nutrition, an innovative field that connects soil health to human health.
The concept, which Ethiopia has been actively exploring, looks at how soil quality influences the nutritional value of crops and ultimately the health of the populations that depend on them. The Nepalese delegation saw this as an opportunity to further develop their own approach to improving soil and human health simultaneously.
Looking Ahead: Building stronger partnerships
Shanta Karki, Joint Secretary at the Ministry of Agriculture and Livestock Development (MoA), presents a token of appreciation to Dr. Samuel Gameda, Senior Soil Scientist at CIMMYT-Ethiopia, in recognition of his efforts to strengthen partnerships between Nepal and Ethiopia in the framework of improving soil health (Photo: Desalegne Tadesse/CIMMYT)
As CIMMYT continues to facilitate South-South exchanges, the goal is to adapt successful models from Ethiopia to Nepal while drawing lessons from Nepal’s unique agricultural landscape. The delegation left Ethiopia with renewed motivation to enhance soil health, not just for the benefit of farmers but for broader food security and economic resilience.
Narayan Prasad Khanal, Business Development Manager at CIMMYT Nepal, emphasized the importance of such exchanges. “The lessons learned here, particularly on sub-soil acidity management and Geo-Nutrition, will be crucial for enhancing our regulatory systems and addressing challenges in Nepal’s agriculture. This experience has shown us how important it is to adapt successful models from other countries and incorporate them into our own agricultural practices.
Dr. Shree Prasad Vista, Senior Scientist at the Nepal Agricultural Research Council (NARC), shares his reflections and lessons learned during the experience-sharing visit (Photo: Desalegne Tadesse/CIMMYT)
Shree Prasad Vista, Senior Scientist at the Nepal Agricultural Research Council (NARC), was particularly fascinated by Ethiopia’s innovative work on Vertisol management and soil acidity. He remarked, “The insights we gained from CIMMYT, particularly on Geo-Nutrition and soil acidity, will help enhance our agricultural practices and regulatory systems in Nepal.”
A Path toward collaborative solutions
As Ethiopia and Nepal continue to navigate similar agricultural challenges, the knowledge gained from this exchange will play a crucial role in shaping future soil health strategies. By learning from each other’s successes, both countries are positioning themselves to implement sustainable, climate-resilient soil management practices tailored to their unique context.
This exchange stands as a powerful example of how international collaboration fosters innovation, resilience, and food security. Through shared expertise and collective action, Ethiopia and Nepal are laying the foundation for stronger agricultural systems that will benefit future generations.
In Tanzania, access to high-quality seeds has significantly benefited smallholder farmers by improving their livelihoods. Despite impressive economic growth, poverty reduction has not kept pace, and malnutrition rates remain a challenge.
The Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, funded by the Bill & Melinda Gates Foundation (BMGF), led by CIMMYT, and implemented in Tanzania by the Syngenta Foundation for Sustainable Agriculture (SFSA), is an excellent example of the positive impact of supporting smallholder farmers by ensuring seed availability, access, and affordability.
Tanzanian smallholder farmers face challenges in increasing yields and incomes due to a lack of affordable, high-quality seeds, inadequate agronomic training, and limited access to reliable markets. Distance from seed suppliers and agro-dealers, along with impassable roads, exacerbate the situation. In addition, the distribution networks of private companies that produce certified seeds are very limited, especially for underutilized crops.
The Quality Declared Seeds (QDS) system is a seed production system that ensures seed meets a minimum quality standard through inspection by an official seed certification system or a designated inspector from the local government authority. SFSA, through the AVISA project, is focusing on supporting the production of QDS by community-based groups for common bean and groundnut varieties in several districts in Tanzania.
