Skip to main content

Tag: food security

More than a drop in the bucket: addressing food security in Nepal through improved sustainable irrigation

Agriculture is always impacted by war. However, Russia’s war in Ukraine, fought between two major agricultural producers in an era of globalized markets, poses unprecedented implications for global agriculture and food security. Russia and Ukraine are significant exporters of maize, wheat, fertilizers, edible oils and crude oil. These exports have been compromised by the war, with the greatest impact being on poor and low-income countries that rely most on food imports. Partly because of the Ukraine-Russia conflict and partly due to the decline in agricultural production caused by the climate emergency, food prices have increased between 9.5 and 10.5 percent over the past ten years. 

Nepal, where one in four families is impoverished, is an example of a low-income country impacted by the war’s disruption of trade in agricultural goods and inputs. Although wheat, maize and rice are staples, vegetables are also important for nutrition and income, and Nepal imports fuel and fertilizer for their domestic production. Uncertainty in global supply chains, combined with the Nepali rupee’s significant depreciation against the US dollar, has resulted in a 500% increase in the cost of diesel since 2012. ­­

Irrigation to boost homegrown production

Land irrigation is crucial to crop growth and to the capacity of famers to withstand the effects of the climate emergency and economic shock. However, the majority of Nepal’s groundwater resources are underutilized, leaving ample room for increasing climate-resilient agricultural production capable of withstanding an increasing number of drought events. With the right kind of management of its groundwater, Nepal can increase its domestic output, and bolster smallholder resilience and food security in times of economic and climate crisis.

As part of the first prong of this approach, the Cereal Systems Initiative for South Asia (CSISA) advises farmers (particularly women), governments and donors on the targeted support available to enable them to access existing low-cost and fuel-efficient engineering solutions. These solutions can contribute to the immediate goals of increasing agricultural productivity, intensifying groundwater irrigation and improving rural livelihoods. CSISA informs small producers about ways to access irrigation and develop water entrepreneurship. It also and empowers farmers, especially women, to improve service provision and gain access to services and irrigation pumps, including through access to finance.

Policymakers, businesses, researchers and farmers (especially women, youth and marginalized groups) will collaborate to co-create business models for sustainable and inclusive irrigation with development partners and Nepali public and private sector actors. While there are more than one million wells and pumps in Nepal, many of these are not used efficiently, and social barriers often preclude farmers from accessing services such as pump rentals when they need them. To address these constraints and support private investment in irrigation and water entrepreneurship models, CSISA will work with existing infrastructure investment programs and local stakeholders to build a dynamic and more inclusive irrigation sector over the course of the next year, positively impacting a projected 20,000 small farming households.

At the macro-level, these water entrepreneurship models will respond to prioritized irrigation scaling opportunities, while at the farm level they will respond to irrigation application scheduling advisories. CSISA will also create policy brief documents, in the form of an improved farm management advisory, to be distributed widely among partners and disseminated among farmers to support increases in production and resilience. CSISA’s sustainable and inclusive irrigation framework guides its crisis response.

Scaling digital groundwater monitoring to support adaptive water management

In growing resilience-building irrigation investments, there is always a risk of groundwater depletion, which means that accurate and efficient groundwater data collection is vital. However, Nepal doesn’t currently have a data or governance system for monitoring the impact of irrigation on groundwater resources.

To tackle the need for low-cost, context-specific data systems which improve groundwater data collection, as well as mechanisms for the translation of data into actionable information, and in response to farmer, cooperative and government agency stakeholder demands, the Government of Nepal Groundwater Resources Development Board (GWRDB) and CSISA have co-developed and piloted a digital groundwater monitoring system for Nepal.

In a recent ministerial level workshop, GWRDB executive director Bishnu Belbase said, “CSISA support for groundwater monitoring as well as the ongoing support for boosting sustainable and inclusive investments in groundwater irrigation are cornerstone to the country’s development efforts.”

A pilot study conducted jointly by the two organizations in 2021 identified several options for upgrading groundwater monitoring systems. Three approaches were piloted, and a phone-based monitoring system with a dashboard was evaluated and endorsed as the best fit for Nepal. To ensure the sustainability of the national response to the production crisis, the project will extend government monitoring to cover at least five Tarai districts within the Feed the Future Zone of Influence, collecting data on a total of 100 wells and conducting an assessment of potential network expansion in Nepal’s broad, inner-Tarai valleys and Mid-Hills regions. The goal is to utilize this data to strengthen the Feed the Future Zone of Influence in Nepal by increasing GWRDB’s capability to monitor groundwater in five districts.

Ensuring food security

These activities will be continued for next two years. During that time CSISA will increase GWRDB’s capacity to monitor groundwater and apply this to five districts in Nepal’s Feed the Future Zone of Influence, using an enhanced monitoring system which will assist planners and decision-makers in developing groundwater management plans. As a result, CSISA expects to support at least 20,000 farming households in gaining better irrigation access to achieve high yields and climate-resilient production, with 40 percent of them being women, youth and/or marginalized groups. This access will be made possible through the involvement of the private sector, as CSISA will develop at least two promising business models for sustainable and inclusive irrigation. Finally, through this activity government and private sector stakeholders in Western Nepal will have increased their capacity for inclusive irrigation and agricultural value chain development.

CSISA’s Ukraine Response Activities towards boosting sustainable and inclusive irrigation not only respond to crucial issues and challenges in Nepal, but will also contribute to the regional knowledge base for irrigation investments. Many regions in South Asia face similar challenges and the experience gained from this investment in Nepal will be applicable across the region. Given the importance of of groundwater resources for new farming systems and food system transformation, the project is mapped to Transforming Agrifood Systems in South Asia (TAFSSA), the One CGIAR regional integrated initiative for South Asia, that will act as a scaling platform for sharing lessons learned and coordinating with stakeholder regionally towards more sustainable groundwater management and irrigation investments.

