Skip to main content

Tag: conservation agriculture

An instant seed market

How do you create the largest market for stress-tolerant seed away from a major business center and attract over 1000 smallholder farmers in two days? Organize a seed fair to strengthen knowledge and information sharing.

The availability, access and use of climate-resilient seed by smallholder farmers in Zimbabwe is often hampered by transport costs, the distance between farming areas and viable seed markets, lack of public transport to business centers, and the inflated prices of seed and inputs by local agro-dealers. As a result, resource-poor farmers who cannot afford to purchase inputs resort to exchanging local seed retained or recycled from informal markets. This has devastating effects on farmers’ productivity, food and nutrition security.

Under the Zambuko/R4 Rural Resilience Initiative, the International Maize and Wheat Improvement Center (CIMMYT) is promoting climate-smart technologies and appropriate seed varieties alongside conservation agriculture (CA) systems in Masvingo district, Zimbabwe. Since 2018, mother and baby trials have successfully yielded results for smallholders in Ward 17 and additional mother trials have been introduced in Ward 13.

To overcome the challenges of seed access, CIMMYT partnered with eight seed companies — including Agriseeds, Mukushi and SeedCo — to host two seed fairs in October, targeting farmers in Wards 13 and 17. The intervention sought to address seed insecurity while reducing the knowledge gap on available stress-tolerant seed varieties by smallholder farmers.

Groundwork preparations led by the Department of Agriculture and Extension Services (AGRITEX) mobilized farmers from the host wards as well as farmers from neighboring wards 15, 19 and 25. In light of the ongoing COVID-19 pandemic, regulations relating to social distancing, the use of masks and sanitization were adhered to throughout the events.

Climate-smart seed choices

A key message delivered to the more than 1000 farmers who attended the seed fairs was the importance of their preference when selecting the right seed for their field. “Farmers must be critical when selecting seed and ensure that their preferred seed will perform well under the prevailing climatic conditions to give a good harvest,” said CIMMYT seed systems specialist Peter Setimela.

Seed company representatives were offered a platform to market their varieties and explain the benefits of each product on the market while leaving it to the farmers to decide on the most suitable variety for their own needs. “Farmers came early for the seed fairs and showed interest in our products,” said Norman Chihumo, a regional agronomist at Syngenta Distributors. “We recorded fairly good sales of seed and chemicals through cash purchases and vouchers.”

Later in the day, farmers toured the seed company stands to see the diverse maize varieties and small grains on offer — including millet and sorghum, cowpeas and groundnuts — and heard testimonials from participants in the mother and baby trials. “Listening to a success story from a farmer I know gives me the confidence to follow suit and buy seed that works in this harsh climate of ours,” said Joice Magadza, a farmer from Ward 17.

Local farmer Happison Chitono agreed. “I never used to grow cowpeas on my plot,” he explained, “but after learning about the ability it has to fix nitrogen into my soil and possibility of rotating the legume with maize, I am now gladly adding it to my seed input package.”

Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A seed fair is also a knowledge market

A key highlight of the seed fair was the learning platform promoting CIMMYT’s ongoing activities under the Zambuko/R4 Rural Resilience Initiative. Here, cropping systems agronomist Christian Thierfelder shared the objectives of this initiative with participating farmers.

“We know how good this seed is, but we also have to grow it in a sustainable way, so we make best use of the limited rainfall we receive in this area while we improve our soils,” he explained to farmers. “Cropping systems such as conservation agriculture combine no-tillage, mulching and crop rotation in a climate-smart agriculture way which enables farmers to harvest enough, even under heat and drought stress.”

Thierfelder also demonstrated the use of farm equipment promoted by CIMMYT in collaboration with Kurima Machinery, explaining how these can help reduce drudgery and save time on planting, transport and shelling.

Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Vouchers for transparent seed access

The seed fairs culminated in the distribution of seed and input vouchers. One hundred farmers were selected through a transparent raffle and redeemed their vouchers at their preferred seed company stands. They then also had the option to purchase additional seed, fertilizer and chemicals using their own cash.

Particularly high sales were recorded for Provitamin A orange maize, which sold out on both seed fair days. Stress-tolerant varieties such as ZM 309 and ZM 523 from Zimbabwe Super Seeds, ZM521 from Champion Seeds, and MRI 514 from Syngenta were also favorites among the farmers, while white sorghum and cowpea varieties such as CBC2 also sold well. Most of these varieties were already known to farmers as they had seen them growing for two years in CIMMYT’s mother trials of Ward 17.

The seed fairs ended on a high note with a total of 1.2 tons of seed sold to farmers on both days and agro-dealers hailed the fairs as a timely business venture for creating linkages and bringing seed suppliers on-site to assess their shops. A post-seed fair monitoring exercise will soon follow up on farmers’ use of the seed and the performance of demo packs and purchased varieties.

The Zambuko/R4 Rural Resilience Initiative supported by the United States Agency for International Aid (USAID), Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP) aims to increase farmer resilience and capacity to withstand climatic shocks and stresses in rural communities of Masvingo, Mwenezi and Rushinga in Zimbabwe.

Gokul P. Paudel

Gokul P. Paudel is an agricultural economist working with CIMMYT’s Socioeconomics Program, based in Nepal. His research mostly focuses on technology adoption and impact assessment, scale-appropriate mechanization, climate change impacts and adaptations, conservation agriculture, technical efficiency analysis, trade-off analysis, non-market valuation and big data, data mining and advanced machine learning.

Farmers flock towards nutritious, orange maize

At seed fair in Masvingo District, Zimbabwe, farmers browse numerous displays of maize, sorghum, millet, groundnuts and cowpeas presented by the seed companies gathered at Muchakata Business Centre.

The event — organized by the International Maize and Wheat Improvement Center (CIMMYT) as part of the R4 Rural Resilience Initiative — is promoting a range of stress-tolerant seeds, but there is a particular rush for the vitamin A-rich, orange maize on offer. Farmers excitedly show each other the distinctive orange packets they are purchasing and in no time all, this maize seed is sold out at the Mukushi Seeds stand.

“I first saw this orange maize in the plot of my neighbor, Florence Chimhini, who was participating in a CIMMYT project,” explains Dorcus Musingarimi, a farmer from Ward 17, Masvingo. “I was fascinated by the deep orange color and Florence told me that this maize was nutritious and contained vitamin A which helps to maintain normal vision and maintain a strong immune system.”

“I would like to grow it for myself and consume it with my family,” says Enna Mutasa, who also purchased the seed. “I heard that it is good for eyesight and skin — and it is also tasty.”

