Skip to main content

Tag: food security

The world cannot ignore the global food crisis and its consequences

Climate change is an undoubted contributor to the global food crisis. Natural disasters and poor weather is leading to 193 million people facing acute food insecurity.

While food aid is vital, improving food systems and reducing reliance on food imports is the route to a long-term solution. In an article for the Des Moines Register, Cary Fowler, US government food security envoy, details the importance of developing reliable local production and well-functioning markets to support farmers.

The United States government’s Feed the Future initiative is addressing some of these challenges, such as by supporting the International Maize and Wheat Improvement Center (CIMMYT) to develop drought-tolerant maize, which is now planted on 17 million acres in Africa. This variety is making a significant difference to food security.

Read the article: Opinion: The world cannot ignore the global food crisis and its consequences

Integrated initiative launches in Nepal, India and Bangladesh

TAFSSA inception workshops in Nepal, India and Bangladesh. (Credit: CIMMYT/CGIAR)

CGIAR, in collaboration with government agencies and other relevant stakeholders, held country launches of the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative in three of its four working locations: Nepal, India and Bangladesh.

TAFSSA, which also operates in Pakistan, aims to deliver a coordinated program of research and engagement, transforming evidence into impact through collaboration with public and private partners across the production-to-consumption continuum. The end result will be productive and environmentally sound South Asian agrifood systems that support equitable access to sustainable healthy diets, as well as contributing to improved farmer livelihoods and resilience, while conserving land, air and groundwater resources.

A vision for South Asian agrifood systems

The three country-level launch events provided a platform for CGIAR’S partners to discuss TAFSSA’s five key areas:

  1. Facilitating agrifood system transformation through inclusive learning platforms, public data systems, and collaborations.
  2. Changing agroecosystems and rural economies to increase revenue and sustain diverse food production within environmental constraints.
  3. Improving access to and affordability of sustainably produced healthful foods through evidence and actions across the post-harvest value chain.
  4. Addressing the behavioral and structural factors of sustainable healthy diets
  5. Building resilience and limiting environmental impact.

The three inception events in Nepal, India and Bangladesh also provided a space for open debate on creating partnerships to achieve common goals, through multidisciplinary conversation on each focal area. Breakout sessions were also held according to emphasis area, explaining the initiative and its components clearly and providing opportunities to brainstorm with participants on how to build more stakeholder-responsive activities.

More than 70 participants attended each inception session, both in-person and online, representing government agencies, CGIAR and its research centers working on TAFSSA, international organizations working in the region, academic institutions, and other key stakeholder groups.

Project endorsements

At the launch event in Nepal on June 9, Temina Lalani Shariff, regional director for South Asia at CGIAR, described TAFSSA as a gateway to the rest of CGIAR’s global research efforts. She explained, “More than 100 partners from around the world will exchange their knowledge, skills and expertise through CGIAR’s new platform to work together for agriculture development.”

Purnima Menon, TAFSSA co-lead and senior research fellow with the International Food Policy Research Institute (IFPRI), presented the project in India on June 15. “The research portfolio and engagement plan we’re proposing is really intending to cut across the food system,” said Menon. “We want to engage people in production systems, people in the middle of the value chain, and consumers, to build the research portfolio. The idea is to do so in a way that is interlinked with the five new CGIAR impact areas and that amplifies CGIAR’s research on the ground.”

Introducing TAFSSA in Bangladesh on July 18, Timothy J. Krupnik, Initiative lead and senior agronomist with the International Maize and Wheat Improvement Center (CIMMYT), stated, “The approach we’ve taken while developing this Initiative was to first look at agrifood crisis issues in South Asia. We evaluated key challenges in this region which has world’s highest concentrations of hunger and poverty.” He highlighted climate change, resource constraints and social structural inequalities, all of which will be addressed by TAFSSA through several focus areas.

Shaikh Mohammad Bokhtiar, Chairman of the Bangladesh Agriculture Research Council (BARC) welcomed these ideas at the TAFSSA Bangladesh launch. “If we want to create an intelligent society or nation, if we want sustainability, we must provide nutrition for all,” said Bokhtiar. “In this region, I believe that combining science, technology and innovation in the TAFSSA initiative will deliver good results.”

Shariff also attended the launch in Bangladesh, where she remarked, “We are here to share a common path to work together to confront the challenges. For that, cooperation is the essential component which is common across Nepal, India and Bangladesh.”

At each of the launch events, TAFSSA was announced as a flagship initiative in South Asia by Martin Kropff, managing director of Resilient Agrifood Systems (RAFS) at CGIAR. He expressed confidence that it would be the first regional program to deliver significant development results and acknowledged that the planned collaboration and partnership with national research institutes would ensure TAFSSA’s success.

Why co-creation is vital for sustainable agriculture

Agricultural mechanization engineer Subash Adhikari adjusts a maize shelling machine on a farmerÂŽs verandah in Rambasti, Kanchanpur, Nepal. (Credit: P. Lowe/CIMMYT)

The adoption of climate-smart agricultural production processes and technologies is a vital strategy in attempts to mitigate the global impacts of climate change without compromising on food security. However, supporting farmers to permanently implement new technologies and approaches requires a deep understanding of their needs, robust training, and effective transfer of knowledge.