Cover photo: Ram Bahadur Thapa managing water in his paddy field in Dailekh district of Nepal. (Photo: Nabin Baral)

Rear fish in a rice paddy? Old ways can future-proof food production

In an op-ed for the South China Morning Post, Bram Govaerts, Director General at the International Maize and Wheat Improvement Center (CIMMYT), and Essam Yassin Mohammed, Interim Director General of WorldFish and acting Senior Director of Aquatic Food Systems of CGIAR, explore the role of the research community in developing future-proof strategies to address challenges to the global agrifood system.

Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.

This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.

Read the original article: Rear fish in a rice paddy? Old ways can future-proof food production

Food systems that work for people and the environment

Alice Ruhweza, International Maize and Wheat Improvement Center (CIMMYT) Board Member and Africa Regional Director for the World Wide Fund for Nature (WWF), presented on Nature Positive Food Systems for People and Planet on November 22.

Ruhweza has extensive experience working at the intersection of conservation and development in Africa and globally, fostering successful partnerships with a wide range of international institutions. She sits on the Board of The Global Ever-Greening Alliance and on the steering committee of the Future Earth Water-Food-Energy Nexus working group.

Agriculture has a growing environmental footprint, explained Ruhweza, and food emissions are expected to double by 2050. Exponential action is needed to find ways for food systems to co-exist successfully alongside biodiversity, while providing and maintaining healthy diets for humanity.

Ruhweza suggested three solutions for re-thinking the relationship between agriculture and nature: protecting the remaining natural habits from conversion to agriculture; managing agricultural landscapes in a way that support agriculture to enhance the richness and abundance of biodiversity and ecosystem functions, reduces greenhouse gas (GHG) emissions, and enhances resilience to climate change; and restoring degraded agricultural lands and soils to healthy natural habitats or to support sustainable food production.

Organizations like CIMMYT have an opportunity to close the triple gap: producing enough healthy good for a growing population on the same extent of cropland available today, while reducing farm level emissions.

Feature: Reciprocal cooperation between China, int’l agricultural research agency safeguards food security

Collaboration between China and the International Maize and Wheat Improvement Center (CIMMYT) is an example of a mutually beneficial partnership working to safeguard global food security.

Wheat pathologist and geneticist Zhognhu He explained the spread of plant diseases such as wheat scab, which is spreading due to factors such as climate change and could threaten grain security and food safety. His work in wheat disease resistance using the vast germplasm resources in China is helping farmers worldwide.

China has also provided thousands of wheat germplasm resources to CIMMYT’s genebank in Mexico, contributing towards the development of new varieties.

Read the original article: Feature: Reciprocal cooperation between China, int’l agricultural research agency safeguards food security

Shared priorities and plans for partnership

CIMMYT Director General Bram Govaerts with representatives from ATI and EIAR. (Photo: Enawgaw Shibeshi/CIMMYT)

In early September 2022, the International Maize and Wheat Improvement Center (CIMMYT) Director General Bram Govaerts made a brief visit to Ethiopia — his first since taking on the role in 2021. Over two days in Addis Ababa he met with a number of government representatives, donors and partners, including the Agricultural Transformation Institute (ATI), the Ethiopian Institute for Agricultural Research (EIAR), Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, and The Development Fund.

Discussions centered around South-South cooperation and how CIMMYT’s strategic priority to transform agrifood systems can support efforts to improve the livelihoods of resource poor farmers in Ethiopia and national food security. Through longstanding collaboration with local partners, CIMMYT has continued to support the country through maize and wheat germplasm supply, joint technology generation and demonstrations at scale, but the visit provided an opportunity to identify shared priorities and key areas for partnership.

Supporting a plan for self-sufficiency

In a meeting with representatives from the ATI and EIAR, the CIMMYT delegation were briefed on the elements of the Government of Ethiopia’s ten-year development plan and its targets to achieve food self-sufficiency by 2030, with commercialization, advocacy on land ownership, and financial sector reform emerging as key areas of focus.

In terms of policy change, explained ATI Director General Mandefro Nigussie, there are ten core agendas that the government has set and plans to implement in the coming years. These include land governance and advisory; public-private partnership; marketing and infrastructure; and digital agriculture. The continued need for capacity building emerged as a key concern, as high staff turnover has meant many of those trained by CIMMYT previously had now left their posts.

Govaerts thanked ATI and EIAR for their collaboration so far, noting that this would surely continue as CIMMYT planned to double engagement, collaboration, production and partnerships in the coming years. Addressing the concerns raised around capacity building, particularly the training of experts, he explained that training opportunities had been limited in the last two years because of the COVID-19 pandemic and budget constraints, but capacity building for research and extension was included in the list of future action points, including a ministerial visit to CIMMYT offices in either Mexico or India.

The discussions were productive, and participants reached agreement on several other points, including collaboration on the establishment of a One Stop Shop by ATI; supporting EIAR’s data warehouse development that will provide farmers with access to an agronomy advisory services hotline; and supporting the breading of wheat for heat tolerance and Ethiopia’s irrigated wheat initiative.

Representatives from The Development Fund, a non-government organization (NGO) from Norway, meet with Govaerts. (Photo: Enawgaw Shibeshi/CIMMYT)

Strengthening collaboration

Govaerts later met with several representatives from The Development Fund, including Country Director for Ethiopia Ulf Flink, to discuss opportunities for strengthening partnerships for greater impact. The Development Fund’s Ethiopian portfolio has evolved over four decades from supporting relief work by one Tigrayan organization to supporting multiple projects with several organizations in Tigray and Afar, with a focus on socio-economic development to alleviate poverty, and improve food security and natural resource management in dryland areas.