A Groundnut QDS field owned by Chamwiilee Agro-Live Group in Bahi District (Photo: SFSA)
Two QDS-producing farmer groups received free Early Generation Seed (EGS) capital, consisting of 200 kg of Selian 13 bean seed, 150 kg of Tanzanut seed, and 50 kg of Naliendele 2016 groundnut seed. As a result, the groups sold 1.35 MT of QDS for common beans and 2.00 MT of groundnuts to individual farmers in the Karatu and Bahi districts respectively.
“This initial investment by the AVISA project has, therefore, improved the incomes of these groups, and we are seeing an increased demand for larger volumes of improved seeds within seed value chain actors and off-takers,” states the Tanzanian Program Coordinator, Papias Binagwa.
Women farmers from Chamwiilee Agro-Live Group in Bahi District proudly showcase their groundnut QDS harvest (Photo: SFSA)
Both the Tanzania Official Seed Certification Institute (TOSCI) and the Tanzania Agricultural Research Institute (TARI) have been instrumental in supporting this initiative by providing training to farmers on current regulations and seed production practices. The QDS-producing farmer groups have been hosting local smallholder farmers for informational visits and field demonstrations to showcase the use of improved varieties and agronomic practices that enhance yields. As a result, QDS-producing farmers are full of praise.
“Thanks to this initiative, I have more sources of income as my yields have significantly increased from the seeds I sourced from TARI-Selian and ALSSEM seed company. The training has improved my seed handling and management. My extra agronomic knowledge will also benefit my fellow farmers,” says Baraka Hamis from Karatu district.
Joyce Yuda from the Chamwiilee Agro-Live QDS-producing group further stated, “Thanks to the seed sales, I have paid my children’s school fees and renovated my house. My food is assured, and I have economic freedom.”
How can market intelligence and seed system insights drive varietal turnover for groundnut, sorghum, and beanstakeholders? This was the central question explored during a series of workshops convened by the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) and The Accelerated Varietal Adoption and Turnover for Open-Pollinated Varieties (ACCELERATE) projects.
Held from October 21-25, 2024, across three locations in Tanzania, these workshops were designed to identify practical solutions for improving varietal turnover.
The AVISA Project focuses on modernizing crop breeding programs and strengthening seed systems to enhance the productivity, resilience, and marketability of key dryland cereals and legumes in sub-Saharan Africa. By ensuring that smallholder farmers have access to high-quality improved varieties, AVISA contributes to better food security, nutrition, and economic development.
ACCELERATE, complementing AVISA’s efforts, focuses on market-driven adoption strategies by analyzing the requirements and constraints of both large- and small-scale marketplace traders. It aims to catalyze the uptake of new varieties through market intelligence-driven interventions and foster partnerships across formal, semi-formal, and informal seed sectors to accelerate varietal adoption and turnover.
The workshops opened with expert presentations from breeders and seed system specialists from CIMMYT, CIAT, and TARI. Key topics included the adoption of improved seeds for groundnuts, sorghum, and beans; groundnut processing for peanut butter; the sustainability of digital inclusion initiatives; challenges and opportunities in seed systems; and the increasing demand for crops such as groundnuts, sorghum, and beans. The speakers provided valuable insights into crop production, seed availability, market demand, and the desired traits for improved crop varieties.
Dar es Salaam, Arusha, and Dodoma – Stakeholders across Tanzania gathered to explore how market intelligence and seed system insights drive varietal turnover for groundnut, sorghum, and bean value chain (Photo: Marion Aluoch/CIMMYT)
Three separate sessions were held in Arusha, Dodoma, and Dar es Salaam, bringing together farmers, processors, traders, and researchers to deliberate on systemic challenges affecting varietal turnover. Participants then identified practical solutions to enhance the adoption of improved varieties of sorghum, beans, and groundnuts.
Opening each workshop session, TARI representatives emphasized the critical role of high-quality seeds in realizing higher crop yields and achieving agricultural growth.