At the International Maize and Wheat Improvement Center (CIMMYT), projects across the Global South aim to embed agrifood systems that are sustainable for all.

To share how CIMMYT empowers farmers and develops new technologies, Director General Bram Govaerts attended a panel event hosted by the Business Council for International Understanding (BICU) on September 19. For an audience of foreign government officials, multilaterals, and private sector executives, panelists introduced new perspectives to support global food security efforts and inspire greater collaboration.

Partnership approach

Panelists were asked to explain the technologies that can be unlocked by agricultural financial mechanisms, referencing how research and development is keeping pace with the quick adaptations needed by farmers to address climate change.

Examples from CIMMYT’s participation in the AgriLAC Resiliente CGIAR Initiative, a project for sustainable agricultural development in Latin America and the Caribbean, highlighted the innovative partnerships that are pushing forward research and development in the sector, enabling food systems and actors to act quickly to meet food security needs, mitigate climate hazards, stabilize communities and reduce forced migration.

Scientists are conscious of ensuring that solutions to one challenge are not the cause of new problems elsewhere; co-development is essential to this, ensuring the views of all actors are represented. Using the Integrated Agri-food System Initiative (IASI) methodology, created by CIMMYT in partnership with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), projects can develop strategies and actions with a significant likelihood of supportive public and private investment that will transform food systems.

Expertise from farmers

Even the best agricultural technology in the world is only effective if it is used. When discussing barriers to the implementation of technology, Govaerts emphasized CIMMYT’s mechanization prototyping, co-creation, and experimentation work that bridges the gap between farmers and scientists and encourages adoption of new methods and tools.

Having farming influencers onboard has proved priceless, as these people co-create prototypes and experiments that demonstrate results and offer assured testimony to reluctant stakeholders.

Innovations can transform livelihoods, giving farmers a way to increase income and provide stability and better opportunities for their families – which is the most appealing reason for adoption.

Training programs are also fundamental, ensuring skills and knowledge around new technologies are freely available to farmers, technicians, and researchers. CIMMYT projects such as MasAgro in Mexico, has trained more than 3,000 producers and 400 technicians in sustainable agriculture, with more than 70,000 producers participating in educational events during the pandemic.

Hunger and climate change – a dual problem?

Conversation also centered on whether the development of new technologies is aiming to confront world hunger and climate change as separate issues, or whether solutions can be suitable for both challenges.

Essential actions to mitigate the food crisis require a global perspective, acknowledging that unexpected crises will always arise. For example, Russia and Ukraine account for 28% of the world’s wheat exports, so high prices are linked to supply chain disruption. More than 2.5 billion people worldwide consume wheat-based products, so the effects of these disruptions could mean significant hunger and potential civil unrest. Nations already in crisis, such as Yemen, Sudan and Ethiopia, may be worse hit, but other countries with high dependency on imports like Egypt are also affected.

Govaerts highlighted the inextricable links between the causes of food insecurity and climate change. He underscored CIMMYT’s holistic approach to overcoming widespread impacts on the global food system, such as the concurrent challenges of COVID-19, climate change and the Ukraine crisis, by co-developing lasting solutions incorporating these three elements:

  • Extensive research on climate change adaptation and mitigation in maize and wheat-based production systems across Africa, Asia, and Latin America.
  • Climate focused research aims to help smallholder farmers adapt to climate shocks and to raise and maintain yields profitably and sustainably by reducing greenhouse gas emissions.
  • Capacity building for stakeholders in the development and application of new technologies.

Many other deep disruptions are on their way. It is time to invest in science, research, innovation, technologies, and start practicing teamwork to allow those investments to translate into a better future for the planet, and for us.

About BICU:

BICU is a leading business-supported non-profit education initiative, established by President Eisenhower of the United States in 1955 for the purpose of facilitating public-private partnerships and high-level business to government dialogue.

Can agriculture bring South Asian countries together?

Agriculture is central to South Asian economies, lives and livelihoods. However, the challenges of an increasing population and brisk economic growth are straining the agriculture sector as it struggles to meet the present and future demand for food, nutritional security, and economic development. Not only this, the three Cs – COVID, climate change and conflict – are fueling the growing fragility in food systems across the world.

To address these issues and find potential solutions, the Borlaug Institute for South Asia (BISA) organized a high-level meeting with top agriculture ministry officials from its neighboring countries – Sri Lanka, Nepal, Bangladesh, Bhutan, India and Pakistan – to collaborate and learn from each other.

BISA’s outreach to India’s neighbors in South Asia has already produced results. Data from the BISA farm in Ludhiana, India, on resistance to yellow rust that affects wheat crop has been used in Nepal, Afghanistan, and Pakistan. Genomic prediction evaluation for grain yield and other traits worked on at BISA through the help of the Global Wheat Program of the International Maize and Wheat Improvement Center (CIMMYT) has been extended to Pakistan, Bangladesh, and Nepal since 2020. Regular training is organized for students, scientists and farmers in India on breeding and climate resistant technologies, and BISA scientists organize courses in Nepal on climate-smart technologies.