While the organization has recently encountered challenges in Tigray, with several programs disrupted by instability, Flink noted that the implementation of The Development Fund’s collaborative projects with CIMMYT are progressing well and pointed out opportunities to scale-up joint operations in the region, where more than 5,000 farmers have been supported so far.

Govaerts thanked The Development Fund for the strong collaboration so far and emphasized CIMMYT’s need for continued strategic partnership in South-South collaboration that can make a difference to smallholders in the country. He also pointed to CIMMYT’s aim of doubling impact and coverage, highlighting that changes in partners’ thinking and ways of intervening could be opportunities to strengthen collaboration with The Development Fund.

Cognizant of the limitations imposed by major challenges such as funding modalities — which are shifting towards humanitarian rather than development assistance — and the increasing price of mechanization, meeting participants were able to agree on a number of action points to support future collaborative work. These include continued support to project implementation in Tigray when the security situation allows; exploring opportunities to strengthen collaborations in other countries such as Malawi; and supporting research-based advocacy at both regional and zonal levels.

Additionally, CIMMYT will share its methodology for Integrated Development and research-based humanitarian development support, and work with The Development Fund to provide improved crop varieties and grain with smallholder famers in drought- and conflict-affected areas where projects are being implemented.

Is food security possible without peace?

The intersection between agriculture and peace has been brought to the forefront of the news agenda this year due to the Ukraine crisis, which has caused widespread disruption to wheat supply chains – disruptions that are contributing to food insecurity for millions of people worldwide.

Agriculture was therefore a compulsory topic for the International Week of Science and Peace, and formed the main theme for an online fireside chat between Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), and the Hon. Sharon Burke on November 8.

Burke was the director of New America’s Resource Security program and a senior advisor to New America’s Future of War project in the Department of Defense. She served in the administrations of Barack Obama, George W. Bush, and Bill Clinton.

Futureproofing security and food

“[Food] is a foundational element of all security,” explained Burke, when asked about the connection between the two. “We are facing global pressures. Everything that’s made us successful has also made us vulnerable – with biodiversity loss, with climate change. The challenge of having that foundational element of food security has never been harder than it is right now.”

This is a central vision of CIMMYT as a Wallace center, which Burke referenced to highlight how conflict and food insecurity drive one another: “It’s this terrible knot where things are connected. But when we add in climate change, biodiversity loss and pollution and other elements of our modern life, it’s more important than ever to understand how these elements fit together.”

“Peace, prosperity, and equity… are more relevant than ever in the environment we are working in,” agreed Govaerts.

Govaerts then invited Burke to offer recommendations for the development of CIMMYT’s new strategy. She suggested three points to consider:

  • How is climate change going to shift what agricultural production and productivity means – 10 years from now, 20 years from now, 30 years from now?
  • In that world, how does that reflect through your research and development priorities?
  • How do you continue to have that dialogue with farmers, so that you affect them, and they affect you, and what are the ways to make sure that you deepen that and the equity that’s inherent in that conversation?

Govaerts reflected on recent examples from history where conflict destabilized the global food system, such as the Arab Spring as provoked by consecutive droughts that heavily impacted wheat crops. Burke agreed that it was essential to build peace and secure food supplies simultaneously, always having peace as the end goal before any conflict even begins, and the importance of showing the systems effect to donors to encourage future investment.

“One of the reasons that I really love what CIMMYT does, is that you’re talking about not just food security as some abstract concept but as the people and the places where it’s created,” shared Burke.

CIMMYT’s role in peacebuilding

Burke highlighted the commitment from the United States Government to invest money in food security and food assistance, not just for necessary emergency aid but also for improving food production, farming, and last mile technology.

“How can we leverage this investment that is being made now in an emergency to be one that also builds resilience for this longer-term emergency that we are all facing?” she asked, encouraging research and development organizations to always evidence the impact of their work.

In her closing words, Burke expressed high levels of admiration for our scientists. “You get to actually touch the problem and deliver the solution and work in that two-way dialogue with farmers and that you get to bring that all together – how we think about a problem, how we come up with novel science and technology for solving the problem, and then you get to actually carry it to the field and make it work.”

“You’re not just thinking about peace or researching about peace – you’re delivering it!”

The critical role of smallholder farmers of the Eastern Gangetic Plains in the global food chain

The Eastern Gangetic Plains (EGP) are vulnerable to climate change and face tremendous challenges, including heat, drought, and floods. More than 400 million people in this region depend on agriculture for their livelihoods and food security; improvements to their farming systems on a wide scale can contribute to the Sustainable Development Goals (SDGs).

The Australian Centre for International Agricultural Research (ACIAR) has been supporting smallholder farmers to make agriculture more profitable, productive, and sustainable while also safeguarding the environment and encouraging women’s participation through a partnership with the International Maize and Wheat Improvement Center (CIMMYT). On World Food Day, these projects are more important than ever, as scientists strive to leave no one behind.

The EGP have the potential to significantly improve food security in South Asia, but agricultural production is still poor, and diversification opportunities are few. This is a result of underdeveloped markets, a lack of agricultural knowledge and service networks, insufficient development of available water resources, and low adoption of sustainable farming techniques.

Current food systems in the EGP fail to provide smallholder farmers with a viable means to prosper, do not provide recommended diets, and impose undue strain on the region’s natural resources. It is therefore crucial to transform the food system with practical technological solutions for smallholders and with scaling-up initiatives.

Zero tillage wheat growing in the field in Fatehgarh Sahib district, Punjab, India. It was sown with a zero tillage seeder known as a Happy Seeder, giving an excellent and uniform wheat crop. (Photo: Petr Kosina/CIMMYT)

ACIAR: Understanding and promoting sustainable transformation of food systems

Over the past ten years, ACIAR has extensively focused research on various agricultural techniques in this region. The Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project sought to understand local systems, demonstrate the efficacy of Conservation Agriculture-based Sustainable Intensification (CASI) approaches, and create an environment that would support and scale-up these technologies.

