Skip to main content

research: Innovations for development

Aguas Firmes

The Aguas Firmes project aims to introduce and promote the adoption of conservation agriculture technologies at scale to obtain sustainable crop yields with higher productivity in irrigated environments in Calera, Zacatecas. It also seeks to address water use efficiency by adapting and promoting appropriate technologies in the volume of water applied in irrigation.

Objectives

  • Facilitate the adoption of sustainable intensification practices on more than 4,000 hectares over the next three years to reduce the water footprint of participant farmers
  • Recharge two of Mexico’s most exploited aquifers by restoring forests and building green infrastructure

Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ)

The Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project aims to support investments by the government and by the private sector in appropriate-scale farm mechanization in Zimbabwe, particularly around Pfumvudza (a system of manual conservation agriculture), and transfer learnings to South Africa.

Overall, the project has the goal to improve access to mechanization and reduce labor drudgery whilst stimulating the adoption of climate-smart/sustainable intensification technologies. The project will improve the understanding of private sector companies involved in appropriate-scale farm mechanisation towards the local markets in which they operate.

Manufacturing knowledge of two-wheel and small four-wheel tractor operated implements for mechanized Pfumvudza will also increase and private sector companies will have increased access to information through the development and strengthening of regional and national communities of practitioners on appropriate-scale farm mechanization. Finally, the project will strengthen the capacity of the existing knowledge networks around appropriate-scale mechanisation in Zimbabwe, through the results that will be generated and through the regular multi-stakeholder roundtables that will be organised.

Objectives

  • Increasing and more spatially-targeted Government spending in appropriate-scale farm mechanisation in Zimbabwe (and South Africa)
  • Increasing sales of appropriate-scale farm mechanization equipment in Zimbabwe (and South Africa) thanks to more targeted marketing by private sector (both in terms of geographies and clients)
  • Local manufacturing and commercialization of two-wheel tractor operated basin diggers and bed planters in Zimbabwe.

New CSISA Infographic highlights the impact of the CIMMYT’s Soil Intelligence System (SIS)

In agriculture, good soil management is a pillar of productive systems that can sustainably produce sufficient and healthy food for the world’s growing population.

Soil properties, however, vary widely across geography. To understand the productive capacity of our soils, we need high-quality data. Soil Intelligence System (SIS) is an initiative to develop comprehensive soil information at scale under the Cereal Systems Initiative for South Asia (CSISA) project in India. SIS is led by the International Maize and Wheat Improvement Centre (CIMMYT) in collaboration with ISRIC – World Soil Information, International Food Policy Research Institute (IFPRI), and numerous local partners on the ground.

Funded by the Gates Foundation, the initiative launched in 2019 helps rationalize the costs of generating high-quality soils data while building accessible geo-spatial information systems based on advanced geo-statistics. SIS is currently operational in the States of Andhra Pradesh, Bihar and Odisha where the project partners collaborate with state government and state agricultural universities help produce robust soil health information.

Farmers are the primary beneficiaries of this initiative, as they get reliable soil health management recommendations to increase yields and profits sustainably while state partners, extension and agricultural development institutions and private sector benefit primarily by expanding their understanding for agricultural interventions.

Modern Soil Intelligence System Impact

CIMMYT’s SIS Project lead Balwinder Singh said, “The Soil Intelligence Systems initiative under CSISA is an important step towards the sustainable intensification of agriculture in South Asia. SIS has helped create comprehensive soil information – digital soil maps – for the states of Andhra Pradesh, Bihar and Odisha. The data generated through SIS is helping stakeholders to make precise agronomy decisions at scale that are sustainable.”

Since its launch in December 2019, a wider network and multi-institutional alliances have been built for soil health management and the application of big data in addressing agricultural challenges. In the three states the infrastructure and capacity of partners have been strengthened to leverage soil information for decision-making in agriculture by devising new soil health management recommendations. For example, in the state of Andhra Pradesh, based on SIS data and outreach, State Fertilizer and Micronutrient Policy (SFMP) recommendations were created. Similarly, soil health management zones have been established to strengthen the fertilizer distribution markets enabling farmers with access and informed choices.

“Soil Intelligence System delivers interoperable information services that are readily usable by emerging digital agricultural decision support systems in India”, noted Kempen Senior Soil Scientist at ISRIC.

The three-part infographic highlights the impact of SIS initiative in the select three States and emphasizes the importance of SIS in other parts of the country as well.

