Skip to main content

research: Innovations for development

Building trust, bridging divides: How Zambia’s digital champions are paving the way for inclusive farming

Digital champions participating in a training activity in Choma (Photo: Moono Mwiinga Sekeleti)

In Zambia’s Southern Province, CIMMYT’s Atubandike[1] initiative is reshaping agricultural extension – moving beyond traditional top-down, one-size-fits-all models that have historically favored the well-resourced farmers. Instead, Atubandike promotes a more inclusive, demand-driven model that centers the voices of all farmers, regardless of gender, age, literacy level, or economic status. This shift is driven by a ‘phygital’ platform that blends the strengths of in-person support with the efficiency of mobile technology.

At the heart of Atubandike’s phygital platform are 84 local digital champions (DCs), half of whom are women, and 42% are under the age of 35. Selected by their communities, these champions embody the demographic shift that represents the future of agriculture. They are not external experts; but trusted peers and neighbors who serve as vital links between digital agricultural platforms and the people who need them most: the farmers. Their credibility, rooted in shared experience and local knowledge, is what enables them to build trust and drive meaningful change.

Ireen Chibilika practicing how to deliver a talk during the communications aspect of the trainings in Choma  (Photo: Moono Mwiinga Sekeleti)

While mobile technology holds immense potential to sustainably boost agricultural productivity[2], many farmers remain digitally excluded.  Barriers such as low literacy, limited phone access and entrenched social norms continue to hinder widespread engagement with digital advisory services [3]. That’s where the DCs step in – not only to introduce new tools, but to help dismantle these barriers; ensuring that no one is left behind.

A foundation of trust

In October and November 2024, Digital Champions from 14 Zambian communities gathered for a two-day, in-person workshop. This training, which complemented previous digital skills sessions, focused on co-developing two pivotal strategies: (1) building trust with farmers through effective communication and (2) addressing the complex gender, diversity, and inclusion (GDI) challenges affecting the DCs as well as the farmers they support.

Why begin with trust? Because trust is foundational to meaningful engagement. For farmers to adopt new climate-smart agriculture (CSA) practices and digital platforms like Atubandike, they must have confidence-both in the messengers and the technology itself. This insight shaped the training design, which was grounded [4] in empirical studies and further contextualized through in-depth interviews with 36 farmers in November 2023. The resulting curriculum emphasized care, communication, and competence – not only to help DCs build trust as messengers, but also to support farmers in using their phones with confidence. By strengthening both interpersonal and digital trust, DCs play a critical role in closing the gap between farmers and the tools that can transform their livelihoods.

The training was designed and delivered through a dialogical approach encouraging open conversation and engagement by the participants throughout the learning process. Through role plays, group discussions, and real-life scenario analysis, DCs engaged deeply with the material, facilitated peer-to-peer learning, and developed a strong sense of ownership and confidence in applying their new skills.

The session explored what it means to connect meaningfully with farmers and as one female participant shared, “the interactive nature of the training, with role plays and real-life scenarios, have given me the confidence and desire to go on and apply what I have learned in the field.”

Trust-building exercises, such as active listening and respectful communication, fostered empathy. These practices not only enhanced the DC’s ability to effectively engage with farmers – they reinforced the values that form the bedrock of inclusive community engagement.

Challenging norms and building inclusion

Trust, however, is only part of the story. True inclusion requires confronting the systemic biases that have long shaped rural agricultural systems. In Zambia, deeply rooted cultural norms often determine who gets to speak, who leads and whose voice is heard. Women, youth and the elderly frequently face significant barriers to leadership roles and are often excluded from participating in community dialogues. and their opinions often pushed aside.

Participants demonstrating how gender roles can be challenged using a drama skit (Photo: Moono Mwiinga Sekeleti)

To address this, the Gender, Diversity, and Inclusion (GDI) curriculum tackled exclusion head-on. Rooted in insights from 13 community engagement meetings held in mid-2024, the course content reflected the lived realities of local communities.  These were not abstract concepts-they were honest, community-led conversations about barriers people face and the solutions they envision.

One male Digital Champion reflected: “In our communities, farming tasks like milking, planting, and weeding are often tied to gender. But moving forward, we will encourage our fellow farmers to see these as shared responsibilities.”

Female DCs also shared their personal experiences of exclusion and resilience. “Being a woman, I have faced challenges in earning recognition as a leader,’ one participant shared. “But this training has given me confidence to lead in my community.”  Another young mother brought her newborn to the training – an act that symbolized the very inclusion the program espouses. “You didn’t just teach about inclusion,” she said expressing her gratitude to CIMMYT. “You demonstrated it, making sure I had support for my child so that I could focus and learn.”

An extension officer assisting a mother with her child during the training in Choma (Photo: Moono Mwiinga Sekeleti)

As the training came to a close, the DCs moved beyond theory. Together, they co-created practical strategies to address cultural resistance, promote inclusive participation, and support marginalized farmers in accessing essential agricultural resources.  Empowered by new skills and a strong sense of ownership, they left not only informed but ready to act.

From insight to impact

Some of the most meaningful learning moments came from lived experience. In one session, a DC recounted how a shift in approach – simply listening – changed her relationship with a skeptical farmer. “He told me that no one had really listened to him before. That act marked the moment we started working together.”

Breakthroughs emerged during the sessions on gender dynamics. Initially met with hesitation, the role-play exercises and open dialogue gradually opened space for reflection and growth. Male DCs began to recognize the value of women’s perspectives, while female participants found renewed confidence to speak up and voice their opinions. These seemingly small shifts in mindset marked important steps toward broader social change, grounded in empathy, understanding and mutual respect.

