Skip to main content

Tag: fall armyworm

Tackling fall armyworm with sustainable control practices

Typically looking like a small caterpillar growing up to 5 cms in length, the fall armyworm (FAW, Spodoptera frugiperda) is usually green or brown in color with an inverted “Y” marking on the head and a series of black dots along the backs. Thriving in warm and humid conditions, it feeds on a wide range of crops including maize, posing a significant challenge to food security, if left unmanaged. The fall armyworm is an invasive crop pest that continues to wreak havoc in most farming communities across Africa.

A CIMMYT researcher surveys damaged maize plants while holding a fall armyworm, the culprit. (Photo: Jennifer Johnson/CIMMYT)

The first FAW attack in Zimbabwe was recorded around 2016. With a high preference for maize, yield losses for Zimbabwe smallholder farmers are estimated at US$32 million. It has triggered widespread concern among farmers and the global food system as it destroyed large tracts of land with maize crops, which is a key staple and source of farmer livelihood in southern Africa. The speed and extent of the infestation caught farmers and authorities unprepared, leading to significant crop losses and food insecurity.

Exploring the destructive FAW life cycle

It undergoes complete metamorphosis, progressing through four main stages including egg, larva, pupa, and adult. Reproducing rapidly in temperatures ranging from 20 to 38°C, moist soil conditions facilitate the egg-laying process, while mild winters enable its survival in some regions. The larval stage is the most destructive phase, feeding voraciously on plant leaves and can cause severe defoliation. They can migrate in large numbers, devouring entire fields within a short period if left unchecked.

Working towards effective FAW management

A farmer and CIMMYT researcher examine maize plants. (Photo: CIMMYT)

Efficient monitoring, early detection, and appropriate management strategies are crucial for mitigating the impact of FAW infestations and protecting agricultural crops. To combat the menace of this destructive pest, CIMMYT, with support from the United States Agency for International Development (USAID), has been implementing research and extension on cultural control practices in Zimbabwe. One such initiative is the “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe”. Since 2018, this project strives to address research gaps on FAW management and cultural control within sustainable agriculture systems. The focus of the research has been to explore climate-adapted push-pull systems and low-cost control options for smallholder farmers in Zimbabwe who are unable to access and use expensive chemical products.

Environment friendly practices are proving effective to combat FAW risks

To reduce the devastating effects of FAW, the project in Zimbabwe is exploring the integration of legumes into maize-based strip cropping systems as a first line of defense in the Manicaland and Mashonaland east provinces. By planting maize with different, leguminous crops such as cowpea, lablab and mucuna, farmers can disrupt the pests’ feeding patterns and reduce its population. Legumes release volatile compounds that repel FAW, reducing the risk of infestation. Strip cropping also enhances biodiversity, improves soil health and contributes to sustainable agricultural practices. Overall results show that FAW can be effectively managed in such systems and implemented by smallholder farmers. Research results also discovered that natural enemies such as ants are attracted by the legumes further contributing to the biological control of FAW.

Spraying infested maize crop with Fawligen in Nyanyadzi. (Photo: CIMMYT)

Recently, the use of biopesticides such as Fawligen has gained traction as an alternative to fight against fall armyworm. Fawligen is a biocontrol agent that specifically targets the FAW larvae. Its application requires delicate attention – from proper storage to precise mixing and accurate application. Following recommended guidelines is essential to maximize its effectiveness and minimize potential risks to human health and the environment.

Impact in numbers

Since the inception of the project, close to 9,000 farmers participated in trainings and exposure activities and more than 4,007 farmers have adopted the practices on their own field with 1,453 hectares under improved management. Working along with extension officers from the Ministry of Lands, Agriculture, Water, Fisheries & Rural Resettlement, the project has established 15 farmer field schools as hubs of knowledge sharing, promoting several farming interventions including conservation agriculture practices (mulching, minimum tillage through ripping), timely planting, use of improved varieties, maintaining optimum plant population, and use of recommended fertilizers among others.