Read more in Amar Ujala (published in Hindi): Can agriculture bring South Asian countries together?

Cover photo: Tara Miah (50) is a farmer from Rajguru in Rahamanbari union, Barisal, Bangladesh. He used seeder fertilizer drills to plant wheat on his fields. Previously, this was done manually. SFD has resulted in a better harvest for Miah. (Credit: Ranak Martin)

Fertilizer scarcity may hamper crop cycle, cautions scientist

South Asian countries may see fertilizers scarcity in the next crop cycle as a result of the conflict situation in Ukraine and Russia, cautioned Bram Govaerts, Director General of the International Maize and Wheat Improvement Centre (CIMMYT) and the Borlaug Institute for South Asia (BISA).

The triple threat of climate change, COVID-19 and the conflict between Ukraine and Russia is exacerbating the challenge of how to feed the world, explained Govaerts.

Policy changes had the potential to address the crises, but investing in research and innovation is a fundamental part of solving the current challenges.

Read more: Fertilizer scarcity may hamper crop cycle, cautions scientist

Mexican farming can transition to be more resilient with technology

In Mexico and around much of the world, the cost of food fell sharply last month but it remains dangerously close to the all-time highs posted earlier this year, according to an agency of the United Nations.

New data from the Food Price Index of the Food and Agricultural Organization provide even more proof that if we’re to build a resilient system of agriculture that keeps food abundant and affordable, farmers like me need access to the best, forward-facing and science-based technologies—and not the backward-looking restrictive measures that many governments are trying to force upon food producers.

That’s especially true here in Mexico, where public officials are promoting dangerous agriculture policies that will damage yield potential of Mexico’s farmers and add to our country’s current food inflation. Paradoxically, the world’s leading agricultural research center for wheat and maize has issued a new call for “long-term agri-food system resilience.”

The International Wheat and Maize Improvement Center, also known as CIMMYT and headquartered just outside Mexico City, is an amazing resource for farmers everywhere. My family has participated in its work for decades, going back to when Norman Borlaug, the father of the Green Revolution, was starting to make big progress on wheat yields.

In July, a team of CIMMYT scientists published their strategy for dealing with soaring food prices. They focused mainly on wheat, which was subjected to so much stress because of the Russian invasion of Ukraine, but their general recommendations apply to every commodity.

Their short-term advice involves boosting production and partially replacing wheat flour with other low-cost cereals to off-set high wheat prices. In the middle and long terms, CIMMYT calls for more resilience in our food systems by genetically improving seeds and controlling pests. Significantly, the authors urge “building capacity to promote extensive pest and pathogen monitoring.”

This is important advice because pests, weeds, and disease are three of the biggest threats to food production pretty much everywhere. If we’re going to develop a “long-term agri-food system resilience” that involves everything from the climate-change mitigation and gender equity that CIMMYT also advocates, it must start by helping farmers like me defend our crops from their most basic but permanently evolving threats.

And that means giving us access to science-based technology. We need the best seeds, the best machines, and the best crop management techniques. We also need the best crop protection so that what we plant can meet its full potential.

Rather than limiting the options of farmers we should seek to expand them. This in fact is the great legacy of CIMMYT. Through sound science and creative innovation, it has given farmers more tools than ever before.

On my farm, we already fight pests, weeds, and disease through traditional practices like crop rotation. Yet this age-old practice is no longer enough. In this era of sustainability and conservation, we especially need advanced crop protection, which can function as a “virtual plow” that strengthens our soil as it locks in moisture, kidnaps carbon, enhances biodiversity, improves root systems, and reduces erosion.

In the years ahead, we’d like to explore additional crop-protection technologies, such as drone applications which would allow us to work with more precision and less dependence on fossil fuels.

As we think about the future, and as farmers everywhere try to grow more food on less land, we should embrace technology as a solution rather than fear it as a problem.

We have so many real problems with war, inflation, access to fuel and fertilizer, market turmoil, and climate change that we don’t need to restrict ourselves by hesitating in the application of new technologies, especially when they have been demonstrated to be safe. (If we trick ourselves into banning these options, farmers will pay a steep price as they struggle to grow food and consumers will bear the cost of it whenever they eat.)  All technological options should remain on the table.

Although food prices fell by 8.6 percent between June and July, they are more than 13 percent higher than they were at this time last year, according to the FAO’s Food Price Index.

This may be a silver lining amid dark clouds, but the forecast is unpredictable: “The decline in food commodity prices from very high levels is welcome,” said FAO chief economist Maximo Torero, who also warned that “many uncertainties remain” and they “pose serious strains for global food security.”

Agriculture must become more resilient, as CIMMYT pleads.

And farmers like me need the support of policy makers and the general public as we struggle to grow the food everyone needs.

Read the original article: Mexican farming can transition to be more resilient with technology

Addressing the Global Food Crisis: CIMMYT Experts Weigh In

The confluence of climate change, COVID-19, and the war in Ukraine have placed enormous stress on food systems across the globe. Food insecurity spiked in 2020 and has stayed high, and the number of undernourished people is on the rise.