“We are here to ensure improved varieties leave shelves and reach farmers’ fields in efforts to support the envisaged 5% annual growth in agriculture,” remarked Fred Tairo, the TARI Manager in Dar es Salaam. In Arusha, Nicholaus Kuboja, TARI Center Director, Selian, highlighted the importance of market intelligence. “Market intelligence is crucial, as market access has been a persistent challenge across African countries, particularly for smallholder farmers, in securing profitable markets for their produce.”
The Director General of TARI, Thomas Bwana, speaking in Dodoma, focused on partnerships. “We are actively promoting the production and distribution of early generation seed, particularly breeder seed, for access by downstream seed producers. Through collaborations with other value chain actors, we strive to ensure that these seeds meet the quality standards needed by both seed and grain producers, as well as consumers who are keen on specific varietal traits,” he noted.
The subsequent discussions underscored the importance of collaboration and innovation to meet the rising demand for these vital crops.
Identifying Challenges
In experience sharing among participants across the three workshops, some key challenges were brought to light. For instance, farmers reported limited access to certified seeds as a major barrier to increasing productivity. A farmer from Dodoma expressed concern that current seed distribution networks often do not reach remote areas, leaving farmers with no option but to use inferior seeds from the sources available.
“We want to use quality seed, but the distribution networks don’t reach us,” he said. On the other hand, traders expressed frustration over inconsistent supplies of high-quality grain produce, which is also aggravated by poor grain handling due to inadequate storage conditions leading to contamination.
Stakeholders in Arushain a group discussion, sharing insights, challengesand strategies to enhance market-driven adoption of improved crop varieties.(Photo: Marion Aluoch/CIMMYT)
One groundnut trader noted, “Poor pre- and post-harvest handling has led to smaller, shriveled nuts, making it difficult for traders to meet market expectations.” Processors echoed these concerns, highlighting aflatoxin contamination as a significant problem that undermines both product safety and marketability. They stressed the need for better practices. “We need better practices at every stage of the value chain to minimize aflatoxin contamination in the grains sourced for processing,” emphasized one processor.
Additional challenges emerged, with common bean farmers highlighting difficulties with post-harvest storage and pest damage, which reduced both quality and market value. Processors, meanwhile, pointed out consumer misconceptions that hinder the acceptance of improved varieties. For instance, white sorghum varieties that naturally turned brown during processing were sometimes perceived as inferior, underscoring the need for better consumer education.
Unveiling Solutions
Despite the challenges, the workshops were a source of optimism, as well as underscoring viable, innovative solutions and actionable strategies to drive progress. Participants explored newly released crop varieties, including TARI Sorg 1 and TARI Bean 6, which offer higher yields, disease resistance, and improved nutritional content. Stakeholders in Dodoma emphasized the use of digital tools such as WhatsApp channels and SMS for real-time updates on seed availability and agronomic practices. “Modernizing how we share knowledge can bridge gaps between farmers and researchers,” remarked one participant.
Capacity building emerged as a key strategy for tackling many of the systemic issues discussed. Farmers called for more training on seed handling and post-harvest practices to reduce losses and improve crop quality. Processors stressed the need for targeted interventions for aflatoxin management, a critical step in ensuring the safety and marketability of groundnuts. Researchers and agricultural organizations underscored the importance of aligning breeding programs with market needs.
In Arusha, discussions centered on developing groundnut varieties tailored to specific processing needs, such as improving peanut butter quality to meet consumer preferences and market standards.
Participants engage in a practical session during the Dar es Salaam workshop, exploring digital tools and market insights to enhance seed systems and varietal adoption.(Photo: Marion Aluoch/CIMMYT)
Expanding the seed distribution network also emerged as a key priority. TARI committed to scale up the production of Quality Declared Seed (QDS) and strengthen partnerships with private seed companies to ensure a consistent supply of high-quality seeds across the country. “Quality seeds must reach every corner of the country,” affirmed a TARI scientist. The stakeholders also called on breeding programs to align with market demands, emphasizing the need to tailor improved varieties to specific consumer and processor requirements.