Addressing FAW requires a multi-faceted approach. The FAW project in Zimbabwe is proactive in tackling infestation by integrating intercropping trials with legumes, harnessing the application of biopesticides, and collaborative research. By adopting sustainable agricultural practices, sharing valuable knowledge, and providing farmers with effective tools and techniques, it is possible to mitigate the impact of FAW and protect agrifood systems.

Strengthening seed systems with Zamseed

Bram Govaerts and Amsal Tarekegne compare a maize hybrid. (Photo: Katebe Mapipo/CIMMYT)

Maize is a vital crop in Zambia and Tanzania, both for farmers’ economic livelihoods and for delivering nutrients and sustenance to a large group of people. But maize is threatened by climate change, like more severe droughts, and from pests like fall army worm (FAW), which can completely devastate farmers’ fields.

Against this backdrop of looming threats, CIMMYT, as part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is partnering with the Zambia Seed Company Limited (Zamseed) to distribute seeds that are drought tolerant and resistant to the ravages of FAW. And because maize is a staple of many people’s diets, CIMMYT and Zamseed are also developing and distributing maize varieties enhanced with vitamin A.

To uphold maize variety integrity, CIMMYT and Zamseed are engaged in the capacity building of quality assurance and quality control for local stakeholders.

CIMMYT’s engagement with Zamseed involves efforts to popularize high yielding, drought-tolerant, and vitamin enhanced maize varieties in Zambia and Tanzania. Some of these efforts include demonstrations of the new varieties, field days held at different stages of maize development, and deliberate engagement of women throughout the entire seed selection, planting and harvesting effort.

“Our partnership with Zamseed started in October 2022,” said Ir Essegbemon Akpo, a CIMMYT maize seed systems specialist. “It has been a fruitful collaboration, delivering significant outputs to thousands of farmers in Zambia and Tanzania.”

To date, Zamseed has held 300 and 500 demonstrations in Tanzania and Zambia, respectively. The company has held many field days at the demonstration sites to showcase drought tolerant and vitamin A enhanced maize to hundreds of small-scale farmers.

“We have witnessed many farmers who visited the demonstration activities who are excited to see the new high yielding and drought tolerant varieties,” said Amsal Tarekegne of Zamseed.

Seeded by funds from the AID-I project, Zamseed is producing 60kg of Early Generation Seed (EGS) of parents of a FAW-tolerant hybrid maize variety. The company plans to produce 200kg of this hybrid for commercialization and launch in 2024.

To ensure that seeds delivered to farmers are of the highest quality, CIMMYT is working with Zamseed to develop quality assurance and control frameworks, involving genotyping of selected seeds at various times during the seed multiplication and distribution process.

Zamseed has been servicing the requirements of farmers in the sub-Sahara region since 1980, focusing on products that will enhance the profitability of the small-scale farmer and ensure household food security.

How CGIAR maize breeding is improving the world’s major staple crop for tropical regions

Maize production is surging due to its diversified end uses. While it is already the first staple cereal globally, it is expected to emerge as the world’s predominant crop for cultivation and trade in the coming decade. Globally, it serves primarily as animal feed, but it is also a vital food crop, particularly in sub-Saharan Africa, Latin America, and in some areas in Asia. 

Climate change is, however, altering the conditions for maize cultivation, especially in the rainfed, stress-prone tropics. Abiotic stresses like heat, drought, and floods, as well as biotic threats such as diseases and insect pests are becoming more frequent. These have a disproportionate impact on the resource-constrained smallholders who depend on maize for their food, income, and livelihoods. 

In a race against time, crop breeders are working to enhance maize’s resilience to the changing climates. Among others, CIMMYT and the International Institute of Tropical Agriculture (IITA), working within CGIAR’s Accelerated Breeding Initiative, are utilizing breeding innovations to develop climate-resilient and nutritionally enriched maize varieties needed by the most vulnerable farmers and consumers.  