As we respond to this emergency, there is an opportunity—and a need—to strengthen the kind of strategic investments that will make our agrifood systems resilient to tomorrow’s shocks. “We cannot be running crisis to crisis,” says Bram Govaerts, Director General of the International Maize and Wheat Improvement Center, or CIMMYT, in this week’s New Security Broadcast. “We need to look at the underlying elements that are provoking these ripple effects.”

On the episode, ECSP Director Lauren Risi and ECSP Advisor Sharon Burke speak with Govaerts and his colleague Kai Sonder, head of CIMMYT’s Geographic Information System Unit, about how to address the unfolding food crisis as we simultaneously build food system resilience in the medium and long term. Drawing from their newly-published article in Nature Food, Govaerts and Sonder share approaches that governments, civil society, and private actors can take to tackle today’s wheat supply disruptions and food insecurity. They also share past success stories and lay out key challenges moving forward.

Beyond the immediate humanitarian aid needed to boost food security, Govaerts identifies intensified wheat production and greater investments in local cereals as essential short-term priorities. Medium-term investments should focus on agricultural production that is agroecologically suitable, policies that support the adoption of improved crop varieties, and data analysis to target the vulnerabilities of smallholder farmers. And with long term goals in mind, Govaerts says that we need to ask “how can we enhance our ecosystem diversity, resolve the gender disparity [in the agricultural sector] and invest in agrifood transformation from efficiency to resilience?”

Both experts emphasize that these approaches aren’t meant to be taken incrementally. “We’re really saying we need to start today, taking actions with an impact on the short, medium, and long term. It would be a mistake to only focus on the short-term actions that need to be taken,” says Govaerts.

Sonder acknowledges that transforming agricultural systems takes time—and isn’t easy. “You need to invest in breeding systems. You need to build capacity and identify areas where that is easily possible,” he explains. “Bringing out a new variety of wheat or maize or other crop takes up to ten years.”

Introducing new farming technologies can also come with challenges, since it requires making sure those technologies can actually be maintained. “You have to ensure that there are mechanics who can fix [them] quickly, that there’s a supply chain for spare parts,” observes Sonder. And securing sustained large-scale investment for research or program activities can prove difficult, as was the case for a study CIMMYT did on the potential for wheat in Africa. “The ministers were very interested,” Sonder says. “But other crisis come along, and then the funds go somewhere else.”

Despite the hurdles, there are plenty of examples of agrifood interventions with positive impact. For instance, one of CIMMYT’s current areas of work is in developing risk assessment and disease warning systems to allow people to act quickly before a crisis occurs. Sonder describes how his colleagues in Ethiopia had a recent success in identifying a risk of rust epidemic in collaboration with the government and stakeholders on the ground by using weather models.  The joint effort allowed the government “to procure and to spread fungicides and to be prepared for that crisis,” he says.

Addressing the challenges that underlie world hunger will take both this kind of strategic medium-term action as well as longer-term transformations—Even as we respond to the current hunger crisis with much-needed short-term efforts, we can also be reshaping our global agricultural systems for a more biodiverse, equitable, and resilient future.

This piece by , was originally posted on New Security Beat

Worsening food insecurity calls for stress-tolerant seeds

From chemical fertiliser shortages to lack of irrigation, farmers in Nepal have been facing a multitude of human-induced problems every year. The most urgent concern is the climate crisis.

Erratic weather patterns, untimely and uneven rainfall and rapidly rising temperatures have got farmers by the scruff of their necks.

For the farmers, such dramatic climate change manifests in the form of floods, droughts and landslides, directly hitting their agriculture-dependent livelihoods. For the nation as a whole, the climate crisis worsens food insecurity.

The tales of the climate crisis are petrifying. However, not all hope is lost.

Interventions such as climate resilient seeds that are tolerant to extreme climatic stresses like drought, flooding or submersion have been discovered and implemented in phases, according to scientists, to help sustain agricultural productivity.

“Due to the increasing climate change impacts, farmers are facing challenges to produce traditional seeds used during normal situations,” says AbduRahman Beshir Issa, seed systems lead at the International Maize and Wheat Improvement Centre, South Asia Office.

“In Nepal, farmers are witnessing both drought stress and excess moisture during the summer cropping season. In the spring season, high temperatures, coupled with drought stress, make it difficult for normal seeds or varieties to grow.”

With an increasing number of mouths to feed, and more pronounced effects of climate change yet to present themselves, climate-resilient seeds can help sustain Nepal’s agricultural productivity, according to crop development experts.

“Climate resilient seeds are crucial for food security. In addition, these crops are nutritionally important,” said Prakash Acharya, a senior crop development officer at the Seed Quality Control Centre. “With changing climate, not all crops and seeds can endure even two-three days of drought or submergence or extreme heat.”

Approximately 3 million hectares of land is cultivated in Nepal, which is 21 percent of the total land area. Rice, maize and wheat constitute more than 80 percent of cereal acreage and production.

The overall cereal yield in Nepal is 2.6 tonnes per hectare, which is far lower than the regional and global average of 4.1 tonnes per hectare, indicating an overall low productivity.