To establish a connection between research outputs and development goals, the Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar) project expands on previous work and partnership networks. This is a collaborative venture with CIMMYT that demonstrates inclusive diversification pathways, defines scaling up procedures for millions of smallholder farmers in the region, and produces a better understanding of the policies that support diversification.

Building the future and inspiring communities

Men and women both contribute substantially to farming activities in the EGP of India, Bangladesh, and Nepal, but gender roles differ according to location, crops and opportunities. It is a prevalent perception supported by culture, tradition, and social biases that women cannot be head of the household.

In Coochbehar, India, the unfortunate passing of Jahanara Bibi’s husband left her as head of her household and sole guardian of her only son. Though a tragic event, Bibi never gave up hope.

Going through hardships of a rural single female farmer intensified by poverty, Bibi came to know about CASI techniques and the use of zero-till machines.

Though it seemed like a far-fetched technique at first and with no large network to rely on for advice, Bibi decided to gather all her courage and give it a try. Being lower cost, more productive, adding income, and saving her time and energy all encouraged Bibi to adopt this zero-till machine in 2013, which she uses to this day. Today, she advocates for CASI technology-based farming and has stood tall as an inspiration to men and women.

“I feel happy when people come to me for advice – the same people who once thought I was good for nothing,” said Bibi.

With no regrets from life and grateful for all the support she received, Bibi dreams of her future as a female agro-entrepreneur. Being a lead female farmer of her community and having good contact with the agriculture office and conducive connection with local service providers, she believes that her dream is completely achievable and can inspire many single rural female farmers like herself to encourage them to change perceptions about the role of women.

Cover photo: Jahanara Bibi standing by her farm, Coochbehar, India. (Photo: Manisha Shrestha/CIMMYT)

The world cannot ignore the global food crisis and its consequences

Climate change is an undoubted contributor to the global food crisis. Natural disasters and poor weather is leading to 193 million people facing acute food insecurity.

While food aid is vital, improving food systems and reducing reliance on food imports is the route to a long-term solution. In an article for the Des Moines Register, Cary Fowler, US government food security envoy, details the importance of developing reliable local production and well-functioning markets to support farmers.

The United States government’s Feed the Future initiative is addressing some of these challenges, such as by supporting the International Maize and Wheat Improvement Center (CIMMYT) to develop drought-tolerant maize, which is now planted on 17 million acres in Africa. This variety is making a significant difference to food security.

Read the article: Opinion: The world cannot ignore the global food crisis and its consequences

Integrated initiative launches in Nepal, India and Bangladesh

TAFSSA inception workshops in Nepal, India and Bangladesh. (Credit: CIMMYT/CGIAR)

CGIAR, in collaboration with government agencies and other relevant stakeholders, held country launches of the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative in three of its four working locations: Nepal, India and Bangladesh.

TAFSSA, which also operates in Pakistan, aims to deliver a coordinated program of research and engagement, transforming evidence into impact through collaboration with public and private partners across the production-to-consumption continuum. The end result will be productive and environmentally sound South Asian agrifood systems that support equitable access to sustainable healthy diets, as well as contributing to improved farmer livelihoods and resilience, while conserving land, air and groundwater resources.

A vision for South Asian agrifood systems

The three country-level launch events provided a platform for CGIAR’S partners to discuss TAFSSA’s five key areas:

  1. Facilitating agrifood system transformation through inclusive learning platforms, public data systems, and collaborations.
  2. Changing agroecosystems and rural economies to increase revenue and sustain diverse food production within environmental constraints.
  3. Improving access to and affordability of sustainably produced healthful foods through evidence and actions across the post-harvest value chain.
  4. Addressing the behavioral and structural factors of sustainable healthy diets
  5. Building resilience and limiting environmental impact.

The three inception events in Nepal, India and Bangladesh also provided a space for open debate on creating partnerships to achieve common goals, through multidisciplinary conversation on each focal area. Breakout sessions were also held according to emphasis area, explaining the initiative and its components clearly and providing opportunities to brainstorm with participants on how to build more stakeholder-responsive activities.

More than 70 participants attended each inception session, both in-person and online, representing government agencies, CGIAR and its research centers working on TAFSSA, international organizations working in the region, academic institutions, and other key stakeholder groups.

Project endorsements

At the launch event in Nepal on June 9, Temina Lalani Shariff, regional director for South Asia at CGIAR, described TAFSSA as a gateway to the rest of CGIAR’s global research efforts. She explained, “More than 100 partners from around the world will exchange their knowledge, skills and expertise through CGIAR’s new platform to work together for agriculture development.”

Purnima Menon, TAFSSA co-lead and senior research fellow with the International Food Policy Research Institute (IFPRI), presented the project in India on June 15. “The research portfolio and engagement plan we’re proposing is really intending to cut across the food system,” said Menon. “We want to engage people in production systems, people in the middle of the value chain, and consumers, to build the research portfolio. The idea is to do so in a way that is interlinked with the five new CGIAR impact areas and that amplifies CGIAR’s research on the ground.”

Introducing TAFSSA in Bangladesh on July 18, Timothy J. Krupnik, Initiative lead and senior agronomist with the International Maize and Wheat Improvement Center (CIMMYT), stated, “The approach we’ve taken while developing this Initiative was to first look at agrifood crisis issues in South Asia. We evaluated key challenges in this region which has world’s highest concentrations of hunger and poverty.” He highlighted climate change, resource constraints and social structural inequalities, all of which will be addressed by TAFSSA through several focus areas.