A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)
A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)

Knowledge transfer through mother trials

Florence Chimhini is one of ten farmers who has participated in the “mother trials” organized as part of the Zambuko/R4 Rural Resilience Initiative since 2018.

These trials were designed in a way that allows farmers to test the performance of six different maize varieties suited to the climatic conditions of their semi-arid region, while also growing them under the principles of conservation agriculture. Using this method, farmers like Chimhini could witness the traits of the different maize varieties for themselves and compare their performance under their own farm conditions.

An important outcome of the mother trials was a growing interest in new varieties previously unknown to smallholders in the area, such as the orange maize varieties ZS244A and ZS500  which are sold commercially by Mukushi Seeds.

“Recent breeding efforts have significantly advanced the vitamin A content of orange maize varieties,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “However, the orange color has previously been associated with relief food — which has negative connotations due to major food crises which brought low quality yellow maize to Zimbabwe.”

“Now that farmers have grown this maize in their own mother trial plots and got first-hand experience, their comments are overwhelmingly positive. The local dishes of roasted maize and maize porridge are tastier and have become a special treat for the farmers,” he explains.

“Though not as high yielding as current white maize varieties, growing orange maize under climate-smart conservation agriculture systems can also provide sustained and stable yields for farm families in Zimbabwe’s drought-prone areas.”

A seed company representative outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)
Grison Rowai, a seed systems officer at HarvestPlus outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)

Addressing micronutrient deficiency

In Zimbabwe, at least one in every five children suffers from ailments caused by vitamin A deficiency, from low levels of concentration to stunting and blindness. The vitamin is commonly found in leafy green vegetables, fruits and animal products — sources that may be unavailable or unaffordable for many resource-poor households.

Staple maize grain, however, is often available to smallholder families and thus serves as a reliable means through which to provide additional micronutrient requirements through conventional biofortification. This allows people to improve their nutrition through the foods that they already grow and eat every day, says Lorence Mjere, a seed systems officer at HarvestPlus Zimbabwe.

The beta-carotene in orange maize gives it its distinctive orange color and provides consumers with up to 50% of their daily vitamin A requirements.

“Orange maize addresses hidden hunger in family diets by providing the much-needed pro-vitamin A which is converted to retinol upon consumption,” explains Thokozile Ndhlela, a maize breeder at CIMMYT. “In doing so, it helps alleviate symptoms of deficiency such as night blindness and poor growth in children, to name just a few.”

The success of the recent seed fairs shows that provitamin A maize is gaining momentum among smallholder farmers in Masvingo and its continued promotion will support all other efforts to improve food and nutrition security in rural farming communities of southern Africa.

Reflections on resilience

Approaching Ward 6 in Mwenezi, southern Zimbabwe, tracts of empty fields around homesteads on either side of the road signal the end of harvesting for the 2019/20 farming season. Farmers have stored away maize fodder on tree branches or inside the family compounds.

At one of the homesteads in the village of Chikwalakwala A, ten farmers are gathered while agricultural extension officers weigh grain and legume samples. They are participating in mother trials from the International Maize and Wheat Improvement Center (CIMMYT), using improved farming practices and drought-resilient seed varieties. This is one of the eight villages in Ward 6 where CIMMYT has established demonstration sites, as part of the Zambuko Livelihoods Initiative, supported by the United States Agency for International Development (USAID).

“Most of us here were born and raised in this ward, helping our parents with farming activities and continuing with farming when we finally had our own families,” farmer Tevera Romichi explains. However, the dry spells, high temperatures and erratic rainfall have become increasingly disturbing for him in recent years. “It became difficult to determine when we would receive enough rain to plant our crops without risking long dry spells,” he says.

The onset of rains in Mwenezi has shifted over the years, from late September to the end of October or early November. With most families in the district depending on agriculture for their livelihoods, the adverse change in climatic conditions has compromised food security. These farmers grow crops such as millet, sorghum and groundnut.

Clemence Hlungwane, another farmer participating in mother trials, further explains how traditional practices of repeated tillage with ox-drawn ploughs weakened the soil structure, exposing it to soil erosion and loss of fertility. “These soils have been overused without any thought of how to replenish all the nutrients that were found in the soil in past years,” he says. The result for families like Hlungwane’s were poor germination, susceptibility to pests and diseases and poor yields.

Lablab fixes nitrogen into the soil and provides residue for mulching and feed for livestock.
Lablab fixes nitrogen into the soil and provides residue for mulching and feed for livestock. (Photo: Christian Thierfelder/CIMMYT)

Being smart in the field

The introduction of climate-smart technologies by CIMMYT provided a channel through which mother-trial farmers in Ward 6 could explore alternative farming practices in a sustainable way while adapting to climate-induced risks. The principles of conservation agriculture, which encourage the preservation of soil moisture and nutrients, underpinned the technologies introduced by CIMMYT.

Initially, mother trial farmers expressed mixed feelings when the CIMMYT team and the Agricultural Extension and Technical Services (AGRITEX) officials took them through the process of establishing the demonstration plots. “It seemed like a lot of work,” Charleton Midzi recalls. “There was a lot of measuring, pegging and marking the demonstration plots but we soon realized that this would be important when planting the small grains and legumes.”

“At the same time, I was curious to see how ploughing with a ripper would help the soil and crops along with the practice of mulching,” Midzi says. “Where mulch was applied, the moisture was well preserved, and the crops looked much healthier and vibrant than in portions without mulch.” Another important lesson was understanding the importance of record keeping for planting dates, harvesting dates and rainfall records to inform the next season. In addition, good agronomy practices such as spacing, correct application of nutrients and use of pesticides contributed to the successful production at the demonstration plots.

“We no longer waste inputs,” says Caleb Matandare, a farmer in the village of Chikwalakwala C. “Being smart in the field means applying the correct amount of fertilizer using the measuring cups provided and keeping a record of the suitable amount for the crop.”

By the end of the season, the mother farmers observed the evident difference in the higher quality of the millet and sorghum planted on the conservation agriculture plots, compared to the conventional plots. From the yields of sorghum, millet and cowpeas, Matandare’s family of 13 are guaranteed enough diverse and nutritious food, particularly in the “lean season,” the period between harvests.

Margaret Mapuranga, a mother-trial farmer in Ward 6, Mwenezi district, shows a sample of velvet bean from the demonstration plot.
Margaret Mapuranga, a mother-trial farmer in Ward 6, Mwenezi district, shows a sample of velvet bean from the demonstration plot. (Photo: Shiela Chikulo/CIMMYT)

Baby-trial farmers eager to learn

Since the establishment of the mother trials in Ward 6, several farmers witnessing the advantages of producing under conservation agriculture and using drought-resilient varieties are keen to adopt the improved technologies.