Paddy constitutes the highest production, commanding a 20.8 percent share in the agriculture gross domestic product (AGDP).

Nepal’s economic wellbeing is intimately linked with the monsoon. Water from the skies is the lifeblood of Nepal’s Rs4.85 trillion economy which is farm-dependent, as nearly two-thirds of the farmlands are rain-fed.

A large part of the country gets nearly 80 percent of its annual rainfall during the four months—June to September.

The production of food grains, mainly rice, depends on the amount and distribution of monsoon rainfall over the country. The monsoon rains also replenish ground water and reservoirs critical for drinking and power generation.

Analysing data from the past 33 years of minimum and maximum temperatures and rainfall, scientists predict drought to be the most important limiting factor for crop production, including paddy.

As paddy is sensitive to drought due to its high water requirement, scientists say there is a need for promoting “climate change-ready rice” that can tolerate drought for up to months.

For instance, research in Nawalparasi in the central Tarai found that the existing paddy varieties would not sustain the yield potential of the present level after 2020.

In October 2021, unusual weather patterns led to a torrential downpour lasting three days, causing massive loss of agricultural harvests and physical infrastructure across many parts of Nepal.

In 2020, in East Rukum, continuous rainfall from January to September decreased maize yield. The drought that followed then destroyed the wheat crop. Right after, the heavy rains also wiped out potatoes and maize.

Climate projections further suggest changes in precipitation during the monsoon period (with variations from 14 percent to 40 percent), as well as the increased likelihood of heavy precipitation events.

Experts are concerned that such unpredictable changes in weather patterns will lead to a decline in agricultural productivity, further worsening food insecurity in the region.

“We aren’t food secure right now as well. And with climate change, it is only getting worse. In the long run, the condition of food security in Nepal will be alarming,” says Yamuna Ghale, agriculture and food security policy analyst who is also research director at the Nepal Centre for Contemporary Research.

Around 65 percent of Nepal’s population depends on agriculture for its livelihood, which accounts for 25 percent of the GDP.

With the increasing population and declining agricultural productivity, experts say that Nepal could sooner or later face food insecurity.

“Everyone has the right to food. But the current situation indicates that a food shortage is looming,” said Ghale, who is also an expert at the Food Security Coordination Committee under the Ministry of Agriculture and Livestock Development. “We have to focus on climate-smart alternatives now, beginning with climate-resilient seeds.”

Climate-resilient seeds can withstand extreme conditions brought about by climate change. For example, drought-tolerant seeds can sustain periods of dry conditions, and submergence-tolerant seeds can withstand flood stress.

For example, improved varieties like Sukkhaa Dhan 4, Sukkhaa Dhan 5 and Sukkhaa Dhan 6 have an average yield of 4-4.5 tonnes per hectare, and under good irrigation conditions, the output can go up to 5.5 tonnes per hectare on an average.

Sukkhaa 6 has the ability to re-grow even two weeks after submergence.

Swarna Sub-1, Sambha Mansuli Sub-1, Cherang Sub-1, Gangasagar-1, and Gangasagar-2 are submergence-tolerant paddy varieties.

Rice varieties like Bahuguni-1 and Bahuguni-2 are both drought and submergence tolerant.

Similarly, maize varieties that are drought tolerant, such as Deuti, Manakamana-5 and Manakamana-6 are also available. Rampur hybrid-10 and Rampur hybrid-12 are heat-tolerant varieties.

Seto Kaguno is a promising variety of foxtail millet that is drought-tolerant and extremely climate-resilient.

Paddy varieties which possess the “Sub1A” gene remain dormant during submergence, and conserve energy until the floodwaters recede. Paddy plants with the “Sub1A” gene can survive more than two weeks of complete submergence. The plant recovers well from drought by growing new shoots.

“A character is incorporated into existing rice varieties to make them stress-tolerant or climate-resilient. This makes them fare better than traditional crops,” said Acharya.

“In very recent years, because of climate change, we have begun researching drought- and submergence-tolerant seeds,” said Acharya.

These climate-smart varieties, which can survive under stress and retain desirable grain qualities, can create positive impacts on the lives of farmers, scientists say.

Since 1966, Nepal has released and registered 144 varieties of paddy seeds, according to the Agriculture Ministry.

Scientists say that a majority of these stress-tolerant varieties do not demand excess fertilisers or tillage methods.

The Nepal Agriculture Research Council (NARC) is spearheading various projects for producing and popularising drought- and submergence-tolerant seeds.

“Under USAID’s support, Nepal Seed and Fertiliser Project, paddy seeds which are drought and submergence tolerant are being produced and marketed in Nepal in partnership with the government and the private seed companies,” Issa said in an email.

The National Maize Research Programme of NARC has released heat stress-tolerant maize hybrids that can survive at high temperatures compared to traditional varieties.

Likewise, under the National Grain Legumes Research Programme of NARC, field testing of waterlogging-tolerant lentil varieties is being done to come up with varieties that can withstand excess moisture from unusual winter rains during the lentil growing season, according to Issa.

Despite the availability of stress-tolerant seeds, farmers are not much aware of the new varieties and are hesitant to adopt such seeds easily.