Better processes

Improving maize yields in the rainfed, stress-prone tropics is challenging. Nevertheless, CGIAR’s efforts have significant impacts, as breeding programs embraced continuous improvement and enhanced efficiency over the years.  

To increase genetic gains, CIMMYT maize breeding program implemented a systematic continuous improvement plan. Sixty percent of CIMMYT’s maize lines in Eastern and Southern Africa (ESA) are now developed through technologies that speed up breeding cycle and improve selection intensity and accuracythese include doubled haploid technologyhigh-throughput phenotyping, molecular marker-assisted forward breeding, and genomic selection. The breeding cycle time has been reduced from five or six years to only four years in most of the maize product profiles. Product advancement decisions now incorporate selection indexes, and specialized software aid in the selection of parental lines for new breeding starts. 

CIMMYT and IITA maize teams are working together to investigate several key traits in maize for discovery, validation, and deployment of molecular markers. CGIAR maize team developed a framework for implementing a stage-gate advancement process for marker-trait pipeline, which enables informed decision-making and data-driven advancements at multiple stages, from marker-trait discovery proposal to marker discovery, validation, and deployment. Consolidating research efforts and implementing this process is expected to increase efficiency and collaboration in maize breeding programs.

An example of maize biotic stress exacerbated by climate change: fall armyworm (FAW) larvae, highly destructive pests, emerge out from an egg mass placed on a maize leaf. (Photo: A. Cortés/CIMMYT)

At the end of the breeding process, breeders must ensure the quality assurance and quality control (QA/QC) of the parental lines of the new varieties. Seed quality, which includes genetic purity, genetic identity, and verification of parentage – is critical in maize breeding and commercial seed production.  

CIMMYT has worked to enhance the capacity of NARES and seed company partners in Eastern and South Africa (ESA), Asia, and Latin America, in utilizing molecular markers for QA/QC in breeding and commercial seed production. This has resulted in more reliable and accurate outcomes. In addition, webinars and user-friendly software have boosted results for NARES maize breeders, regulatory agencies, and seed companies. These combined efforts mean a dependable, cost-effective, and efficient QA/QC system for the maize seed value chain in the Global South. 

Better tools 

With traditional means, obtaining a genetically homozygous or true-to-type maize line requires six to eight generations of inbreeding, and thus, more than ten years for developing a new hybrid. The technique of doubled haploid (DH), which enables derivation of 100% genetically homozygous lines in just two generations, is now integral to modern maize breeding. CIMMYT has pioneered the development of tropical maize DH technology, by developing and disseminating tropicalized haploid inducers, establishing centralized DH facilities in Mexico, Kenya and India, and providing DH development service to partners.  

Regional on-farm trials (ROFTs) is a crucial step in maximizing the impact of breeding investments. ROFTs help scientists understand performance of the pipeline hybrids under diverse farmers’ management conditions, besides environment, soil variability, etc. 

In ESA, ROFT networks for maize are expanded significantly over the last few years, from 20-30 sites per product profile to up to 300 sites, encompassing a wide range of smallholder farming practices. The experimental design was simplified to use less germplasm entries to be tested per farm, making it easier for the farmers to participate in the network, while improving data quality. Collaboration with NARES, seed companies, NGOs, and development partners was significantly stepped up to capture the social diversity within the target market segments. Gender inclusion was prioritized.

Training workshop organized by CIMMYT at the Maize Doubled Haploid Facility in Kunigal, India. (Photo: CIMMYT)

Strengthening the capacity of NARES and SMEs to systematically access and utilize improved maize germplasm is critical for increasing genetic gains in the stress-prone tropics. But partner institutions are at different stages of evolution, which means capacity strengthening must be tailored to institutional strengths and constraints.  