Margaret Mapuranga shares how her neighbor inquired about the legume crops. “I explained to her how lablab, velvet bean and cowpeas fix nitrogen in the soil, which will be useful for the grain crops in the next season. She would like to try out the same in her own field in the coming season.” Mapuranga is confident that she can promote these sustainable practices with farmers selected for the baby trials in her village.

The coming 2020/21 season looks promising as more farmers in Ward 6 adopt the improved technologies. Mother-trial farmers are eager to expand conservation agriculture practices to other portions of their land as a safeguard against climate risks. For them, the ability to share the climate-smart technologies promoted by CIMMYT is an empowering process that will transform agriculture in the ward and beyond.

What is sustainable intensification?

By 2050, the world’s population could grow to 9.7 billion, food demand is expected to increase by 50% and global demand for grains such as maize, rice and wheat could increase by 70%. How can we meet the food and nutrition demands of a rising population, without negative environmental and social consequences?

Sustainable intensification is an approach using innovations to increase productivity on existing agricultural land with positive environmental and social impacts. Both words, “sustainable” and “intensification,” carry equal weight.

CIMMYT conducts research on sustainable intensification to identify ways farmers can increase production of crops per unit of land, conserve or enhance important ecosystem services and improve resilience to shocks and stresses, especially those due to climate change and climate variability.

For example, CIMMYT’s research on sustainable intensification in India has helped shape policies that increase farmer income while reducing pollution and land degradation.

What is the scope of sustainable intensification? 

Sustainable intensification takes into consideration impact on overall farm productivity, profitability, stability, production and market risks, resilience, as well as the interests and capacity of individual farmers to adopt innovations. It is not limited to environmental concerns, but also includes social and economic criteria such as improving livelihoods, equity and social capital.

Certain methods and principles are needed to achieve the goals of sustainable intensification. In collaboration with farmers and other change actors, CIMMYT carries out research-for-development projects to test and scale a range of technologies and approaches that contribute to these results. The research focuses on combined resource use efficiencies of crop production inputs: land, plant nutrients, labor and water.

One example is conservation agriculture, the combination of crop diversification, minimal soil movement and permanent soil cover. International scientific analysis has found that conservation agriculture can, in many places with different characteristics, play a crucial role towards achieving the United Nations Sustainable Development Goals.

Crop and system modeling, geographic information systems, remote sensing, scale-appropriate mechanization and socioeconomic modeling are some of the approaches that contribute to the design and evaluation of sustainable intensification alternatives in current farming systems.

Figure: Multi-criteria sustainability assessment of alternative (sustainable intensification) and reference systems in the Western Highlands of Guatemala.
Figure: Multi-criteria sustainability assessment of alternative (sustainable intensification) and reference systems in the Western Highlands of Guatemala.

What are some more examples?

Several interventions by CIMMYT aim at safeguarding biodiversity and protecting — in some cases increasing — ecosystem services crucial for small-scale farmers’ livelihoods and the health of all. Others have studied the impact of landscapes on dietary diversity and nutrition. Yet others have developed appropriate small-scale machines, allowing farmers to save time, costs and labor associated with agriculture to increase yields, halt the expansion of the agricultural frontier and invest in new opportunities.

How is sustainable intensification different from ecological intensification, agroecological intensification or climate-smart agriculture? 

Sustainable intensification, ecological intensification and agroecological intensification strive for the same general goal to feed an increasing population without negative environmental and social consequences, but they place emphasis on different aspects.

Ecological intensification focuses on ecological processes in the agroecosystem. Agroecological intensification emphasizes a systems approach and strongly considers social and cultural perspectives.

Climate-smart agriculture and sustainable intensification are complementary, but climate-smart agriculture focuses on climate stress, adaptation and mitigation.

Sustainable intensification can be achieved with a range of methods, including these concepts. It is one strategy among many for global food system transformation.

What is the history of CIMMYT’s research on sustainable intensification?

In the 1960s, the Green Revolution brought high-yielding crops to some regions of Latin America and South Asia, allegedly saving millions from starvation. Yet the Green Revolution had unintended environmental and social consequences. Critics of the Green Revolution argued these cropping techniques were highly dependent on external inputs, fossil fuels and agrochemicals, causing environmental damage through overuse of fertilizers and water, and contributing to soil degradation.

In the 1980s, CIMMYT scientists began placing stronger emphasis on environmental and social aspects — such as conserving soil and water, and ensuring social inclusion of marginalized groups — recognizing their importance to sustain the intensification of crops in South Asia. It was understood that sustainability includes improving the livelihoods of rural people who depend on these natural resources, in addition to better resource management. CIMMYT began to take these considerations to the core of its work.

Farmers harvest maize cobs.
Farmers Maliamu Joni and Ruth Andrea harvest cobs of drought-tolerant maize in Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)

Are these practices successful?

Sustainable intensification can boost yields, increase farmers’ profits and reduce greenhouse gas emissions. The reduction of greenhouse gas emissions can be achieved by increasing nitrogen use efficiency, which also reduces groundwater pollution.

Research from CIMMYT’s SIMLESA project has shown that conservation agriculture-based sustainable intensification practices led to a 60-90% increase in water infiltration and a 10-50% increase in maize yields in Malawi. In Ethiopia, crop incomes nearly doubled with crop diversification, reduced tillage and improved varieties, compared to using only one of these practices.

According to research from Stanford University, agricultural intensification has avoided emissions of up to 161 gigatons of carbon from 1961 to 2005. CIMMYT research shows that India could cut nearly 18% of agricultural greenhouse gas emissions through sustainable intensification practices that reduce fertilizer consumption, improve water management and eliminate residue burning. Zero-tillage wheat can cut farm-related greenhouse gas emissions by more than 75% in India and is 10-20% more profitable on average than burning rice straw and sowing wheat using conventional tillage.

A CIMMYT study in Science shows that thousands of wheat farmers in northern India could increase their profits if they stop burning their rice straw residue and adopt no-till practices, which could also cut farm-related greenhouse gas emissions by as much as 78% and lower air pollution. This research and related work to promote no-till Happy Seeders led to a 2018 policy from the government of India to stop farmers from burning residue, including a $166 million subsidy to promote mechanization to manage crop residues within fields.

In light of this evidence, CIMMYT continues to work with stakeholders all along the value chain — from farmers to national agricultural research organizations and companies — to promote and scale the adoption of practices leading to sustainable intensification.