Insights from Stakeholders and Actionable Strategies
Breakout sessions provided a platform for stakeholders to articulate their specific needs. Farmers from Dodoma and Dar es Salaam shared a common observation of increasing demand for groundnuts, sorghum, and beans, largely driven by population growth and international market expansion. In Dodoma, farmers emphasized that improved crop varieties had significantly boosted cultivation over the past decade.
Despite this progress, they highlighted the lack of drought-resistant varieties and limited access to affordable, high-quality seeds as persistent challenges. In Dar es Salaam, farmers noted that while demand for the crops had risen, their ability to meet this demand was hampered by limited seed availability and education on effective usage. Both groups agreed that weak seed distribution networks, high seed prices, and insufficient knowledge undermine productivity.
Stakeholders in Dodoma engage in discussions, sharing their insights on enhancing varietal adoption. (Photo: Marion Aluoch/CIMMYT)
Processors and traders from both Arusha and Dar es Salaam echoed these concerns but added insights into market dynamics. In Arusha, processors identified aflatoxin as a critical challenge, with inadequate farmer knowledge on grain handling practices exacerbating the issue. Processors also emphasized the need for nutrient-enhanced beans and groundnuts suited for specific products like peanut butter and flour. Traders in Arusha highlighted the need for pure white sorghum and beans free from pests to meet growing demand, particularly for export markets.
As the workshops concluded, participants identified key strategies to strengthen agricultural resilience. These included improving the seed supply chains, enhancing market linkages, and investing in continuous learning and education initiatives.
Echoing this vision, the TARI Director General emphasized in Dodoma, “This is just the beginning. By working together, we can ensure that every farmer, processor, and trader has the tools and knowledge needed to thrive in a rapidly evolving agricultural landscape.”
Cosmas Chachi’s demo fishpond – one of the nine ponds where he trains locals in fish farming (Photo: Cosmas Chachi)
Cosmas Chachi, a 46-year-old businessman, owns Triple Blessing Supermarket in Zambia’s Luwingu District. In 2000, Cosmas identified an opportunity to address the growing demand for fresh fish in his community and started selling the product in his local area. Like many rural entrepreneurs, Cosmas faced initial challenges such as unreliable supply chains, insufficient cold storage, and limited access to financing, all of which prevented him from meeting the rising demand from local customers. Undeterred, Cosmas embarked on a transformative journey into aquaculture.
The turning point for Cosmas occurred in April 2023 when he participated in a training program on integrated aquaculture under the aegis of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, led by CIMMYT. The training implemented by the International Water Management Institute (IWMI), one of the key implementing partners of the project, emphasized sustainable intensification and equipped Cosmas with advanced skills in sustainable feed management, water quality control, efficient harvesting methods, and business management, among other areas.
A view of Cosmas Chachi’s Triple Blessings Supermarket, a thriving hub where he sells fish from his fishponds and manages his off-taking business (Photo: Cosmas Chachi)
“The training equipped me with expert knowledge in aquaculture management and skills to design and operate efficient fishponds,” Cosmas said.
With his new-found expertise, Cosmas upgraded three of his existing fishponds and built six more, each measuring 13×15 meters. To meet customer demand, he introduced a strategic stocking system, staggering the placement of 1,000 fingerlings across his nine ponds. This innovation ensured consistent fish supply even during Zambia’s annual fish ban. “By stocking and harvesting my ponds, I can maintain a steady supply even during the national fish ban when local supply decreases because some other farmers who supply my supermarket depend on fish from natural water bodies,” Cosmas shared.
Creating livelihoods and building resilience
Cosmas’ aquaculture enterprise has become an economic engine in his community, employing 25 permanent workers, primarily local youth, and offering seasonal jobs to 12 more. For Emmanuel Makumba, a shop attendant at Triple Blessing supermarket for the last eight years, the opportunity has been life changing. “The job at the supermarket helped me relocate from my village, build my own house, and send my children to a private school,” said Emmanuel.