Accelerated Breeding has been strengthening regional CGIAR-NARES-SME collaborative maize breeding networks via activities such as exchanging elite tropical germplasm (inbred lines, trait donors, and breeding populations) through field days, and widely disseminating CIMMYT maize lines (CMLs) requested by institutions globally.  

Partners participate in CGIAR maize stage-advancement meetings – they are given access to multi-location trial data and participate in the selection process of promising hybrids to be advanced from the different breeding stages. CGIAR maize teams also assessed the capacity of different NARES institutions, and formulated continuous improvement plans in consultation with respective NARES teams for further support.  

Better varieties

Systematic integration of new breeding techniques and innovations in CGIAR maize breeding pipelines are leading to better varieties, at a much faster pace, and at lower cost. Given the impacts of climate change, this is indeed the need of the hour.  

Maize breeders need to respond rapidly to emerging and highly destructive insect-pests and diseases. For instance, the invasion of fall armyworm (FAW) in Africa (since 2016) and Asia (since 2018) has ravaged maize crops across more than 60 countries. CGIAR maize team in Africa responded to this challenge and made progress in identifying diverse sources of native genetic resistance to FAW, resulting in elite hybrids and open-pollinated varieties (OPVs) adapted to African conditions. 

Since 2017, CIMMY has strengthened the maize insectary capacity of KALRO-Katumani by optimizing the FAW mass rearing protocol and screening of maize germplasm under FAW artificial infestation at Kiboko Station, Kenya. The station now has sixteen 1,000m net houses. The intensive work since 2018 led to identification of FAW-tolerant inbred lines by CIMMYT and their distribution to over 90 public and private institutions in 34 countries. 

NARES partners across 13 countries in Africa have undertaken national performance trials of three FAW-tolerant hybrids developed by CIMMYT. Kenya, Zambia, Malawi, South Sudan and Ghana released the three hybrids in 2022-23, while several more countries are expected to release these hybrids in the coming months.

Drought and heat tolerant maize ears are harvested through a CIMMYT project. (Photo: J.Siamachira/CIMMYT)

Climate change is also exacerbating maize diseases. Affecting at least 17 countries in the Americas, the Tar Spot Complex (TSC) disease affects maize in the cool and humid regions. It causes premature leaf death, weakens plants, and reduces yields by up to 50%. CIMMYT maize team in Mexico has mapped genomic regions conferring TSC resistance, and is using these markers in breeding programs 

The Global South is also particularly vulnerable to drought and high temperature stresses. In the past five years, 20 drought- and heat-tolerant maize hybrids have been released in Asia, including Bangladesh, Bhutan, India, Nepal, and Pakistan. Socio-economic studies in India and Nepal showed that farmers who adopted these hybrids realized higher grain yields, and increased income compared to the non-adopters. 

In 2022, certified seed production of CGIAR multiple stress-tolerant maize varieties reached 181,119 metric tons in sub-Saharan Africa (from 72,337 tons in 2016). This is estimated to cover ~7.4 million hectares, benefiting over 46 million people in 13 countries. 

With maize facing unprecedented threats from climate change-induced stresses in the rainfed stress-prone tropics, CGIAR maize breeding programs working closely with NARES and private sector have demonstrated remarkable success in breeding as well as deploying climate resilient maize.  These efforts rely on better processes and modern breeding tools, leading to drastically reduced breeding cycle time, cost saving, and improved efficiency.  

The resulting improved varieties–resilient to major environmental stresses, diseases and insect-pests–are increasingly adopted by smallholders across sub-Saharan Africa, South Asia, and Latin America, showing that tomorrow is already here. The work continues to ensure that maize remains a constant source of food security and prosperity for generations to come in the tropical regions.