Cover photo: Irrigated fields under conservation agriculture at CIMMYT’s CENEB experiment station near Ciudad Obregón, Sonora, northern Mexico. (Photo: CIMMYT)

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

Breaking Ground: Isaiah Nyagumbo advances climate-smart technologies to improve smallholder farming systems

Most small farmers in sub-Saharan Africa rely on rain-fed agriculture to sufficiently feed their families. However, they are increasingly confronted with climate-induced challenges which hinder crop production and yields.

In recent years, evidence of variable rainfall patterns, higher temperatures, depleted soil quality and infestations of destructive pests like fall armyworm cause imbalances in the wider ecosystem and present a bleak outlook for farmers.

Addressing these diverse challenges requires a unique skill set that is found in the role of systems agronomist.

Isaiah Nyagumbo joined the International Maize and Wheat Improvement Center (CIMMYT) in 2010 as a Cropping Systems Agronomist. Working with the Sustainable Intensification program, Nyagumbo has committed his efforts to developing  conservation agriculture  technologies  for small farming systems.

“A unique characteristic of systems agronomists,” Nyagumbo explains, “is the need to holistically understand and address the diverse challenges faced by farming households, and their agro-ecological and socio-economic environment. They need to have a decent understanding of the facets that make technology development happen on the ground.”

“This understanding, combined with technical and agronomical skills, allows systems agronomists to innovate around increasing productivity, profitability and efficient farming practices, and to strengthen farmers’ capacity to adapt to evolving challenges, in particular those related to climate change and variability,” Nyagumbo says.

Isaiah Nyagumbo stands next to a field of maize and pigeon pea. Currently, Nyagumbo’s research seeks to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity. (Photo: CIMMYT)
Isaiah Nyagumbo stands next to a field of maize and pigeon pea. Currently, Nyagumbo’s research seeks to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity. (Photo: CIMMYT)

Gaining expert knowledge

Raised by parents who doubled as teachers and small-scale commercial farmers, Nyagumbo was exposed to the realities of producing crops for food and income while assisting with farming activities at his rural home in Dowa, Rusape, northeastern Zimbabwe. This experience shaped his decision to study for a bachelor’s degree in agriculture specializing in soil science at the University of Zimbabwe and later a master’s degree in soil and water engineering at Silsoe College, Cranfield University, United Kingdom.

Between 1989 and 1994, Nyagumbo worked with public and private sector companies in Zimbabwe researching how to develop conservation tillage systems in the smallholder farming sector, which at the time focused on reducing soil erosion-induced land degradation.

Through participatory technology development and learning, Nyagumbo developed a passion for closely interacting with smallholder farmers from Zimbabwe’s communal areas as it dawned to him that top-down technology transfer approaches had their limits when it comes to scaling technologies. He proceeded to study for his PhD in 1995, focusing on water conservation and groundwater recharge under different tillage technologies.

Upon completion of his PhD, Nyagumbo started lecturing at the University of Zimbabwe in 2001, at the Department of Soil Science and Agricultural Engineering, a route that opened collaborative opportunities with key international partners including CIMMYT.

“This is how I began my engagements with CIMMYT, as a collaborator and jointly implementing on-farm trials on conservation agriculture and later broadening the scope towards climate-smart agriculture technologies,” Nyagumbo recalls.

By the time an opportunity arose to join CIMMYT in 2010, Nyagumbo realized that “it was the right organization for me, moving forward the agenda of sustainability and focusing on improving productivity of smallholder farmers.”

Climate-smart results

Cropping systems agronomist Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot in Ward 4, Murewa, Zimbabwe. (Photo: CIMMYT)
Cropping systems agronomist Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot in Ward 4, Murewa, Zimbabwe. (Photo: CIMMYT)

Projects such as SIMLESA show results of intensification practices and climate-smart technologies aimed at improving smallholder farming systems in eastern and southern Africa.

One study showed that when conservation agriculture principles such as minimum tillage, rotation, mulching and intercropping are applied, yield increases ranging from 30-50 percent can be achieved,” Nyagumbo says.

Another recent publication demonstrated that the maize yield superiority of conservation agriculture systems was highest under low-rainfall conditions while high-rainfall conditions depressed these yield advantages.

Furthermore, studies spanning across eastern and southern Africa also showed how drainage characteristics of soils affect the performance of conservation agriculture technologies. “If we have soils that are poorly drained, the yield difference between conventional farming practices and conservation agriculture tends to be depressed, but if the soils are well drained, higher margins of the performance of conservation agriculture are witnessed,” he says.

Currently, Nyagumbo’s research efforts in various countries in eastern and southern Africa seek to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity.

“Right now, I am focused on understanding better the ‘climate-smartness’ of sustainable intensification technologies.”

In Malawi, Nyagumbo is part of a team evaluating the usefulness of different agronomic practices and indigenous methods to control fall armyworm in maize-based systems. Fall armyworm has been a troublesome pest particularly for maize in the last four or five seasons in eastern and southern Africa, and finding cost effective solutions is important for farmers in the region.

Future efforts are set to focus further on crop-livestock integration and will investigate how newly developed nutrient-dense maize varieties can contribute to improved feed for livestock in arid and semi-arid regions in Zimbabwe.

Sharing results

Another important aspiration for Nyagumbo is the generation of publications to share the emerging results and experiences gained from his research with partners and the public. Working in collaboration with others, Nyagumbo has published more than 30 articles based on extensive research work.

“Through the data sharing policy promoted by CIMMYT, we have so much data generated across the five SIMLESA project countries which is now available to the public who can download and use it,” Nyagumbo says.

While experiences with COVID-19 have shifted working conditions and restricted travel, Nyagumbo believes “through the use of virtual platforms and ICTs we can still achieve a lot and keep in touch with our partners and farmers in the region.”

Overall, he is interested in impact. “The greatest reward for me is seeing happy and transformed farmers on the ground, and knowing my role is making a difference in farmers’ livelihoods.”

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

Cobs & Spikes podcast: What is conservation agriculture?

Farmers worldwide are increasingly adopting conservation agriculture. In the 2015/2016 season, conservation agriculture was practiced on about 180 mega hectares of cropland globally, 69% more than in the 2008/2009 season.

What are the benefits of this method of farming? How did it originate? In this episode, we answer common questions on conservation agriculture and talk to Simon Fonteyne, Research Platforms Coordinator with CIMMYT’s Integrated Development program and conservation agriculture expert.

You can listen to our podcast here, or subscribe on iTunes, Spotify, Stitcher, SoundCloud, or Google Play.

 

CIMMYT and IITA collaborate to increase adoption of conservation agriculture in southern Africa

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.

The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.

The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.