Shaikh Mohammad Bokhtiar, Chairman of the Bangladesh Agriculture Research Council (BARC) welcomed these ideas at the TAFSSA Bangladesh launch. “If we want to create an intelligent society or nation, if we want sustainability, we must provide nutrition for all,” said Bokhtiar. “In this region, I believe that combining science, technology and innovation in the TAFSSA initiative will deliver good results.”

Shariff also attended the launch in Bangladesh, where she remarked, “We are here to share a common path to work together to confront the challenges. For that, cooperation is the essential component which is common across Nepal, India and Bangladesh.”

At each of the launch events, TAFSSA was announced as a flagship initiative in South Asia by Martin Kropff, managing director of Resilient Agrifood Systems (RAFS) at CGIAR. He expressed confidence that it would be the first regional program to deliver significant development results and acknowledged that the planned collaboration and partnership with national research institutes would ensure TAFSSA’s success.

Why co-creation is vital for sustainable agriculture

Agricultural mechanization engineer Subash Adhikari adjusts a maize shelling machine on a farmer´s verandah in Rambasti, Kanchanpur, Nepal. (Credit: P. Lowe/CIMMYT)

The adoption of climate-smart agricultural production processes and technologies is a vital strategy in attempts to mitigate the global impacts of climate change without compromising on food security. However, supporting farmers to permanently implement new technologies and approaches requires a deep understanding of their needs, robust training, and effective transfer of knowledge.

At the International Maize and Wheat Improvement Center (CIMMYT), projects across the Global South aim to embed agrifood systems that are sustainable for all.

To share how CIMMYT empowers farmers and develops new technologies, Director General Bram Govaerts attended a panel event hosted by the Business Council for International Understanding (BICU) on September 19. For an audience of foreign government officials, multilaterals, and private sector executives, panelists introduced new perspectives to support global food security efforts and inspire greater collaboration.

Partnership approach

Panelists were asked to explain the technologies that can be unlocked by agricultural financial mechanisms, referencing how research and development is keeping pace with the quick adaptations needed by farmers to address climate change.

Examples from CIMMYT’s participation in the AgriLAC Resiliente CGIAR Initiative, a project for sustainable agricultural development in Latin America and the Caribbean, highlighted the innovative partnerships that are pushing forward research and development in the sector, enabling food systems and actors to act quickly to meet food security needs, mitigate climate hazards, stabilize communities and reduce forced migration.

Scientists are conscious of ensuring that solutions to one challenge are not the cause of new problems elsewhere; co-development is essential to this, ensuring the views of all actors are represented. Using the Integrated Agri-food System Initiative (IASI) methodology, created by CIMMYT in partnership with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), projects can develop strategies and actions with a significant likelihood of supportive public and private investment that will transform food systems.

Expertise from farmers

Even the best agricultural technology in the world is only effective if it is used. When discussing barriers to the implementation of technology, Govaerts emphasized CIMMYT’s mechanization prototyping, co-creation, and experimentation work that bridges the gap between farmers and scientists and encourages adoption of new methods and tools.

Having farming influencers onboard has proved priceless, as these people co-create prototypes and experiments that demonstrate results and offer assured testimony to reluctant stakeholders.

Innovations can transform livelihoods, giving farmers a way to increase income and provide stability and better opportunities for their families – which is the most appealing reason for adoption.

Training programs are also fundamental, ensuring skills and knowledge around new technologies are freely available to farmers, technicians, and researchers. CIMMYT projects such as MasAgro in Mexico, has trained more than 3,000 producers and 400 technicians in sustainable agriculture, with more than 70,000 producers participating in educational events during the pandemic.

Hunger and climate change – a dual problem?

Conversation also centered on whether the development of new technologies is aiming to confront world hunger and climate change as separate issues, or whether solutions can be suitable for both challenges.

Essential actions to mitigate the food crisis require a global perspective, acknowledging that unexpected crises will always arise. For example, Russia and Ukraine account for 28% of the world’s wheat exports, so high prices are linked to supply chain disruption. More than 2.5 billion people worldwide consume wheat-based products, so the effects of these disruptions could mean significant hunger and potential civil unrest. Nations already in crisis, such as Yemen, Sudan and Ethiopia, may be worse hit, but other countries with high dependency on imports like Egypt are also affected.

Govaerts highlighted the inextricable links between the causes of food insecurity and climate change. He underscored CIMMYT’s holistic approach to overcoming widespread impacts on the global food system, such as the concurrent challenges of COVID-19, climate change and the Ukraine crisis, by co-developing lasting solutions incorporating these three elements:

  • Extensive research on climate change adaptation and mitigation in maize and wheat-based production systems across Africa, Asia, and Latin America.
  • Climate focused research aims to help smallholder farmers adapt to climate shocks and to raise and maintain yields profitably and sustainably by reducing greenhouse gas emissions.
  • Capacity building for stakeholders in the development and application of new technologies.

Many other deep disruptions are on their way. It is time to invest in science, research, innovation, technologies, and start practicing teamwork to allow those investments to translate into a better future for the planet, and for us.

About BICU:

BICU is a leading business-supported non-profit education initiative, established by President Eisenhower of the United States in 1955 for the purpose of facilitating public-private partnerships and high-level business to government dialogue.

Can agriculture bring South Asian countries together?

Agriculture is central to South Asian economies, lives and livelihoods. However, the challenges of an increasing population and brisk economic growth are straining the agriculture sector as it struggles to meet the present and future demand for food, nutritional security, and economic development. Not only this, the three Cs – COVID, climate change and conflict – are fueling the growing fragility in food systems across the world.

To address these issues and find potential solutions, the Borlaug Institute for South Asia (BISA) organized a high-level meeting with top agriculture ministry officials from its neighboring countries – Sri Lanka, Nepal, Bangladesh, Bhutan, India and Pakistan – to collaborate and learn from each other.