Fall armyworm research, development and extension for horticulture

Breeding for fall armyworm resistance in maize: an update from CIMMYT

Staff from the Queensland Department of Agriculture and Fisheries (DAF)Agriculture VictoriaFood and Fibre Gippsland, and Bowen Gumlu Growers Association joined B.M. Prasanna (Maize Program Director at CIMMYT & CGIAR Plant Health Initiative Lead) on 19th October 2023 to learn about CIMMYT’s efforts and experiences with fall armyworm management at the global scale, and to build partnerships between CIMMYT and Australian institutions for future collaboration on plant health management.

At the online meeting, Prasanna shared CIMMYT’s research and development on FAW management in maize, including breeding for insect-pest resistance, screening maize germplasm against FAW under artificial infestation, and collaborative approaches on integrated pest management of FAW.

Key points from the discussion:

  • Collaborative efforts are important in managing FAW, and international R&D collaboration is as important as country-level research efforts.
  • CIMMYT has made significant progress in breeding FAW-tolerant maize hybrids (with native genetic resistance); three such hybrids have been released by national partners in Kenya, Zambia, Malawi, South Sudan, and Ghana, and several more countries in Africa are in the pipeline for release and deployment of these hybrids.
  • Insect resistance management is critical wherever Bt maize varieties have been already released or in the process of release.
  • Both conventionally derived and Bt-based resistant maize varieties have their own importance in FAW management.
  • Need to intensify breeding activities for developing elite maize germplasm with FAW resistance together with other important traits, and fast-track deployment of FAW-tolerant elite maize hybrids.
  • Possible to achieve synergies between host plant resistance and other IPM approaches for sustainable management of FAW.
  • Researchers interested in accessing germplasm from CIMMYT’s breeding program can source through a standard material transfer agreement.

Dr Prasanna responded to several queries from the participants of the meeting. Australian researchers and CIMMYT showed interest in further research collaboration. Dr Ramesh Raj Puri, DAF Extension Officer, facilitated the meeting.

SPG Coalition: CIMMYT is a leading organization for climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management

The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.

In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.

CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.

Nutrient-use efficiency and fertilizer management

While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.

Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)

In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.

The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.

The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.

Climate-smart maize breeding 

Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.

Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)

CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.

The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.

“The SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. It’s also an important reminder to assess our strong points and where more investment and collaboration is needed,” said Bram Govaerts, CIMMYT director general.

CIMMYT Director General reaffirms commitment to Zambia

Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.

Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)

“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.

CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”

Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.

Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.

Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”

Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)

Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.

Accelerating delivery of stress-tolerant, nutritious seed in Eastern and Southern Africa

AID-I staff inspect germination in Malawi (Photo: CIMMYT)

Accelerated delivery with a difference is underway in Malawi, Tanzania, and Zambia to ensure access to stress-tolerant seeds for underserved farmers in remote areas. Supported by USAID, the Accelerated Innovation Delivery Initiative (AID-I) project brings public-private and civil society together to address the impacts of climate change, pests and diseases, and food shocks on maize and legume systems.

One simple and cost-effective solution to tackle these threats is last mile delivery of stress-tolerant and nutritious seeds. Ensuring that farmers have access to a diverse range of seeds means they can choose the best varieties to suit their needs and their local environment.

Through AID-I, scientists at the International Maize and Wheat Improvement Center (CIMMYT) are working with over 20 global, regional, national, and local partners to strengthen maize and legume seed systems in Malawi, Tanzania, and Zambia.

So far, in 2023, the team has set up over a hundred mega-demonstrations across Malawi and Zambia, to raise awareness and increase seed production by exposing communities to improved, climate-adapted and nutritious crop varieties. As learning centers, the mega-demonstrations give farmers a chance to see for themselves the advantages of improved maize and legume varieties and better farming practices including conservation agriculture and doubled up legumes systems.