Asia Regional Resilience to a Changing Climate (ARRCC)

The Asia Regional Resilience to a Changing Climate (ARRCC) program is managed by the UK Met Office, supported by the World Bank and the UK’s Department for International Development (DFID). The four-year program, which started in 2018, aims to strengthen weather forecasting systems across Asia. The program will deliver new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

Since 2019, as part of ARRCC, CIMMYT has been working with the Met Office and Cambridge University to pilot an early warning system to deliver wheat rust and blast disease predictions directly to farmers’ phones in Bangladesh and Nepal.

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

Phase I: 12-Month Pilot Phase

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories in the first 12 months as part of a proof-of-concept modeling and pilot advisory extension phase focused on three critical diseases:

  • Wheat stripe rust in Nepal: extend and test the modelling framework developed in Ethiopia to smallholder farmers in Nepal as proof-of concept;
  • Wheat stem rust in Bangladesh and Nepal: while stem rust is currently not widely established in South Asia, models indicate that devastating incursion from neighboring regions is likely. This work will prepare for potential incursions of new rust strains in both countries;
  • Wheat blast in Bangladesh: this disease is now established in Bangladesh. This work will establish the feasibility of adapting the dispersal modelling framework to improve wheat blast predictability and deploy timely preventative management advisories to farmers.

Phase II: Scaling-out wheat rust early warning advisories, introducing wheat blast forecasting and refinement model refinement

Subject to funding approval the second year of the project will lead to validation of the wheat rust early warnings, in which researchers compare predictions with on-the-ground survey results, increasingly supplemented with farmer response on the usefulness of the warnings facilitated by national research and extension partners. Researchers shall continue to introduce and scale-out improved early warning systems for wheat blast. Concomitantly, increasing the reach of the advice to progressively larger numbers of farmers while refining the models in the light of results. We anticipate that with sufficient funding, Phase II activities could reach up to 300,000 more farmers in Nepal and Bangladesh.

Phase III: Demonstrating that climate services can increase farmers’ resilience to crop diseases

As experience is gained and more data is accumulated from validation and scaling-out, researchers will refine and improve the precision of model predictions. They will also place emphasis on efforts to train partners and operationalize efficient communication and advisory dissemination channels using information communication technologies (ICTs) for extension agents and smallholders. Experience from Ethiopia indicates that these activities are essential in achieving ongoing sustainability of early warning systems at scale. Where sufficient investment can be garnered to support the third phase of activities, it is expected that an additional 350,000 farmers will receive disease management warnings and advisories in Nepal and Bangladesh, totaling 1 million farmers over a three-year period.

Objectives

  • Review the feasibility of building resilience to wheat rust through meteorologically informed early warning systems.
  • Adapt and implement epidemiological forecasting protocols for wheat blast in South Asia.
  • Implement processes to institutionalize disease early warning systems in Nepal and Bangladesh.

Training, surveillance, and monitoring to mitigate the threat of wheat blast disease in Bangladesh and beyond

Wheat blast (Magnaporthe oryzae pathotype Triticum, or MoT) was first discovered in Brazil in 1985. Since then, it has spread across central and southern Brazil, parts of Bolivia, Paraguay, and Argentina. Grain sterility caused by the disease can significantly reduce wheat yield, with reductions as high as 32% in some parts of Brazil, even with up to two fungicide applications.

The disease appeared in Bangladesh unexpectedly in 2016 and re-emerged in 2017. Wheat area consequently dropped from 62,763 hectares in 2016 to just 14,238 hectares a year later. Suitable climatic conditions in South Asia warn that wheat blast will be a long-term problem.

Some 300 million people in South Asia consume over 100 million tons of wheat annually. Wheat blast therefore presents a significant threat to food security. Compounding these problems, climate change and the evolution of wheat blast – increasing virulence, fungicide resistance and sexual recombination – present further threats.

This project responds to these problems by working to mitigate the effect of wheat blast in South Asia and South America and limit the risk of further spread of this threat, with an emphasis on training, surveillance and monitoring to mitigate the threat of wheat blast disease in Bangladesh and beyond.

Objectives

  • Improve upon a preliminary modeling framework to manage data requirements for automated time- and spatially-explicit wheat blast outbreak early warning systems (EWS)
  • Improve flowering predictability to more accurately gauge disease risk
  • Demonstrate the performance of wheat blast resistant and zinc biofortified variety BARI Gom 33 in farmers’ fields.

Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA)

Heterogeneity in soils, hydrology, climate, and rapid changes in rural economies including fluctuating prices, aging and declining labor forces, agricultural feminization, and uneven market access are among the many factors that constrain climate-smart agriculture (CSA) in South Asia’s cereal-based farming systems.

Most previous research on CSA has employed manipulative experiments analyzing agronomic variables, or survey data from project-driven initiatives. However, this can obscure the identification of relevant factors limiting CSA, leading to inappropriate extension, policy, and inadequate institutional alignments to address and overcome limitations. Alternative big data approaches utilizing heterogeneous datasets remain insufficiently explored, though they can represent a powerful alternative source of technology and management practice performance information.

In partnership with national research systems and the private sector in Bangladesh, India and Nepal, Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA) is developing digital data collection systems to crowdsource, data-mine and interpret a wide variety of primary agronomic management and socioeconomic data from tens of thousands of smallholder rice and wheat farmers.

The project team analyzes these data by stacking them with spatially-explicit secondary environmental, climatic and remotely sensed data products, after which data mining and machine learning techniques are used to identify key factors contributing to patterns in yield, profitability, greenhouse gas emissions intensity and resilience.

These approaches however must be practical in order for them to be useful in agricultural development and policy. As such, the project’s analytical results will be represented through interactive web-based dashboards, with gender-appropriate crop management advisories deployed through interactive voice recognition technologies to farmers in Bangladesh, India and Nepal at a large-scale. Big Data2 CSA is supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Flagship 2 on Climate-Smart Technologies and Practices.

Objectives

  • Develop ICT tools enabling digital collection of crop management data and a cloud-based database that can be managed by next-users
  • Support advanced degree-level students to engage in field and data science research
  • Create a digital data collection platform enabling crowd sourcing of crop management information to evaluate contributions to CSA
  • Create interactive and customizable web-based dashboards presenting post-season research results and providing CSA management recommendations
  • Organize CSA and big data policy briefings on mainstreaming processes and policy workshops

Jelle Van Loon

Jelle Van Loon is an agricultural engineer with a PhD in biosystems modelling, and over a decade of experience in agricultural research for development in Latin America. He currently serves as Associate Director for Latin America of CIMMYT’s Sustainable Agrifood System Program, leading research initiatives aimed at building pathways towards resilient food systems and long-term rural development. Leading the innovations for development team, he coordinates a transdisciplinary team, including aspects like farmers market linkages and responsible sourcing, capacity development, and community-based outreach and explores the multiple interfaces between adaption, adoption and scaling from a socio-technical viewpoint in research for agricultural development.

In addition, Jelle has ample expertise in scale-appropriate mechanization from smallholder farm solutions to precision agriculture applications, has actively progressed to work in innovation systems thinking, and in addition he serves CIMMYT as representative for Latin America in which he focusses this line of work to establish impactful partnerships and innovative business models.

 

 

 

 

 

 

 

MasAgro (Crops for Mexico)

MasAgro is a research for rural development project supported by Mexico’s Secretariat of Agriculture and Rural Development.

The project promotes the sustainable intensification of maize and wheat production in Mexico. MasAgro develops capacities and research activities aimed at raising maize and wheat yields stability and profitability in Mexico. The program also seeks to increase farmer income and production systems sustainability by implementing collaborative research initiatives, developing and promoting the use of improved seed, sustainable technologies and farming practices.

OBJECTIVES

  • Obtain higher and more stable yields, increase farmer income and promote natural resource conservation in agriculture.
  • Promote collaboration and integration between participants of the maize, wheat and similiar grains value chains to develop, disseminate and adopt sustainable farming solutions in target agricultural zones.
  • Promote the growth of a Mexican seed sector and contribute to raise maize productivity in Mexico by conducting collaborative research in maize genetic resources and developing yellow and white maize hybrids of high yield potential and stability.
  • Use the genetic resources CIMMYT conserves and develop cutting-edge technologies and capacities in Mexico to accelerate the development of stable, high-yielding and climate resilient maize and wheat varieties.
  • Strengthen Mexico’s research capacities to increase yield potential and climate resilience of improved wheat varieties.