Due to lack of awareness, farmers hardly adopt new varieties and they prefer traditional varieties. Local governments too have failed to create awareness.

According to experts, Sukhaa Dhan 3, Samba Mansuli Sub-1 and Cherang Sub-1 are popular among farmers in the Tarai and mid-hills.

However, varieties like Bahuguni-2 have been rejected by farmers because “Nepali consumers prefer non-sticky, fluffy rice as opposed to sticky varieties,” experts say.

Despite being both drought and submergence tolerant, such varieties are not adopted by farmers.

“Farmers are enthusiastic about using new ways and techniques of farming, but local governments have completely ignored investing in agriculture,” said Ujjal Acharya, freelance researcher on climate change and environment economics.

“They have been more focused on building infrastructure, roads, bridges, temples and so on. Food security, climate resilient agriculture, organic farming—all do not fall within the priorities of local governments,” he said.

However, scientists acknowledge that climate resilient crop varieties are only a part of the solution of the bigger climate-resilient agricultural system.

“It is extremely important to develop climate-resilient crop varieties that can withstand extreme weather conditions, but seeds are just one part among the various solutions,” says Issa.

This piece by Aakriti Ghimire, was originally posted on The Kathmandu Post.

Earlier wheat planting will boost yields in eastern India

“For several years, we’ve been building dense data sets with colleagues from the Indian Agricultural Research Council, which have allowed us to unravel complex farm realities through big data analytics, and to determine what agricultural management practices really matter in smallholder systems,” said Andrew McDonald ’94, M.S. ’98, Ph.D. ’03, associate professor of soil and crop sciences in the College of Agriculture and Life Sciences. “This process has confirmed that planting dates are the foundation for climate resilience and productivity outcomes in the dominant rice-wheat cropping systems in the eastern sector in India.”

McDonald is first author of “Time Management Governs Climate Resilience and Productivity in the Coupled Rice-Wheat Cropping Systems of Eastern India,” published July 21 in Nature Food with a consortium of national and international partners, including scientists from the International Maize and Wheat Improvement Center (CIMMYT).

The research was conducted through the  Cereal Systems Initiative for South Asia (CSISA). CSISA, which is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute as research partners, was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

Researchers found that farmers in eastern India could increase yield by planting wheat earlier – avoiding heat stress as the crop matures – and quantified the potential gains in yields and farm revenues for the region. They also found that the intervention would not negatively impact rice productivity, a key consideration for farmers. Rice alternates with wheat on the cropping calendar, with many farmers growing rice in the wet season and wheat in the dry season.

The study also provides new recommendations for rice sowing dates and types of cultivars, to accommodate the earlier sowing of wheat.

“Farmers are not just managing single crops. They are managing a sequence of decisions,” said McDonald, who has a joint appointment in the Department of Global Development. “Taking a cropping systems approach and understanding how things cascade and interlink informs our research approach and is reflected in the recommendations that emerged from this analysis. Climate resilient wheat starts with rice.”

The research is the result of years of collaboration with international groups and government agencies in India, which have identified the Eastern Ganges Plain as the area with the most potential growth in production. The region will become essential, McDonald said, as the demand for wheat grows, and climate change makes production more difficult and unpredictable; just this year, record heat waves in March and April and food shortages caused by the war in Ukraine – both of which prompted India’s government to instate a ban on wheat exports – have highlighted the need for increased yields and more sustainable farming practices.

“In the bigger sense, this research is timely because the hazards of climate change aren’t just a hypothetical,” McDonald said. “Many of these areas are stress-prone environments, and extreme weather already constrains productivity. Identifying pragmatic strategies that help farmers navigate current extremes will establish a sound foundation for adapting to progressive climate change.”

Poverty is endemic in the Eastern Ganges Plain, and the region is dominated by small landholders, with varying practices and access to resources. The breadth and specificity of the data collected and analyzed in the study – including field and household survey data, satellite data, and dynamic crop simulations – allowed researchers to understand regional small farms’ challenges and the barriers to change.

“At the end of the day, none of this matters unless farmers opt in,” McDonald said. “There’s a spatial dimension and a household dimension to opportunity.  If we can  target approaches accordingly, then we hope to position farmers to make management changes that will benefit the entire food system.”

The study was co-authored with researchers from the Australian Department of Primary Industries and Regional Development, the International Rice Research Institute, the International Maize and Wheat Improvement Center, the International Food Policy Research Institute, the Indian Council of Agricultural Research and Bihar Agricultural University. The research was supported by the Bill and Melinda Gates Foundation and the U.S. Agency for International Development through grants to the Cereal Systems Initiative for South Asia, which is led by the International Maize and Wheat Improvement Center.

This piece by Caitlin Hayes, was originally posted on the Cornell Chronicle website.

Cereal seed value chains in Nepal

Cereals cover around 80% of Nepal’s cultivated land area, with a low level of productivity. The country’s commercial cereal seed sector development has been rather slow as more than 83% of seed comes from the informal system. The formal sector cannot produce adequate seeds to meet the farmers’ needs. Moreover, the formal market is largely driven by public seed varieties. To catalyze the sector’s development and enhance productivity, building a well-performing seed system that produces and timely supplies quality seeds at affordable rates to farmers is integral.