BISA’s outreach to India’s neighbors in South Asia has already produced results. Data from the BISA farm in Ludhiana, India, on resistance to yellow rust that affects wheat crop has been used in Nepal, Afghanistan, and Pakistan. Genomic prediction evaluation for grain yield and other traits worked on at BISA through the help of the Global Wheat Program of the International Maize and Wheat Improvement Center (CIMMYT) has been extended to Pakistan, Bangladesh, and Nepal since 2020. Regular training is organized for students, scientists and farmers in India on breeding and climate resistant technologies, and BISA scientists organize courses in Nepal on climate-smart technologies.

Read more in Amar Ujala (published in Hindi): Can agriculture bring South Asian countries together?

Cover photo: Tara Miah (50) is a farmer from Rajguru in Rahamanbari union, Barisal, Bangladesh. He used seeder fertilizer drills to plant wheat on his fields. Previously, this was done manually. SFD has resulted in a better harvest for Miah. (Credit: Ranak Martin)

Fertilizer scarcity may hamper crop cycle, cautions scientist

South Asian countries may see fertilizers scarcity in the next crop cycle as a result of the conflict situation in Ukraine and Russia, cautioned Bram Govaerts, Director General of the International Maize and Wheat Improvement Centre (CIMMYT) and the Borlaug Institute for South Asia (BISA).

The triple threat of climate change, COVID-19 and the conflict between Ukraine and Russia is exacerbating the challenge of how to feed the world, explained Govaerts.

Policy changes had the potential to address the crises, but investing in research and innovation is a fundamental part of solving the current challenges.

Read more: Fertilizer scarcity may hamper crop cycle, cautions scientist

Mexican farming can transition to be more resilient with technology

In Mexico and around much of the world, the cost of food fell sharply last month but it remains dangerously close to the all-time highs posted earlier this year, according to an agency of the United Nations.

New data from the Food Price Index of the Food and Agricultural Organization provide even more proof that if we’re to build a resilient system of agriculture that keeps food abundant and affordable, farmers like me need access to the best, forward-facing and science-based technologies—and not the backward-looking restrictive measures that many governments are trying to force upon food producers.

That’s especially true here in Mexico, where public officials are promoting dangerous agriculture policies that will damage yield potential of Mexico’s farmers and add to our country’s current food inflation. Paradoxically, the world’s leading agricultural research center for wheat and maize has issued a new call for “long-term agri-food system resilience.”

The International Wheat and Maize Improvement Center, also known as CIMMYT and headquartered just outside Mexico City, is an amazing resource for farmers everywhere. My family has participated in its work for decades, going back to when Norman Borlaug, the father of the Green Revolution, was starting to make big progress on wheat yields.

In July, a team of CIMMYT scientists published their strategy for dealing with soaring food prices. They focused mainly on wheat, which was subjected to so much stress because of the Russian invasion of Ukraine, but their general recommendations apply to every commodity.

Their short-term advice involves boosting production and partially replacing wheat flour with other low-cost cereals to off-set high wheat prices. In the middle and long terms, CIMMYT calls for more resilience in our food systems by genetically improving seeds and controlling pests. Significantly, the authors urge “building capacity to promote extensive pest and pathogen monitoring.”

This is important advice because pests, weeds, and disease are three of the biggest threats to food production pretty much everywhere. If we’re going to develop a “long-term agri-food system resilience” that involves everything from the climate-change mitigation and gender equity that CIMMYT also advocates, it must start by helping farmers like me defend our crops from their most basic but permanently evolving threats.

And that means giving us access to science-based technology. We need the best seeds, the best machines, and the best crop management techniques. We also need the best crop protection so that what we plant can meet its full potential.

Rather than limiting the options of farmers we should seek to expand them. This in fact is the great legacy of CIMMYT. Through sound science and creative innovation, it has given farmers more tools than ever before.

On my farm, we already fight pests, weeds, and disease through traditional practices like crop rotation. Yet this age-old practice is no longer enough. In this era of sustainability and conservation, we especially need advanced crop protection, which can function as a “virtual plow” that strengthens our soil as it locks in moisture, kidnaps carbon, enhances biodiversity, improves root systems, and reduces erosion.

In the years ahead, we’d like to explore additional crop-protection technologies, such as drone applications which would allow us to work with more precision and less dependence on fossil fuels.

As we think about the future, and as farmers everywhere try to grow more food on less land, we should embrace technology as a solution rather than fear it as a problem.

We have so many real problems with war, inflation, access to fuel and fertilizer, market turmoil, and climate change that we don’t need to restrict ourselves by hesitating in the application of new technologies, especially when they have been demonstrated to be safe. (If we trick ourselves into banning these options, farmers will pay a steep price as they struggle to grow food and consumers will bear the cost of it whenever they eat.)  All technological options should remain on the table.

Although food prices fell by 8.6 percent between June and July, they are more than 13 percent higher than they were at this time last year, according to the FAO’s Food Price Index.

This may be a silver lining amid dark clouds, but the forecast is unpredictable: “The decline in food commodity prices from very high levels is welcome,” said FAO chief economist Maximo Torero, who also warned that “many uncertainties remain” and they “pose serious strains for global food security.”

Agriculture must become more resilient, as CIMMYT pleads.

And farmers like me need the support of policy makers and the general public as we struggle to grow the food everyone needs.

Read the original article: Mexican farming can transition to be more resilient with technology

Addressing the Global Food Crisis: CIMMYT Experts Weigh In

The confluence of climate change, COVID-19, and the war in Ukraine have placed enormous stress on food systems across the globe. Food insecurity spiked in 2020 and has stayed high, and the number of undernourished people is on the rise.