In June 2024, his business received a significant boost with the installation of a 15-ton cold storage facility, funded by IWMI through the AID-I project. The upgrade significantly reduced post-harvest losses and enhanced Cosmas’ fish storage capacity. It ensures a steady supply for his business and the farmers he supports, strengthening the local aquaculture value chain.
“In the past, we could only purchase 50 to 100 kilograms (kg) of fish at a time, selling it at US$ 2.50 per kg,” Cosmas shared. With the new cold storage facility, Cosmas can now buy and store up to 700 kg of fish per harvest without the risk of spoilage. The effort not only secures a reliable supply for his business but also creates a dependable market for local consumers, fostering growth and sustainability in the region’s aquaculture sector.
A ripple effect of progress: Expanding aquaculture for community impact
Today, Cosmas’ success goes beyond his supermarket. He owns a thriving restaurant, offering customers a unique dining experience with fresh fish from his ponds. “The training I received during the AID-I workshops helped me transform my passion for aquaculture into a successful business. Now, in addition to the supermarket, I own a popular restaurant and outdoor fishponds, offering customers a unique dining experience,” he said.
Fish from local fish farmers before being stocked at Triple Blessings Supermarket (Photo: Cosmas Chachi)
Building on his business success, Cosmas has further expanded his impact by transforming his fishponds into practical classrooms, offering free, hands-on training to aspiring fish farmers. Over the past year, he has trained 50 farmers in sustainable aquaculture best practices.
As more farmers in Luwingu adopt these practices, local food security improves, and income streams diversify. Cosmas’ leadership is stabilizing the community’s food supply and improving diets with nutrient-rich fish. This aligns with AID-I’s broader goal to promote sustainable and scalable agricultural models.
By September 2024, the AID-I project, through IWMI’s efforts, had supported 297 fish farmers with training, market linkages, and tools for success across Northern and Luapula Provinces: creating a ripple effect of progress and also addressing Zambia’s fish supply and demand gap.The project empowers communities to adopt innovative and sustainable aquaculture practices, driving growth in fish production and ensuring a more reliable supply to meet the needs of a growing population. As fish is a critical source of protein and essential nutrients, fostering a sustainable aquaculture sector is vital for supporting Zambia’s food security and nutritional goals.
Cosmas’ journey exemplifies the power of partnerships, innovation, and resilience in driving community progress. It underscores the potential for a robust aquaculture sector in Zambia, where challenges spur solutions and success benefit entire communities. Through AID-I’s comprehensive interventions, Cosmas’ story of transformation offers a vision for sustainable development in rural Zambia, led by innovation and community empowerment.
The first harvest from the fish demonstration was attended by Mr. Sakala, District Livestock Coordinator, who was invited to observe the progress and assess the impact of the initiative (Photo : Cosmas Chachi)
Every two years, CIMMYT hosts its Science and Innovation Week (SIW), a moment not only for reflection but also for action. SIW2025 is more than a gathering; it is a call to action, challenging us to create lasting change and transformative impact. Each day, we wake up with a bold mission: to make our work meaningful to the ultimate beneficiaries – smallholder farmers.
To kick off this year’s Science Week, CIMMYT Director General Bram Govaerts reminded participants that at the heart of our work is real-world impact. More than an opportunity to evaluate strategies, Science Week is about envisioning and driving the future of food systems.
“CIMMYT’s work connects communities worldwide, from labs to corn harvests. Your tireless research deserves accolades as profound as a Nobel Prize” said Ted McKinney, CEO of the JS National Association of State Departments of agriculture, NASDA & Former USDA Undersecretary. Recognizing this urgency, CIMMYT convened leading scientists, researchers, and decision-makers at its headquarters in Texcoco, Mexico, for Science Week 2025.