The project was officially launched online on September 16, 2020. Zambia’s Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.

“It is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,” Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. “Conservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.”

Proven benefits

Conservation agriculture — a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species — can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.

Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.

“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.

“Although adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,” said  Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.

Christian Thierfelder, Principal  Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.

Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).

The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.


Interview opportunities:

Arega Alene, Agricultural Economist, IITA.

Christian Thierfelder, Principal  Cropping Systems Agronomist, CIMMYT

For more information, or to arrange interviews, contact the media team:

Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org

Katherine Lopez, Head of Communication, IITA. k.lopez@cgiar.org

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

About IITA:

The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africa’s most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.

How do I become a zero-till farmer?

“What you are now about to witness didn’t exist even a few years ago,” begins the first video in a series on zero tillage produced by the International Maize and Wheat Improvement Center (CIMMYT). Zero tillage, an integral part of conservation agriculture-based sustainable intensification, can save farmers time, money and irrigation water.

Through storytelling, the videos demonstrate the process to become a zero till farmer or service provider: from learning how to prepare a field for zero tillage to the safe use of herbicides.

All videos are available in Bengali, Hindi and English.

This videos were produced as part of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, funded by the Australian Centre for International Agricultural Research (ACIAR). The videos were scripted with regional partners and filmed with communities in West Bengal, India.

Conservation Agriculture Visual Syllabus (English):

 

Conservation Agriculture Visual Syllabus (Hindi):

 

Conservation Agriculture Visual Syllabus (Bengali):

New publications: Rotation, mulch and zero tillage reduce weeds

Despite the many benefits of conservation agriculture, uptake by smallholder farmers remains limited. Alongside the struggle to maintain adequate soil cover and limited opportunities for crop diversification, weed management is a major constraint to the widespread adoption of conservation agriculture.

Although all three components of the practice – zero or minimal tillage, permanent soil cover and crop diversification – can reduce weed populations, the effects of these efforts may only become apparent in the medium to long term. As a result, many smallholders are likely to forgo these in favor of hand weeding, cheap herbicides and tillage – which controls weeds in the short term but also brings weed seeds from the seedbank to the soil surface and creates optimum conditions for germination.

In an effort to evaluate the impact of using conservation agriculture practices for weed management, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used data from a long-term trial in the Mexican Highlands to evaluate weed biomass, density and diversity with and without herbicide control.

Results of their study – recently published in Agronomy – show that weed density and biomass were generally much lower in areas where conservation agriculture was practiced, compared to conventional tillage. All three components helped to significantly reduce weed biomass, with an even greater reduction when all three practices were applied together. When herbicides were applied, weed biomass in conservation agriculture was 91% lower in maize and 81% lower in wheat than in conventional tillage.

The authors found that different treatments favored different weed species but did not observe any trend toward increased perennial weeds in conservation agriculture. The data from their study supports claims that if adequate weed control is achieved in the initial years, weed populations in conservation agriculture systems are lower than in conventional tillage ones. Given these weed-controlling effects, the authors posit that these practices are likely to lead to lower herbicide use in the long term – which may be welcome news for smallholders who have reported weed management to be particularly problematic in the initial years after adopting conservation agriculture.

Read the full article in Agronomy: Rotation, Mulch and Zero Tillage Reduce Weeds in a Long‐Term Conservation Agriculture Trial

See more recent publications from CIMMYT researchers:

  1. Paddy in saline water: analysing variety-specific effects of saline water intrusion on the technical efficiency of rice production in Vietnam. 2019. Dam, T.H.T., Amjath Babu, T.S., Zander, P., Muller, K. In: Outlook on Agriculture v. 48 no. 3 page 237-245.
  2. Doubled haploid technology for line development in maize: technical advances and prospects. 2019. Chaikam, V., Molenaar, W., Melchinger, A.E., Prasanna, B.M. In: Theoretical and Applied Genetics v. 132 no. 12 pg. 3227-3243.
  3. Smallholder farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal. 2019. Paudel, G.P., KC, D.B., Rahut, D.B., Khanal, N.P., Justice, S.E., McDonald, A.J. In: Technology in Society v. 59, art. 101196.
  4. Variations in straw fodder quality and grain–Straw relationships in a mapping population of 287 diverse spring wheat lines. 2019. Joshi, A.K., Kumar, U., Vinod Kumar Mishra, Chand, R., Chatrath, R., Naik, R., Suma S. Biradar., Singh, R.P., Neeraj Budhlakoti, Devulapalli, R., Blummel, M. In: Field Crops Research v. 243, art. 107627.
  5. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. 2019. Abbruzzini, T.F., Davies, C.A., Toledo, F.H., Pellegrino Cerri, C.E. In: Journal of Environmental Management, v. 252, art. 109638.
  6. The impact of agricultural interventions can be doubled by using satellite data. 2019. Meha Jain, Singh, B., Preeti Rao, Srivastava, A., Poonia, S. P., Blesh, J., Azzari, G., McDonald, A., Lobell, D.B. In: Nature Sustainability v. 2, pg. 931-934.
  7. A wheat chromosome 5AL region confers seedling resistance to both tan spot and Septoria nodorum blotch in two mapping populations. 2019. Wenjing Hua, Xinyao He, Dreisigacker, S., Sansaloni, C.P., Juliana, P., Singh, P.K. In: The Crop Journal v. 7, no. 6, pg. 809-818.
  8. Environmental variables contributing to differential performance of tropical maize hybrids across heat stress environments in South Asia. 2019. Vinayan, M.T., Zaidi, P.H., Seetharam, K., Md Ashraful Alam, Ahmed, S., Koirala, K.B., Arshad, Md., Kuchanur, P.H., Patil, A., Mandal, S.S. In: Australian Journal of Crop Science v. 13, no. 6, page 828-836.
  9. The use of pentaploid crosses for the introgression of Amblyopyrum muticum and D-genome chromosome segments into durum wheat. 2019. Othmeni, M., Grewal, S., Hubbart-Edwards, S., Cai-Yun Yang, Scholefield, D., Ashling, S., Yahyaoui, A.H., Gustafson, P., Singh, P.K., King, I.P., King, J. In: Frontiers in Plant Science v. 10, art. 1110.
  10. Alternate energy sources for lighting among rural households in the Himalayan region of Pakistan: access and impact. 2019. Ali, A., Rahut, D.B., Mottaleb, K.A., Aryal, J.P. In: Energy & Environment v. 30, no. 7, 1291-1312.
  11. Assessing climate adaptation options for cereal-based systems in the eastern Indo-Gangetic Plains, South Asia. 2019. Fantaye, K. T., Khatri-Chhetri, A., Aggarwal, P.K, Mequanint, F., Shirsath, P.B., Stirling, C., Jat, M.L., Rahut, D.B., Erenstein, O. In: Journal of Agricultural Science v. 157, no. 3, 189-210.
  12. Doing research and ‘doing gender’ in Ethiopia’s agricultural research system. 2019. Drucza, K.L.,  Tsegaye, M., Abebe, L. In: Gender, Technology and Development v. 23, no. 1, pg. 55-75.
  13. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. 2019. Posch, B.C., Kariyawasam, B.C., Bramley, H., Coast, O., Richards, R.A., Reynolds, M.P., Trethowan, R.M., Atkin, O.K. In: Journal of Experimental Botany v. 70, no. 19, pg. 5051-5069.
  14. Farming on the fringe: shallow groundwater dynamics and irrigation scheduling for maize and wheat in Bangladesh’s coastal delta. 2019. Schulthess, U., Zia Ahmed, Aravindakshan, S., Rokon, G.M., Alanuzzaman Kurishi, A.S.M., Krupnik, T.J. In: Field Crops Research v. 239, pg. 135-148.
  15. A Bayesian genomic multi-output regressor stacking model for predicting multi-trait multi-environment plant breeding data. 2019. Montesinos-Lopez, O.A., Montesinos-Lopez, A., Crossa, J., Cuevas, J., Montesinos-Lopez, J.C., Salas Gutiérrez, Z., Lillemo, M., Juliana, P., Singh, R.P. In: G3: Genes, Genomes, Genetics v. 9, No. 10, pg. 3381-3393.
  16. 16. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. 2019. Juliana, P., Poland, J.A., Huerta-Espino, J., Shrestha, S., Crossa, J., Crespo-Herrera, L.A., Toledo, F.H., Velu, G., Mondal, S., Kumar, U., Bhavani, S., Singh, P.K., Randhawa, M.S., Xinyao He, Guzman, C., Dreisigacker, S., Rouse, M.N., Yue Jin, Perez-Rodriguez, P., Montesinos-Lopez, O.A., Singh, D., Rahman, M.M., Marza, F., Singh, R.P. In: Nature Genetics v. 51, no. 10, pg. 1530-1539.
  17. Malting barley grain quality and yield response to nitrogen fertilization in the Arsi highlands of Ethiopia. 2019. Kassie, M., Fantaye, K. T. In: Journal of Crop Science and Biotechnology v. 22, no. 3, pg. 225-234.
  18. 18. Synergistic impacts of agricultural credit and extension on adoption of climate-smart agricultural technologies in southern Africa. 2019. Makate, C., Makate, M., Mutenje, M., Mango, N., Siziba, S. In: Environmental Development v. 32, art. 100458.
  19. An early warning system to predict and mitigate wheat rust diseases in Ethiopia. 2019. Allen, C., Thurston, W., Meyer, M., Nure, E., Bacha, N., Alemayehu, Y., Stutt, R., Safka, D., Craig, A.P., Derso, E., Burgin, L., Millington, S., Hort, M.C., Hodson, D.P., Gilligan, C.A. In: Environmental Research Letters v. 14, no. 11, art. 115004.
  20. 20. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. 2019. Almekinders, C., Beumer, K., Hauser, M., Misiko, M.T., Gatto, M., Nkurumwa, A.O., Erenstein, O. In: Outlook on Agriculture v. 48, no. 1, pg. 16-21.
  21. 21. Climate action for food security in South Asia? Analyzing the role of agriculture in nationally determined contributions to the Paris agreement. 2019. Amjath Babu, T.S., Aggarwal, P.K., Vermeulen, S. In: Climate Policy v. 19 no. 3, pg. 283-298.
  22. Future changes and uncertainty in decision-relevant measures of East African climate. 2019. Bornemann, F.J., Rowell, D.P., Evans, B., Lapworth, D.J., Lwiza, K., Macdonald, D.M.J., Marsham, J.H., Fantaye, K. T., Ascott, M.J., Way, C. In: Climatic Change v. 156, no. 3, pg. 365-384.
  23. Women’s time use and implications: for participation in cacao value chains: evidence from VRAEM, Peru. 2019. Armbruster, S., Solomon, J., Blare, T., Donovan, J.A. In: Development in Practice v. 29, no. 7, pg. 827-843.
  24. Estimates of the willingness to pay for locally grown tree fruits in Cusco, Peru. 2019. Blare, T., Donovan, J.A, Pozo, C. del. In: Renewable Agriculture and Food Systems v. 34, no. 1, pg. 50-61.
  25. 25. Smallholders’ coping mechanisms with wheat rust epidemics: lessons from Ethiopia. Debello, M. J., Hodson, D.P., Abeyo Bekele Geleta, Yirga, C., Erenstein, O. In: PLoS One v. 14 no. 7, art. e0219327.
  26. Fields on fire: alternatives to crop residue burning in India. 2019. Shyamsundar, P., Springer, N., Tallis, H., Polasky, S., Jat, M.L., Sidhu, H.S., Krishnapriya, P.P., Skiba, N., Ginn, W., Ahuja, V., Cummins, J., Datta, I., Dholakia, H.H., Dixon, J., Gerard, B., Gupta, R., Hellmann, J., Jadhav, A., Jat, H.S., Keil, A., Ladha, J.K., Lopez-Ridaura, S., Nandrajog, S., Paul, S., Ritter, A., Sharma, P.C., Singh, R., Singh, D., Somanathan, R. In: Science v. 365, no. 6453 pg. 536-538.
  27. Climate shock adaptation for Kenyan maize-legume farmers: choice, complementarities and substitutions between strategies. 2019. Tongruksawattana, S., Wainaina, P. In: Climate and Development v. 11, no. 8, pg. 710-722.
  28. Development of a participatory approach for mapping climate risks and adaptive interventions (CS-MAP) in Vietnam’s Mekong River Delta. 2019. Bui Tan Yen, Nguyen Hong Son, Le Thanh Tung, Amjath Babu, T.S., Sebastian, L. In: Climate Risk Management v. 24, pg. 59-70.
  29.  Genetic divergence and diversity in Himalayan Puccinia striiformis populations from Bhutan, Nepal, and Pakistan. 2019. Khan, M.R., Rehman, Z., Nazir, S.N., Tshewang, S., Baidya, S., Hodson, D.P., Imtiaz, M., Sajid Ali In: Phytopathology v. 109, no. 10, pg. 1793-1800.
  30. Herencia de la resistencia del trigo (Triticum aestivum L.) huites F95 a roya amarilla causada por Puccinia striiformis F. sp. tritici W. = Inheritance of resistance to yellow rust caused by Puccinia striiformis F. sp. tritici on huites F95 wheat (Triticum aestivum L.). 2019. Rodriguez-Garcia, M.F., Huerta-Espino, J., Rojas Martínez, R.I., Singh, R.P., Villaseñor Mir, H.E., Zavaleta Mejía, E., Sandoval-Islas, S., Crossa, J, Caixia Lan In: Agrociencia v. 53, no. 5, pg. 765-780.