As we respond to this emergency, there is an opportunity—and a need—to strengthen the kind of strategic investments that will make our agrifood systems resilient to tomorrow’s shocks. “We cannot be running crisis to crisis,” says Bram Govaerts, Director General of the International Maize and Wheat Improvement Center, or CIMMYT, in this week’s New Security Broadcast. “We need to look at the underlying elements that are provoking these ripple effects.”

On the episode, ECSP Director Lauren Risi and ECSP Advisor Sharon Burke speak with Govaerts and his colleague Kai Sonder, head of CIMMYT’s Geographic Information System Unit, about how to address the unfolding food crisis as we simultaneously build food system resilience in the medium and long term. Drawing from their newly-published article in Nature Food, Govaerts and Sonder share approaches that governments, civil society, and private actors can take to tackle today’s wheat supply disruptions and food insecurity. They also share past success stories and lay out key challenges moving forward.

Beyond the immediate humanitarian aid needed to boost food security, Govaerts identifies intensified wheat production and greater investments in local cereals as essential short-term priorities. Medium-term investments should focus on agricultural production that is agroecologically suitable, policies that support the adoption of improved crop varieties, and data analysis to target the vulnerabilities of smallholder farmers. And with long term goals in mind, Govaerts says that we need to ask “how can we enhance our ecosystem diversity, resolve the gender disparity [in the agricultural sector] and invest in agrifood transformation from efficiency to resilience?”

Both experts emphasize that these approaches aren’t meant to be taken incrementally. “We’re really saying we need to start today, taking actions with an impact on the short, medium, and long term. It would be a mistake to only focus on the short-term actions that need to be taken,” says Govaerts.

Sonder acknowledges that transforming agricultural systems takes time—and isn’t easy. “You need to invest in breeding systems. You need to build capacity and identify areas where that is easily possible,” he explains. “Bringing out a new variety of wheat or maize or other crop takes up to ten years.”

Introducing new farming technologies can also come with challenges, since it requires making sure those technologies can actually be maintained. “You have to ensure that there are mechanics who can fix [them] quickly, that there’s a supply chain for spare parts,” observes Sonder. And securing sustained large-scale investment for research or program activities can prove difficult, as was the case for a study CIMMYT did on the potential for wheat in Africa. “The ministers were very interested,” Sonder says. “But other crisis come along, and then the funds go somewhere else.”

Despite the hurdles, there are plenty of examples of agrifood interventions with positive impact. For instance, one of CIMMYT’s current areas of work is in developing risk assessment and disease warning systems to allow people to act quickly before a crisis occurs. Sonder describes how his colleagues in Ethiopia had a recent success in identifying a risk of rust epidemic in collaboration with the government and stakeholders on the ground by using weather models.  The joint effort allowed the government “to procure and to spread fungicides and to be prepared for that crisis,” he says.

Addressing the challenges that underlie world hunger will take both this kind of strategic medium-term action as well as longer-term transformations—Even as we respond to the current hunger crisis with much-needed short-term efforts, we can also be reshaping our global agricultural systems for a more biodiverse, equitable, and resilient future.

This piece by , was originally posted on New Security Beat

Worsening food insecurity calls for stress-tolerant seeds

From chemical fertiliser shortages to lack of irrigation, farmers in Nepal have been facing a multitude of human-induced problems every year. The most urgent concern is the climate crisis.

Erratic weather patterns, untimely and uneven rainfall and rapidly rising temperatures have got farmers by the scruff of their necks.

For the farmers, such dramatic climate change manifests in the form of floods, droughts and landslides, directly hitting their agriculture-dependent livelihoods. For the nation as a whole, the climate crisis worsens food insecurity.

The tales of the climate crisis are petrifying. However, not all hope is lost.

Interventions such as climate resilient seeds that are tolerant to extreme climatic stresses like drought, flooding or submersion have been discovered and implemented in phases, according to scientists, to help sustain agricultural productivity.

“Due to the increasing climate change impacts, farmers are facing challenges to produce traditional seeds used during normal situations,” says AbduRahman Beshir Issa, seed systems lead at the International Maize and Wheat Improvement Centre, South Asia Office.

“In Nepal, farmers are witnessing both drought stress and excess moisture during the summer cropping season. In the spring season, high temperatures, coupled with drought stress, make it difficult for normal seeds or varieties to grow.”

With an increasing number of mouths to feed, and more pronounced effects of climate change yet to present themselves, climate-resilient seeds can help sustain Nepal’s agricultural productivity, according to crop development experts.

“Climate resilient seeds are crucial for food security. In addition, these crops are nutritionally important,” said Prakash Acharya, a senior crop development officer at the Seed Quality Control Centre. “With changing climate, not all crops and seeds can endure even two-three days of drought or submergence or extreme heat.”

Approximately 3 million hectares of land is cultivated in Nepal, which is 21 percent of the total land area. Rice, maize and wheat constitute more than 80 percent of cereal acreage and production.

The overall cereal yield in Nepal is 2.6 tonnes per hectare, which is far lower than the regional and global average of 4.1 tonnes per hectare, indicating an overall low productivity.

Paddy constitutes the highest production, commanding a 20.8 percent share in the agriculture gross domestic product (AGDP).

Nepal’s economic wellbeing is intimately linked with the monsoon. Water from the skies is the lifeblood of Nepal’s Rs4.85 trillion economy which is farm-dependent, as nearly two-thirds of the farmlands are rain-fed.

A large part of the country gets nearly 80 percent of its annual rainfall during the four months—June to September.

The production of food grains, mainly rice, depends on the amount and distribution of monsoon rainfall over the country. The monsoon rains also replenish ground water and reservoirs critical for drinking and power generation.