This flagship event brought together experts at the intersection of agriculture, climate and food security to foster collaboration and inspire action for resilient food systems. With CIMMYT’s research agenda focused on addressing the world’s most pressing agricultural challenges, Science Week served as a key platform to shape the future of innovation, strengthen partnerships, and accelerate impact on global food security. Through knowledge sharing and strategic discussions, participants explored transformative solutions that will empower smallholder farmers, build crop resilience, and ensure a sustainable future for food systems worldwide.
A platform for collaboration and innovation
The first day set the stage for a dynamic exchange of ideas, bringing together global experts to address agriculture’s most pressing challenges. Discussions explored climate-smart agriculture, the role of digital transformation, and the resilience of seed systems, highlighting the need for innovation to ensure food security. Advances in crop breeding and cutting-edge research took center stage, reinforcing CIMMYT’s commitment to developing scalable, science-based solutions that empower farmers.
Sessions covered a wide range of topics, including climate-smart agriculture, digital transformation in agriculture, resilience of seed systems, and advances in crop breeding. High-level panels and thought leaders highlighted the importance of collaboration, from integrating AI and strategic partnerships to amplifying research impact, while deep diving into CIMMYT’s scientific breakthroughs. The challenge was clear: think beyond the event, push boundaries, and make a meaningful impact that extends far beyond this week.
From data-driven decision-making to sustainable food production, discussions reinforced the need for strategic collaboration, digital transformation, and responsible innovation. With a strong focus on open data and climate resilience, day two underscored CIMMYT’s commitment to translating science into real-world impact for farmers and food systems worldwide.
With CIMMYT generating around 122 datasets annually, experts stressed the importance of improving data quality, integrating new information, and standardizing workflows for greater transparency and efficiency. The discussions also tackled food security, conflict, and economic instability. With 8.4 million people affected by food insecurity in Latin America and the Caribbean, experts highlighted the urgent need for social protection systems, digital solutions, and adaptive policies.
Moving forward, CIMMYT must bridge science and action, ensuring that research translates into tangible solutions for farmers and food systems worldwide – because resilience is not just an option; it is the foundation of sustainable agriculture.
Scientific excellence in action
As Science Week 2025 drew to a close, discussions focused on two key themes: partnerships and communicating impact. To kick off the session, Aaron Maniam, Fellow of Practice and Director, Digital Transformation Education, Oxford University Blavatnik School, challenged participants to rethink collaboration – not just as coordination but as a balance between integration and fragmentation. Collaboration is non-negotiable, and positioning CIMMYT as the partner of choice will be critical to advancing its mission.
Today’s challenges are too complex to tackle alone, and strategic partnerships are essential to amplify impact, leverage resources, and scale innovation. But successful partnerships go beyond collaboration – they require trust and shared goals. Science must be accessible, compelling, and strategically packaged to engage diverse audiences and drive real-world change. As we move forward, the challenge is clear: Embrace, amplify, and boldly communicate our impact to shape the future of food and agriculture. The work does not stop here, this is just the beginning of the next chapter in transforming global food systems for a food and nutrition secure world.
In Nigeria’s drylands, a seed revolution is transforming the landscape, bringing hope and prosperity to farmers in even the most remote communities. Through the innovative Farm and Community-Managed Seed System (FCMSS) approach, farmers, women’s groups, and seed entrepreneurs are gaining access to high-quality sorghum seed, driving agricultural transformation in underserved regions.
Championed by the Institute for Agricultural Research (IAR) and the Dryland Crops Program through the AVISA project led by CIMMYT, this initiative bridges the gap between traditional and formal seed systems, delivering life-changing solutions to last-mile farmers and enhancing rural livelihoods across the country.
Empowering communities through innovation
The FCMSS approach combines community-driven strategies with institutional support to ensure improved seed availability, accessibility, and adoption. The impact has been profound, with three newly released sorghum varieties—SAMSORG 52, SAMSORG 52, and SAMSORG 53—transforming the agricultural landscape. These varieties are being produced locally, ensuring that farmers in nearby communities have access to seeds tailored to their needs.