Conservation agriculture for sustainable intensification in Eastern India

A new policy brief produced by the Indian Council of Agricultural Research (ICAR) lays out a clear case for the benefits and importance of conservation agriculture, and a road map for accelerating its adoption in Eastern India.

A collaborative effort by research and policy partners including ICAR, the National Academy of Agricultural Sciences (NAAS), The International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), and national academic and policy institutions, the brief represents the outputs of years of both rigorous scientific research and stakeholder consultations.

Eastern India — an area comprising seven states — is one of the world’s most densely populated areas, and a crucial agricultural zone, feeding more than a third of India’s population. The vast majority — more than 80% — of its farmers are smallholders, earning on average, just over half the national per capita income.

Conservation agriculture (CA) consists of farming practices that aim to maintain and boost yields and increase profits while reversing land degradation, protecting the environment and responding to climate change. These practices include minimal mechanical soil disturbance, permanent soil cover with living or dead plant material, and crop diversification through rotation or intercropping. A number of studies have shown the success of conservation agriculture in combatting declining factor productivity, deteriorating soil health, water scarcity, labor shortages, and climate change in India.

The road map lists recommended steps for regional and national policy makers, including

  • establishing a database repository on conservation agriculture for eastern India,
  • setting up common learning platform and sites for science-based evidence on CA,
  • developing an effective and productive supply chain system for CA machinery,
  • offering subsidies for CA machinery as incentives to farmers,
  • adopting pricing strategies to encourage market demand for sustained adoption of CA,
  • developing synergies for effective coordination between NARS and CGIAR institutions, and
  • building capacity among stakeholders.

Read the full policy brief here:

Conservation Agriculture for Sustainable Intensification in Eastern India

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Partners include the Indian Council of Agricultural Research (ICAR), the National Academy of Agricultural Sciences (NAAS), the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), the Trust for Advancement of Agricultural Sciences (TAAS), the Borlaug Institute for South Asia (BISA), Dr. Rajendra Prasad Central Agricultural University, Bihar Agricultural University, and the Department of Agriculture of the state of Bihar.

 

Small is beautiful

Can Africa’s smallholder farmers adopt and reap the benefits of farm mechanization? The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) team set out in 2013 to test this proposition.  With the project nearing closure, the International Maize and Wheat Improvement Center (CIMMYT) project leader Frédéric Baudron believes the answer is yes.

“We have demonstrated that small-scale mechanization is a pathway to sustainable intensification and rural transformation, and can have positive gender outcomes as well,” he explained.

Here are some of the key lessons learned along the way, according to the people involved.

1. Appropriate mechanization is essential

With many farms in Africa measuring no more than two hectares, FACASI focused on bringing two-wheel tractors to regions where smallholdings dominate, especially in Zimbabwe and Ethiopia. For most small farmers, conventional farm machinery is out of reach due to its size, costs, and the skills needed to operate it. The typical path to mechanization would be for farmers to consolidate their farms, which could lead to social and environmental upheaval. Instead, the FACASI team scaled-down the equipment to suit the local context.

FACASI has obtained evidence to dispel commonly held myths about farm power in smallholder farming systems,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR).

2. Test, develop and adapt technologies… together 

From start to finish, the project tested and developed technologies in collaboration with farmers, local manufacturers, engineers, extension agents. Together, they adapted and refined small-scale machinery used in other parts of the world to accommodate the uneven fields and hard soils of African smallholder farms. This co-construction of technologies helped cultivate a stronger sense of local ownership and buy-in.

“We gained many valuable insights by continuously refining technologies in the context of efficiency, farmer preference and needs,” said Bisrat Getnet, FACASI national project coordinator in Ethiopia, and director of the Agricultural Engineering Research Department in the Ethiopian Institute of Agricultural Research (EIAR).

Jane Mautsa and her husband operating the sheller. (Photo: Shiela Chikulo/CIMMYT)

3. Make it useful 

The basic two-wheel tractor is a highly flexible and adaptable technology, which can be used to mechanize a range of on-farm tasks throughout the seasons. With the right attachments, the tractor makes short work of sowing, weeding, harvesting, shelling, water pumping, threshing and transportation.

“This multi-functional feature helps to ensure the tractor is useful at all stages of the annual farming cycle, and helps make it profitable, offsetting costs,” said Raymond Nazare, FACASI national project coordinator in Zimbabwe and lecturer at the Soil and Engineering Department of the University of Zimbabwe.

4. Less pain, more profit

Reducing the unnecessary drudgery of smallholder farming can be financially rewarding and open new doors. Mechanization can save farmers the costs of hiring additional labor, and vastly reduce the time and effort of many post-harvest tasks — often done by women — such as transport, shelling and grinding. FACASI researchers demonstrated the potential for mechanization to reduce this onerous labor, allowing women to channel their time and energy into other activities.

5. New, inclusive rural business models

New technologies need reliable supply chains and affordable support services. The FACASI team supported leasing and equipment-sharing schemes, trained people to operate and maintain machinery, and encouraged individuals and groups to become service providers. These efforts often focused on giving youth and women new business opportunities.

“The project demonstrated that small mechanization can create profitable employment,” said Tirivangani Koza, of Zimbabwe’s Ministry of Lands, Agriculture, Water and Rural Resettlement.

“Women and youth are using small mechanization to grow profitable businesses,” said Alice Woodhead in Australia.

“They have advanced from dependent family members to financially independent entrepreneurs. Their new skills, such as servicing the tractors, marketing and shelling, have increased their family’s income. FACASI has also inspired community members to launch aligned businesses such as shelling services, inventing new two-wheel tractor implements for the growing customer base, or becoming artisan mechanics. In some districts, the two-wheel tractors are starting to create a cycle of innovation, business development, food diversification and sustainable economic growth,” she said.

6. Respond to farmer demands

Although the FACASI team set out to promote mechanization as a way to help farmers take up conservation agriculture techniques such as direct seeding, they opened the Pandora’s box for other beneficial uses. By the project’s end, it was clear that transport and mechanization of post-harvest tasks like shelling and threshing, had become far more popular among farmers than mechanization of crop production. This result is a sign of the team’s success in demonstrating the value of small-scale mechanization, and adapting technologies to respond to farmers’ needs.