Analysing data from the past 33 years of minimum and maximum temperatures and rainfall, scientists predict drought to be the most important limiting factor for crop production, including paddy.

As paddy is sensitive to drought due to its high water requirement, scientists say there is a need for promoting “climate change-ready rice” that can tolerate drought for up to months.

For instance, research in Nawalparasi in the central Tarai found that the existing paddy varieties would not sustain the yield potential of the present level after 2020.

In October 2021, unusual weather patterns led to a torrential downpour lasting three days, causing massive loss of agricultural harvests and physical infrastructure across many parts of Nepal.

In 2020, in East Rukum, continuous rainfall from January to September decreased maize yield. The drought that followed then destroyed the wheat crop. Right after, the heavy rains also wiped out potatoes and maize.

Climate projections further suggest changes in precipitation during the monsoon period (with variations from 14 percent to 40 percent), as well as the increased likelihood of heavy precipitation events.

Experts are concerned that such unpredictable changes in weather patterns will lead to a decline in agricultural productivity, further worsening food insecurity in the region.

“We aren’t food secure right now as well. And with climate change, it is only getting worse. In the long run, the condition of food security in Nepal will be alarming,” says Yamuna Ghale, agriculture and food security policy analyst who is also research director at the Nepal Centre for Contemporary Research.

Around 65 percent of Nepal’s population depends on agriculture for its livelihood, which accounts for 25 percent of the GDP.

With the increasing population and declining agricultural productivity, experts say that Nepal could sooner or later face food insecurity.

“Everyone has the right to food. But the current situation indicates that a food shortage is looming,” said Ghale, who is also an expert at the Food Security Coordination Committee under the Ministry of Agriculture and Livestock Development. “We have to focus on climate-smart alternatives now, beginning with climate-resilient seeds.”

Climate-resilient seeds can withstand extreme conditions brought about by climate change. For example, drought-tolerant seeds can sustain periods of dry conditions, and submergence-tolerant seeds can withstand flood stress.

For example, improved varieties like Sukkhaa Dhan 4, Sukkhaa Dhan 5 and Sukkhaa Dhan 6 have an average yield of 4-4.5 tonnes per hectare, and under good irrigation conditions, the output can go up to 5.5 tonnes per hectare on an average.

Sukkhaa 6 has the ability to re-grow even two weeks after submergence.

Swarna Sub-1, Sambha Mansuli Sub-1, Cherang Sub-1, Gangasagar-1, and Gangasagar-2 are submergence-tolerant paddy varieties.

Rice varieties like Bahuguni-1 and Bahuguni-2 are both drought and submergence tolerant.

Similarly, maize varieties that are drought tolerant, such as Deuti, Manakamana-5 and Manakamana-6 are also available. Rampur hybrid-10 and Rampur hybrid-12 are heat-tolerant varieties.

Seto Kaguno is a promising variety of foxtail millet that is drought-tolerant and extremely climate-resilient.

Paddy varieties which possess the “Sub1A” gene remain dormant during submergence, and conserve energy until the floodwaters recede. Paddy plants with the “Sub1A” gene can survive more than two weeks of complete submergence. The plant recovers well from drought by growing new shoots.

“A character is incorporated into existing rice varieties to make them stress-tolerant or climate-resilient. This makes them fare better than traditional crops,” said Acharya.

“In very recent years, because of climate change, we have begun researching drought- and submergence-tolerant seeds,” said Acharya.

These climate-smart varieties, which can survive under stress and retain desirable grain qualities, can create positive impacts on the lives of farmers, scientists say.

Since 1966, Nepal has released and registered 144 varieties of paddy seeds, according to the Agriculture Ministry.

Scientists say that a majority of these stress-tolerant varieties do not demand excess fertilisers or tillage methods.

The Nepal Agriculture Research Council (NARC) is spearheading various projects for producing and popularising drought- and submergence-tolerant seeds.

“Under USAID’s support, Nepal Seed and Fertiliser Project, paddy seeds which are drought and submergence tolerant are being produced and marketed in Nepal in partnership with the government and the private seed companies,” Issa said in an email.

The National Maize Research Programme of NARC has released heat stress-tolerant maize hybrids that can survive at high temperatures compared to traditional varieties.

Likewise, under the National Grain Legumes Research Programme of NARC, field testing of waterlogging-tolerant lentil varieties is being done to come up with varieties that can withstand excess moisture from unusual winter rains during the lentil growing season, according to Issa.

Despite the availability of stress-tolerant seeds, farmers are not much aware of the new varieties and are hesitant to adopt such seeds easily.

Due to lack of awareness, farmers hardly adopt new varieties and they prefer traditional varieties. Local governments too have failed to create awareness.

According to experts, Sukhaa Dhan 3, Samba Mansuli Sub-1 and Cherang Sub-1 are popular among farmers in the Tarai and mid-hills.

However, varieties like Bahuguni-2 have been rejected by farmers because “Nepali consumers prefer non-sticky, fluffy rice as opposed to sticky varieties,” experts say.

Despite being both drought and submergence tolerant, such varieties are not adopted by farmers.

“Farmers are enthusiastic about using new ways and techniques of farming, but local governments have completely ignored investing in agriculture,” said Ujjal Acharya, freelance researcher on climate change and environment economics.

“They have been more focused on building infrastructure, roads, bridges, temples and so on. Food security, climate resilient agriculture, organic farming—all do not fall within the priorities of local governments,” he said.

However, scientists acknowledge that climate resilient crop varieties are only a part of the solution of the bigger climate-resilient agricultural system.

“It is extremely important to develop climate-resilient crop varieties that can withstand extreme weather conditions, but seeds are just one part among the various solutions,” says Issa.

This piece by Aakriti Ghimire, was originally posted on The Kathmandu Post.