The adoption of a federal system of governance since 2018, creating new structures within the system, along with the after-effects of COVID-19 has impacted the public sector seed production and distribution with implications on private seed business. A recent assessment conducted by the International Maize and Wheat Improvement Center (CIMMYT) examines the current functions in the cereal value chain in Nepal and identifies upgrading strategies to bring efficiency and competitiveness in the cereal seed market systems, specifically for rice and maize.

An agrovet owner sells improved varieties of maize and rice locally produced by GATE Nepal Seed Company, a partner of CIMMYT in Banke, Nepal (Photo: Bandana Pradhan/CIMMYT)

The study provides a detailed analysis of the market size and trends for the various hybrid and open-pollinated varieties of rice and maize seeds as well as their production, distribution and margins in seed business.

A majority of rice and maize seeds, especially high-yielding hybrids, sold to farmers are brought in by importers and wholesalers who directly sells them to farmers or indirectly through agro-dealers. Nepali hybrid varieties are lagging because farmers, grain producers and millers have low awareness and information on new and improved varieties produced by local seed companies and cooperatives. A significant supply gap of rice and maize seeds was found in all the seven provinces of Nepal.

The study reviews the nature of inter-business relations in the seed value chain and provision of services by the government, NGOs and others for the development of the cereal seed value chain. In the context of federalism, the study assesses the seed policies and actions under the Revised Seed Act (2020) to establish provincial seed systems. Considering migration-induced feminization of agriculture in Nepal, the study identifies approaches to promote inclusive seed systems and youth engagement in seed value chains. Strategic measures to build a resilient seed system that can respond to abrupt market and mobility disruptions, as caused by the COVID-19 pandemic, is also taken into account. However, it also details out the various challenges and risks encountered by the value chain actors that hinders seed business and the sector’s growth overall.

CIMMYT designed seed packets of maize and rice to enhance branding and marketing of local products displayed in an agrovet in Banke district, Nepal (Photo: Bandana Pradhan/CIMMYT)

Some of the strategies to address these bottlenecks include strengthening value chain functions in research and development, hybrid seed production, seed processing and innovative approaches for market promotion and sales. Creating an enabling environment for seed companies in areas of variety testing and release, quality assurance in seed production and commercialization, financial and business management services, seed extension services and promotion of new domestic varieties are also fundamental propositions to achieve Nepal’s National Seed Vision (2013-2025) targets.

Legume-based Agroecological Intensification of Maize and Cassava Cropping Systems in Sub-Saharan Africa (LEG4DEV)

The Legume-based Agroecological Intensification of Maize and Cassava Cropping Systems in Sub-Saharan Africa (LEG4DEV) project aims to promote scaling of legume-based agroecological intensification of smallholder maize and cassava cropping systems in sub-Saharan Africa for water-food-energy nexus sustainability that enables food security and livelihood resilience.

Multiple breadbasket failures: Nations must address looming food emergencies

The war in Ukraine, coupled with weather-related disruptions in the world’s major grain-producing regions, could unleash unbearable waves of displacement, humanitarian consequences, civil unrest, major financial losses worldwide, and geopolitical fragility, says Bram Govaerts, DG of CIMMYT, in a Boston Globe op-ed.

Read more: https://www.bostonglobe.com/2022/03/28/opinion/multiple-breadbasket-failures-nations-must-address-looming-food-emergencies/ 

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

Another food crisis?

Mature wheat spikes. (Photo: Alfonso Cortés/CIMMYT)
Mature wheat spikes. (Photo: Alfonso Cortés/CIMMYT)

The impacts of the Ukraine crisis are likely to reverberate over months, if not years, to come. If the reductions in wheat exports from Russia and Ukraine are as severe as anticipated, global supplies of wheat will be seriously constrained. If a major reduction in fertilizer exports comes to pass, the resulting drop in global productivity will tighten global markets for wheat, other grains and alternate food sources — leaving vulnerable people all over the world facing higher food prices, hunger and malnutrition.

These massive disruptions will erode modest progress made toward gender equality, biodiversity conservation and dietary diversification. The severe impact of this single shock shows the underlying fragility and complexity of our agri-food systems. Climate change will bring many more.

The world must take essential actions to mitigate food shocks, stabilize local wheat supplies and transition toward agri-food system resilience, from the current efficiency-driven model. We call for large and sustained agricultural research investments as a foundational element of any viable, food-secure future.

From chronic challenges to food crisis conditions

Global wheat production for export is geographically concentrated, placing inherent vulnerabilities on the global system. Dominance of the wheat export trade by a relatively small number of countries makes sense under an efficiency paradigm, but it opens the door to price spikes and food-related crises. At the same time, biophysical vulnerability of major global breadbaskets is on the rise as drought and other weather extremes increase volatility in cereal yields, exports and prices.

Russia and Ukraine produce 28% of the world’s total wheat exports and Russia is a globally important source of fuel and fertilizer. With over 2.5 billion people worldwide consuming wheat-based products and wheat futures at their highest levels since 2012, disrupted exports from Russia and Ukraine would usher in substantial new pressures on global wheat markets and tremendous risks for vulnerable populations around the world.