7. Embrace new research models

Agricultural research for development has long forgotten about labour and mechanization issues; the FACASI team helped put these front and center by involving engineers, business enterprises, agriculturalists, and partners from across the supply chain.

“FACASI demonstrates an important change in how to do agricultural research to achieve meaningful impacts,” Woodhead said.

“Rather than focus only on the farm environment and on extension services, they worked from the outset with partners across the food, agriculture and manufacturing sectors, as well as with the public institutions that can sustain long-term change. The project’s results are exciting because they indicate that sustainable growth can be achieved by aligning conservation agriculture goals, institutions and a community’s business value propositions,” she explained.

What’s next?

Demonstration of a minitiller, Naivasha, Kenya. (Photo: Matt O' Leary/CIMMYT)
Demonstration of a minitiller, Naivasha, Kenya. (Photo: Matt O’ Leary/CIMMYT)

Although the project has ended, its insights and lessons will carry on.

“We have built a solid proof of concept. We know what piece of machinery works in a particular context, and have tested different delivery models to understand what works where,” explained Frédéric Baudron.

“We now need to move from piloting to scaling. This does not mean leaving all the work to development partners; research still has a big role to play in generating evidence and making sure this knowledge can be used by local manufacturers, engineers, local dealers and financial institutions,” he said.

As an international research organization, CIMMYT is strategically placed to provide critical answers to farming communities and the diversity of actors in the mechanization value chain.

A number of other organizations have taken up the mantle of change, supporting mechanization as part of their agricultural investments. This includes an initiative supported by the German Development Agency (GIZ) in Ethiopia, an IFAD-supported project to boost local wheat production in Rwanda and Zambia, and an intervention in Zimbabwe supported by the Zimbabwe Resilience Building Fund.

“ACIAR provided us generous and visionary support, at a time when very few resources were going to mechanization research in Africa,” Baudron acknowledged. “This allowed CIMMYT and its partners from the national research system and the private sector to develop unique expertise on scale-appropriate mechanization. The legacy of FACASI will be long-lived in the region,” he concluded.

Cover photo: Starwheel planter in Zimbabwe. (Photo: Jérôme Bossuet/CIMMYT)

When mothers learn from babies

Kiyasi Gwalale walking through her baby trial in Chebvute, Masvingo. Photo: C. Thierfelder/CIMMYT
Kiyasi Gwalale walking through her baby trial in Chebvute, Masvingo. Photo: C. Thierfelder/CIMMYT

It was an early morning on March 12, 2020, when we entered Kiyasi Gwalale’s field in the Chebvute area of Masvingo, southern Zimbabwe. Gwalale participates in the Zambuko Livelihoods Initiative, funded by the United States Agency for International Development (USAID).

The Zambuko initiative aims to increase rural resilience against the negative effects of climate change. More than 70% of smallholders in Zimbabwe farm on sandy soils that are low in soil fertility and are increasingly affected by the vagaries of climate. The Gwalale family is an example of one of the millions affected.

In Chebvute, the International Maize and Wheat Improvement Center (CIMMYT) has established trials to test the effectiveness and productivity of conservation agriculture and climate resilient crop species since 2018. This has been in the form of “mother and baby” trials.

A traditional tool of breeders, “mother trials” show different technologies to farmers to allow them to select the best option. In Chebvute, these trials were amplified to demonstrate farmers’ crop management practices such as conservation agriculture, crop rotation with legumes and different drought-resilient crop varieties.

A baby trial with DT maize, cowpea and white sorghum in Chebvute. Photo: C. Thierfelder/CIMMYT
A baby trial with DT maize, cowpea and white sorghum in Chebvute. Photo: C. Thierfelder/CIMMYT

Baby trial farmers taking after their ‘mothers’

Since 2019, the best options have been taken on by follower farmers in so called “baby trials”, where they use a subset from the mother trials to gain first-hand experience with the technology. Learning by doing is a central concept of this approach.

Gwalale as a “baby trial farmer” learned from the mother trials that drought-tolerant maize varieties out-yield traditional varieties under conservation agriculture, but need to be rotated with legumes to also improve the soil and the nutrition of the farm household. In addition, she realized that planting white sorghum is a drought-resilient strategy in this area as small grains are less affected by in-season dry-spells.

Gwalale and her family have been resident in Chebvute for 15 years but farm only on 0.4 ha of land. With her husband and three children, she grows maize, sorghum, groundnuts and Bambara nuts. What she gets from these fields is barely enough to survive.

In the 2019/20 cropping season, a devastating drought lasting from mid-December to mid-January destroyed all her hopes that this year would be a better season. Instead, she went on an educational journey to find out how improved farming practices can make a difference in her own life.

“We planted this baby trial for the first time in December 2019, as we had seen from the nearby mother trials that these varieties planted under no-tillage seem to grow better than our own. We planted the baby at the same times as our own crops, but instead of tilling the soil and clearing the land, which we are used to, we just planted in riplines without tillage and covered the soil with mulch,” explains Gwalale.

“When the drought came, all my other crops in the tilled fields started to wilt and die — some did not even germinate. We could not believe what was happening in this baby trial”.

CIMMYT scientist Christian Thierfielder pleased with the results in another baby trial plot in Chebvute. Photo: C. Thierfelder/CIMMYT
CIMMYT scientist Christian Thierfielder pleased with the results in another baby trial plot in Chebvute. Photo: C. Thierfelder/CIMMYT

Resounding results in the baby trial

All crops in the baby trial survived the dry-spell and when the rains started to fall again in January, they continued to grow very well. Gwalale replanted the crops in the affected fields but they never caught up with the baby trial. Even after using the ripper to make more riplines, it was too late to experience the same wonder seen in the baby trial. “For now, we are yet to see how much we will get from this small field, but we learned a big lesson and want to expand our land area with this way of planting next year,” she says.

More than 200 baby trial farmers in Chebvute, the majority of which are women, have experienced the same in their own baby trials and realized that it does not take much effort to achieve food security.

Timely planting, conserving the soil and the moisture with conservation agriculture, effective weeding and application of adequate plant nutrients are the key ingredients of success. This can be learned effectively in a small plot such as a baby trial. Farmers have realized that it is possible to make a difference when they apply the principles of sustainable agriculture in their farming systems. The interventions introduced will help them to become more climate-resilient and ultimately more food secure.

Erick Ortiz Hernández

Erick Ortiz Hernández is an agronomist working on the sustainable intensification of production systems and knowledge management models.