Farmers plant mega-demonstration plots in Malawi (Photo: CIMMYT)

Spotlighted were drought-tolerant and nutritious varieties, expected to play a crucial role in the recovery of regional maize production. The Zambian and Malawian governments have also just released maize hybrids tolerant to fall armyworms, which will be scaled through the AID-I. The fall armyworm is an invasive pest that attacks more than 80 different crops but has a particular preference for maize. Without proper control measures, the pest can decimate crops, threatening food security, incomes, and livelihoods.

Alongside maize, the AID-I team is making seed of improved legume varieties, including beans, soybean, pigeon peas, cowpea, and groundnuts available at the last mile. Legumes are nutritious and good for the soil, providing valuable nutrients like nitrogen (N) so farmers can use less fertilizer, save money, and protect soil health.

AID-I supports strengthening of strategically located seed stockists of improved legume varieties and linking seed growers and buyers. These stockists, called agricultural development agents will also receive training in community seed production. Through connection with hundreds of agricultural development agents in the first farming season with seed suppliers, hundreds of thousands of farmers will be able to access a wide variety of improved seed.

Members of the CIMMYT leadership team with representatives from the U.S. Department of State and the U.S. Agency of International Development (USAID) visit AfriSeed in Zambia (Photo: CIMMYT)

Building strong relationships between public and private sector organizations is an integral part of the project. On January 16, 2023, long-term CIMMYT collaborator and AID-I key partner, AfriSeed hosted senior government officials from the United States Department of State (DOS) and U.S. Agency for International Development (USAID). The visitors gained valuable insight into how private seed companies involved in the marketing and distribution of maize and legume seeds operate in Zambia and showed their crucial role in the country’s seed sector.

Government of Zambia and CIMMYT strengthen ties in agricultural development

Bram Govaerts, Sieg Snapp, Minister Mtolo Phiri and Prassana Boddupalli pose at the conclusion of the high level meeting between CIMMYT and the Government of Zambia. (Photo: Tawanda Hove/CIMMYT)

Senior government officials in Zambia have embraced the rollout of the International Maize and Wheat Improvement Center’s (CIMMYT’s) new innovations which target smallholder farmers and agriculture-based value chain actors in the country.

On January 17, 2023, CIMMYT Director General Bram Govaerts met with Minister of Agriculture Reuben Mtolo Phiri. The Minister reassured Govaerts that the investments made by CIMMYT in the country had the Government’s full support.

Earlier this year, a delegation led by Cary Fowler, the US Special envoy for Global Food Security met the Minister and his team at the Government complex in Lusaka, Zambia’s capital, to deliberate on a variety of agriculture development issues concerning the country.

Govaerts’ visit came off the back of the new Accelerated Innovation Delivery Initiative (AID-I), a CIMMYT-led project funded by the United Stated Agency for International Development (USAID). The project seeks to scale up promising innovations that could transform the maize and legume value chains within the southern African region, with a focus on Zambia, Malawi and Tanzania.

“As the Government of Zambia, we intend to create a private sector driven economy for which agriculture plays a critical role. Having progressive partners like CIMMYT helps us achieve this cause and this new program is received with open arms,” said Phiri.

The aims of the AID-I project include strengthening seed systems, the promotion and adoption of stress-tolerant maize and legume varieties, demonstration of good agriculture practices that respond to the effects of climate change and addressing systemic constraints in maize and legume value chains.

Through AID-I, CIMMYT experts are working with over 20 global, regional, national and local partners including the Alliance for a Green Revolution in Africa (AGRA), Catholic Relief Services (TLC), Total Land Care (TLC), the International Water Management Institution (IMWI) and World Vegetable Center.

Also attending the meeting was AID-I Technical Lead and CIMMYT Scientist Hambulo Ngoma who discussed some of the latest project activities.

“As this project focuses on accelerated delivery, we have set up more than 40 demonstrations in eastern Zambia with the intention of showcasing stress-tolerant varieties for maize and legume under conservation agriculture. In addition, we are showcasing other good agriculture practices such as strip cropping which not only enhances intensified crop production but is a biological control for fall armyworm,” Ngoma said.