Dependence on wheat imports from Russia and Ukraine imperils food security in lower- and middle-income countries in North Africa and the Middle East (Algeria, Egypt, Libya, Morocco, Yemen), the Mediterranean (Azerbaijan, Turkey), sub-Saharan Africa (Nigeria, Sudan), Southern Asia (Bangladesh, Pakistan) and throughout Southeast Asia. Globally elevated food prices will hit hardest in those countries already struggling with food insecurity.

Layered onto the existing concentration of wheat-exporting countries and the climate-induced vulnerabilities in essential global breadbaskets, the crisis in Ukraine and trade sanctions on Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. We may well see a range of negative effects over the short, medium and long term, including:

  • Severe food insecurity and economic impacts due to reduced global wheat supplies and price increases affecting all wheat-importing countries and humanitarian agencies.
  • Diminished global grain productivity due to fertilizer supply limitations and price escalation, especially in low-income, fertilizer-import-dependent countries.
  • Higher food prices and expanded global hunger and malnutrition as a result of tighter fuel supplies driving up costs of agricultural production.
  • Pressure on household budgets negatively affecting nutrition, health, education and gender equity.
The employee of an Ethiopian seed association smiles as bags of wheat seed are ready to be distributed. (Photo: Gerardo MejĂ­a/CIMMYT)
The employee of an Ethiopian seed association smiles as bags of wheat seed are ready to be distributed. (Photo: Gerardo MejĂ­a/CIMMYT)

Stabilize while building resilience

With these multi-layered challenges in view, we propose essential actions to mitigate near-term food security crises, to stabilize wheat supply and to concurrently transition toward agri-food system resilience.

Without doubt, the world’s top priority must be to mitigate food security crises at our doorstep. This will involve boosting wheat production through expanded acreage (e.g. in high-performing systems in the Global North) and closing yield gaps (e.g. improved management and value chains of rainfed, wheat-based systems in the Global South) using policy incentives such as price guarantees and subsidized agricultural inputs. Short-term food insecurity can also be addressed through demand-side management (e.g. market controls to conserve grain stocks for human consumption; use of lower-cost flour blends) and de-risking alternative sourcing (e.g. trade agreements).

As these actions are taken, a range of strategies can simultaneously drive toward more resilient wheat supply at local to global scales. Well-functioning seed systems, demand-driven agronomic support and other elements of wheat self-reliance can be encouraged through shifts in local policy, regulatory and sectoral contexts. Enhanced monitoring capacity can track spatial patterns in wheat cropping, including expansion into areas where comparative advantage for wheat production (e.g. agro-ecological suitability; supporting infrastructure) has been identified in rural development frameworks and national plans (e.g. as a double crop in Ethiopian midlands). In addition to enabling yield forecasts, surveillance systems are critical to phytosanitary control of geographically restricted pathogens under altered wheat trade routes.

Yet, these steps to mitigate food shocks and stabilize local wheat supplies will not adequately protect the world from climate-related biophysical risks to food and nutritional security. In parallel, a transition toward agri-food system resilience requires transformative investments in agricultural diversification, sustainable natural resource management and low-greenhouse-gas agroecosystems, as well as meaningful actions toward achieving gender equality, nutritional sufficiency and livelihood security.

Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Sustained research & development for a food-secure future

None of the critical actions described above are guaranteed given the oscillating global investment in agricultural research. Enabled by decades of agricultural research, the world has managed to constrain the number and severity of food security crises through major gains in agricultural productivity.

The International Maize and Wheat Improvement Center (CIMMYT), the global international wheat research Center of the CGIAR, has been working tirelessly to maintain wheat harvests around the world in the face of mounting disease pressures and climate challenges. The estimated benefit-cost ratio for wheat improvement research ranges from 73:1 to 103:1. Yet, research funding only rises when food crises occur, revealing the globalized risks of our highly interconnected agri-food systems, and then tapers as memories fade.

With limited resources, scientists around the world are attacking the complex challenge of increasing agricultural yields and ensuring stable, equitable food supplies. Receiving only about 2% of international agricultural research funding over time, CIMMYT and the entire CGIAR have had limited ability to develop the long-term research capabilities that could mitigate or prevent short-term emergencies with medium- to long-term effects.

Responding to the mounting pressures on deeply complex agri-food systems requires integrative solutions that allow farmers and other agri-food stakeholders to mitigate and withstand shocks and to achieve viable livelihoods. Knowledge and technology needs are extensive across production systems (e.g. wheat-legume intercropping; cereals-focused agroecological interventions), value chains (e.g. context-appropriate seed systems; nutrition enhancement through flour blending), monitoring systems (e.g. genomics-based surveillance), and social dimensions (e.g. gender implications of new production and consumption strategies; policy interventions).

Generating such solutions depends on robust, multidisciplinary and transparent research capabilities that fuel the transition to agri-food system resilience. Robust international investment in resilient agricultural systems is an essential condition for national security, global peace and prosperity.

Read the full article (pre-print):
Another food crisis? The Ukraine conflict, global wheat supply and food security

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.