Farmers achieve record yields
For farmers like Abdullahi Danliti Dawanau, the FCMSS approach has been life changing. Cultivating SAMSORG 52, Dawanau achieved an impressive 4 tons per hectare—the best yield of his farming career.
“This is the best yield I’ve achieved in all my years of farming,” he shared, highlighting the transformative potential of the new sorghum varieties.
His farm, located near the Dawanau International Grain Market in Kano State, has become a demonstration site, inspiring fellow farmers and drawing admiration for the high yield and quality of the variety. Many even mistake it for an imported hybrid, underscoring its quality and productivity.
Women are leading the production and distribution of new sorghum varieties across several states in Nigeria. (Photo: Muhammad Ahmad Yahaya/IAR )
Women farmers leading the way
Women are emerging as key drivers of this agricultural revolution. The Yakasai Women Farmers Group in Kano State, led by Rabi Yakasai, is spearheading efforts to produce and distribute the new sorghum varieties. Their success has led to an overwhelming demand for the seeds in states such as Kano, Jigawa, Gombe, Bauchi, and Yobe, as well as in neighboring Niger Republic.
“These varieties fit perfectly into our farming systems,” said Mrs. Yakasai, emphasizing how they cater to local agricultural needs. SAMSORG 52, for instance, is an early-maturing and short-statured variety that aligns well with relay cropping systems, particularly when intercropped with cowpea. Similarly, SAMSORG 52 and SAMSORG 53 are medium-maturing varieties suitable for intercropping with millet and maize. These varieties provide tailored solutions to enhance productivity and sustainability for farmers in the region.
Following their participation in TRICOT on-farm trials, the group is working to meet increasing demand across multiple states.
“We need support to scale up seed production and meet these orders,” added Mrs. Yakasai.
Government and industry support success
The success of the FCMSS approach has garnered support from state governments and private sector stakeholders. During the 2nd National Sorghum Conference, held in Gombe State on December 4-5, 2024, the Gombe State Commissioner for Agriculture reaffirmed the state’s commitment to adopting climate-smart, early maturing sorghum varieties.
Private companies are also getting involved. GreenPal Global Limited, a prominent seed company, is stepping up its efforts to meet growing demand. Following successful trials of the new varieties, the company plans to scale up the production of certified seed by 2025. Similarly, Northern Nigeria Flour Mill, the country’s largest sorghum processor, is working with farmer associations such as SOFAN and NASPPAM to source quality sorghum for its flagship product, Golden Penny Dawavita—a key ingredient in staple foods such as Tuwo (a dish made from sorghum or millet flour, cooked into a thick, smooth paste or dough-like consistency) and Dumame (a dish made from fermented sorghum or millet flour, often cooked into a thick porridge).
Locally produced grains of the new sorghum variety, ensuring farmers in nearby communities have access to seeds tailored to their needs. (Photo: Muhammad Ahmad Yahaya/IAR )
Ensuring quality and certification
The National Agricultural Seed Council (NASC) is actively supporting the initiative by training seed entrepreneurs and monitoring seed production to ensure quality standards. During a Brown Field Day in Bagadawa community, Kano State, NASC commended the progress made under the FCMSS and the active involvement of farmers and women’s groups.
“The progress of the FCMSS and the active participation of farmers and women’s groups are truly commendable,” said the North-West Regional Director of NASC.
A brighter future for the drylands of Nigeria
The FCMSS approach is more than a seed production system—it is a movement transforming the lives of farmers and communities. By building a resilient seed system, empowering local communities, and driving economic growth, the initiative is ensuring food security and prosperity in Nigeria’s drylands. With growing momentum, the future is bright for farmers, processors, and entrepreneurs, signaling a new era of agricultural success.