Hambulo Ngoma receiving a verbal vote of confidence from Zambian Minister of Agriculture Mtolo Phiri. (Photo: Tawanda Hove/CIMMYT)

The Minister appreciated the rationale of the project and indicated that participatory variety selection for farmers was crucial if they were going to maximize their yields and returns from farming.

Phiri further emphasized that CIMMYT and partners’ investment in legume value chain strengthening came at a welcome time as upscaling soya bean production was a key priority in the Government’s strategic plan for agricultural development because of its export-ready market within the region.

“Markets such as Zimbabwe, Mozambique and Tanzania can readily take up the soya we produce, and we are looking to export legumes such as soya and groundnuts to East Africa. This project therefore fits very well within our strategic road map,” Phiri said.

The demonstration plots set up by CIMMYT experts will help farmers grow the right varieties for their agro ecologies and have greater response capabilities to the export market opportunities the Government is facilitating.

The Minister also indicated that he hoped CIMMYT would assist in strengthening the country’s capacity to deal with fall armyworm. CIMMYT Global Maize Program Director B.M. Prasanna reassured Phiri that through the Zambian Agriculture research Institute (ZARI), CIMMYT had already released three fall armyworm-tolerant varieties. He also discussed how the AID-I project would be instrumental in scaling up their uptake, especially amongst smallholder farmers who have minimal disposable income to buy enough pesticides to control the pest.

Concluding the meeting, Govaerts spoke of CIMMYT’s commitment to supporting Zambia achieve its food security and agricultural export goals.

“As CIMMYT, we want you to recognize us as a listening partner. We are of the conviction that we can only combat climate change and achieve shared prosperity through the strength of convening power, where we leverage on each other’s strength.”

As the project is focused on scaling existing promising technologies and innovations, rapid transformative results are on the horizon for the people of Zambia.

Counties Urged To Scale Up And Adopt Pest Control Technologies

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) suggest counties in Kenya should scale up and accelerate the adoption of technologies that can control and prevent Maize Lethal Necrosis (MLN) and fall armyworm (FAW) to achieve higher maize yields.

Although the technologies exist, many farmers have little information on how to implement them.

Seed companies and senior officials from the Ministry of Agriculture could play a key role in disseminating information, as could mobile phone technology and emerging digital innovation platforms.

Read the original article: Counties Urged To Scale Up And Adopt Pest Control Technologies

Plant Health Innovation Platform at Kiboko, Kenya: integrating and testing eco-friendly solutions against fall armyworm

Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)

CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.

The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.

“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)

Participatory assessment

Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.

“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.

Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.

The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.

Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.

”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”

A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)

Plant Health Innovation Platform catalyzes collaboration

The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.

“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.

Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.

Taking Aim Against the Dire Threat of Fall Army Worm

Fall armyworm (FAW) is present in 109 countries in Africa, the Middle East, South and East Asia, and Oceania, and it has spread due to rapid increases in global trade. Maize is highly susceptible to the disease, but it affects more than 300 plant species.

Research by organizations such as the International Maize and Wheat Improvement Center (CIMMYT), CGIAR and CABI has developed effective strategies and tools for managing the disease, such as improved seed, proven agronomic practices, and biologic and chemical crop-protection tools.

An article in The Farming Forum explores FAW prevention developments and partnerships that are helping smallholder farmers protect their crops against this devastating disease.

Read the original article: Taking Aim Against the Dire Threat of Fall Army Worm

Kenya: Scientists team up to control fall army worms

The Government of Kenya is working with the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO) and the International Centre of Insect Physiology and Ecology (ICIPE) to develop eco-friendly pest management technology and contain the fall armyworm (FAW) pest.

Since the outbreak of FAW was reported in 2016, maize yields have dropped by between 30-50 percent, increasing the country’s challenges for food security.