COMPONENTS

Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI)

Agricultural intensification is both a need and an opportunity for countries in sub-Sahara Africa. For intensification to occur sustainably — with minimum negative environmental and social consequences — it is widely recognized that resources must be used with much greater efficiency. Although much emphasis is being placed in current research for development work on increasing the efficiency with which land, water and nutrients are being used, farm power appears as the “forgotten resource.” However, farm power in countries sub-Saharan Africa is declining due to the collapse of most hire tractor schemes, the decline in number of draft animals and the decline in human labor related to rural-urban migration. Another aspect of low farm power is high labor drudgery, which affects women, who generally due the majority of threshing, shelling and transport by head-loadings, disproportionally. Undoubtedly, sustainable intensification in these countries will require an improvement of farm-power balance through increased power supply — via improved access to mechanization — and/or reduced power demand – via energy saving technologies such as conservation agriculture techniques.

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification project examines how best to exploit synergies between small-scale-mechanization and conservation agriculture. The overall goal of the project is to improve farm power balance, reduce labour drudgery, and minimize biomass trade-offs in Eastern and Southern Africa, through accelerated delivery and adoption of two-wheel-tractor-based technologies by smallholders.

This project is now in the second phase, which began on June 1, 2017.

OBJECTIVES

  • To evaluate and demonstrate two wheel tractor-based technologies in the four selected sites of Eastern and Southern Africa, using expertise/knowledge/skills/implements from Africa, South Asia and Australia
  • To test site-specific market systems to deliver two wheel tractor-based mechanization in the four countries
  • To identify improvements in national markets and policies for wide delivery of two wheel tractor-based mechanization
  • To create awareness on two wheel tractor-based technologies in the sub-region and share knowledge and information with other regions

Cereal Systems Initiative for South Asia (CSISA)

Intensive cereal cropping systems that include rice, wheat and/or maize are widespread throughout South Asia. These systems constitute the main economic activity in many rural areas and provide staple food for millions of people. The decrease in the rate of growth of cereal production, for both grain and residue, in South Asia is therefore of great concern. Simultaneously, issues of resource degradation, declining labor availability and climate variability pose steep challenges for achieving the goals of improving food security and rural livelihoods.

The Cereal Systems Initiative for South Asia (CSISA) was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

The project’s aim is to enhance the productivity of cereal-based cropping systems, increase farm incomes and reduce the environmental footprint of production through sustainable intensification technologies and management practices.

Operating in rural “innovation hubs” in Bangladesh, India and Nepal, CSISA complements regional and national efforts and involves public, civil society and private sector partners in the development and dissemination of improved cropping systems, resource-conserving management technologies, policies and markets. CSISA supports women farmers by ensuring their access and exposure to modern and improved technological innovations, knowledge and entrepreneurial skills that can help them become informed and recognized decision makers in agriculture.

The project is led by CIMMYT with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

OBJECTIVES

  • Promote resource-conserving practices, technologies and services that increase yield with less water, labor and input costs
  • Impart new knowledge on cropping management practices, from applied research
  • Improve access to market information and enterprise development.
  • Strengthen policy analysis to remove constraints to the adoption of new technologies
  • Build strategic partnerships and capacity to help sustain and enhance the scale of benefits of improved cereal growth

Core research to impact themes within CSISA include:

  • Coping with climate extremes in rice-wheat cropping systems
  • Accelerating the emergence of mechanized solutions for sustainable intensification
  • Strengthening the foundations of agro-advisory and precision management through knowledge organization and data integration at scale
  • Increasing the capacity of partners to conduct participatory science and field reconnaissance to target and prioritize development interventions

Christian Thierfelder

Christian Thierfelder is a Principal Cropping Systems Agronomist working with CIMMYT’s Sustainable Intensification program.

Since 2009, Thierfelder has led CIMMYT’s conservation agriculture systems research in Southern Africa with the aim to adapt conservation agriculture systems to the needs and environments of smallholder farmers. He currently focuses on fine-tuning conservation agriculture systems to different agro-ecologies and researching farmers’ adoption of new technologies, green manure cover crops and grain legumes integration into maize-based farming systems, climate-smart agriculture, GxExM and agro-ecological management of the fall armyworm.

His research mainly covers Malawi, Zambia and Zimbabwe, and to a lesser extent Namibia. Thierfelder works with a wide range of national and international partners from research and extension in all target countries. Capacity building is a central part of his work, which includes farmers, extension officers and national researchers but also university students from all degree levels.