Prasanna Boddupalli, Director of the Global Maize Program at CIMMYT, said, ″We want farmers to dissociate from application of synthetic toxic pesticides and chemicals but revert to use of combined approaches like use of resistant varieties, bio-pesticides and related biological control methods that are environmentally friendly.”

Preliminary assessment of the viability of naturally tolerant maize varieties from Mexico suggests that at least two or three resistant varieties may be approved after certification from the regulator.

Read the original article: Kenya: Scientists team up to control fall army worms

Refresher webinar on fall armyworm management in South Asia

Banner for the refresher webinar on fall armyworm management in South Asia. (Photo: CIMMYT)

The fall armyworm is a destructive polyphagous pest that feeds on more than 300 crop species, with a particular appetite for maize. The pest was first reported in Asia in 2018 and has been spreading in the region since then, especially in maize-producing countries of South Asia.

Several campaigns on identifying and managing fall armyworm have been conducted in South Asia, yet the challenge to control the pest remains. The damage caused by fall armyworm to farmers’ fields was reported widely during the 2022 spring maize season in Pakistan and Nepal’s Terai region. Many maize farmers complained about the current economic downturn, price hike of agricultural commodities and the unavailability of safe pesticides to reduce crop losses.

On 21 July 2022, the International Maize and Wheat Improvement Center (CIMMYT) initiated a refresher webinar to share the latest scientific advances and best practices for identifying and managing fall armyworm in South Asia. The platform extended an opportunity for the participants to understand and learn about effective integrated pest management (IPM) approaches being practiced in the region. It also addressed the importance of enabling policies that are crucial to foster innovations to reduce crop yield loss and save the environment from hazardous effects of toxic pesticides.

The Nepal Seed and Fertilizer Project (NSAF) team, supported by the United States Agency for International Development (USAID) and implemented by CIMMYT, organized the virtual event in collaboration with Nepal’s Plant Quarantine and Pesticide Management Center, the Nepal Agricultural Research Council, Nepal’s National Maize Research Program, the Maize and Millet Research Institute in Pakistan, the University of Agriculture Faisalabad and CGIAR’s Plant Health Initiative.

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development and Jason Seuc, director of the Economic Growth Office at USAID Nepal, delivered their opening remarks during the inaugural session. The Secretary emphasized the use of safer methods, including but not limited to mass rearing and releasing of natural enemies of fall armyworm and the deployment of fall armyworm tolerant maize varieties.

“USAID will continue working with partners to advocate and promote IPM practices till the pest becomes of non-economic importance,” said Seuc.

BM Prasanna, director of CIMMYT’s Global Maize Program and OneCGIAR Plant Health Initiative lead emphasized the importance of IPM practices to manage the pest. Prasanna discussed the global efforts to control the pest and shared the progress of fall armyworm tolerant maize seeds which are being released and deployed by CIMMYT partners to help resource poor farmers, especially in Africa.

AbduRahman Beshir, NSAF’s seed systems lead, emphasized the importance of the event and acknowledged the participation of approximately 525 attendees from public and private research institutions, academicians, civil society, private sector, policy decision-makers, CGIAR centers and USAID Nepal. The webinar gathered attendees from 15 countries, including Nepal, India, Bangladesh, Pakistan, Thailand, Myanmar, Sri Lanka and China.

Experts from South Asia presented on a range of topics including the status of fall armyworm and its management in Nepal, Pakistan, Bangladesh and the Pacific Region, IPM practices and experience of using safe pesticides, breeding for native genetic resistance to fall armyworm, and biological control and push-pull strategies. The experts emphasized on the need for collective efforts to strengthen national and international coordination, favorable policies, deployment of fall armyworm tolerant maize varieties, and best response interventions to help farmers battle the fall armyworm and limit its spread.

Efforts to mitigate the impact of fall armyworm attacks are still ongoing. CIMMYT is continuously working to alert farmers and stakeholders on the IPM practices of fall armyworm in the region.

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.