The training also brought logistical challenges, such as the high cost of reaching remote farmers, limited phone access, and the digital divine within some households. In response, the Atubandike program introduced practical solutions, including airtime and data allowances for DCs, encouraging people to share their phones or advising farmers to borrow handsets from trusted neighbors.

To sustain this momentum, CIMMYT launched regular one-on-one check-in calls with each DC. These touchpoints offer mentorship, reflection and tailored support as DCs continue to embed trust-building and inclusive practices into their everyday work.

Looking ahead: a story of empowerment

As the sessions concluded, a new energy and sense of purpose took hold.  DCs left not only with new skills, but with a clear commitment to act. They pledged to attend and host regular community meetings, conduct home visits for farmers unable to attend meetings and use WhatsApp groups to foster ongoing peer learning and collaboration.

This is just the beginning. The next chapter is about turning plans into practice ensuring that the digital revolution in agriculture is truly inclusive and leaves no farmer behind.

The story of digital champions in Zambia is one of empowerment. It is not only about their growth as leaders, but also about the transformation they are catalyzing in their communities. As they challenge social norms, build trust, and amplify unheard voices, they are shaping a more inclusive and resilient agricultural future.

 

[1]Atubandike, meaning “let’s chat” in Tonga, a local language spoken in Zambia’s Southern Province.

[2] Fabregas, Raissa, Michael Kremer, and Frank Schilbach. 2019. “Realizing the Potential of Digital Development: The Case of Agricultural Advice.” Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aay3038.

[3] Sterling, R. (2021, January 14). “Why Women Aren’t Using Your Ag App.” Agrilinks. https://agrilinks.org/post/why-women-arent-using-your-ag-app

[4] Examples include: Buck, Steven, and Jeffrey Alwang. 2011. “Agricultural Extension, Trust, and Learning: Results from Economic Experiments in Ecuador.” Agricultural Economics 42 (6): 685–99. https://doi.org/10.1111/j.1574-0862.2011.00547.x. Greene, Jessica, and Christal Ramos. 2021. “A Mixed Methods Examination of Health Care Provider Behaviors That Build Patients’ Trust.” Patient Education and Counseling 104 (5): 1222–28. https://doi.org/10.1016/j.pec.2020.09.003.

 

 

Rita Devi’s Small Farmers Large Field model revives agriculture in Bihar

Above: Farmers carrying potatoes harvested from the field (Photo: TAFSSA)

Bihar’s economy is driven by agriculture, which employs more than half of the workforce. With a yield of 27,654 kg per hectare from 330,000 hectares of land, Bihar accounts for 17% of India’s total potato production, behind only Uttar Pradesh and West Bengal. But the agricultural land is fraught with challenges: small and marginal farmers, who on average own less than 2 hectares of land, account for 97% of the landholdings. This creates less-than-ideal conditions for productive agriculture.

In Bihar’s largest potato-producing belt, a plethora of challenges make farming unprofitable: bottlenecks in getting good quality seeds, unaffordability of pesticides and fertilizers, the prevalence of crop pests and diseases, poor market prices at harvest time, and inadequate knowledge of good agronomic practices—all lead to lower net returns. Nalanda’s farmers are finding ways to make farming more profitable, productive, sustainable, and rewarding.

If this does not happen, farming will soon cease to be a lucrative—or even viable—livelihood.

Rita Devi, a 47-year-old farmer from Bihar, is one of 103 innovative farmers demonstrating new ways to tackle agricultural challenges through the Small Farmers Large Fields (SFLF) project, implemented by Transforming Agrifood Systems in South Asia (TAFSSA) in partnership with the International Potato Center (CIP).

Rita Devi inherited an acre of land after her husband’s prolonged illness and demise during the COVID-19 pandemic three years ago.

But she can’t imagine a world in which farming is a sustainable livelihood for her or future generations. “It’s hard to see profits in agriculture,” she sighs. “As long as the land size is small, how can the profits increase? The profits remain tiny, too.” For small farmers like Rita Devi, who are financially precarious, farming is neither a lucrative livelihood nor an aspirational lifestyle.

Rita Devi saw a glimmer of hope in the form of the SFLF program when she saw some people touring the village in September 2022, talking about farming in a new light.

Aggregation as a solution to farmers’ woes

In the field, TAFSSA staff at the International Potato Center (CIP), with support from the NGO Jeevika, mobilized farmers to pilot the SFLF collective action farming model.

Under the SFLF model, participating farmers organize themselves into groups to increase their collective bargaining power.

They buy inputs and secure farm services collectively from providers and achieve significant savings through bulk purchases; they improve their production practices and use quality seeds. Ultimately, their crops receive a premium for quality and volume.

The TAFSSA team planned to spread knowledge about improved farming practices among farmers and then use their collective bargaining power to procure better resources and prices. They started the initiative with training sessions.

Rajiv Ranjan, TAFSSA’s field coordinator and a farmer, said, “Varietal knowledge of seeds and crops was inadequate among farmers. They had no idea about the new varieties or how the different varieties performed.”

The training sessions combined presentations and interactive discussions with farmers, using visual aids such as photos and diagrams to enhance understanding. Key topics included field and seed preparation, high-yielding and disease-resistant crop varieties, irrigation optimization, and precision fertilizer application. Farmers also learned about preventive and reactive approaches to weed and disease management, and post-harvest handling and storage techniques.

Better seed quality means better yields. Better bargaining power helped farmers get a better price for their crop (Photo: TAFFSA)

Connecting with farmers through the Small Farmers Large Fields pilot

Rita Devi decided to attend the training sessions in December 2022 to learn more about farming and explore how this new knowledge would help her reduce the costs of farming. Her main motivation was to improve her crop yield, which would be financially rewarding.

When TAFSSA staff first entered the villages and interacted with the farmers, many of them had their doubts about the interventions. International Potato Center (CIP) staff continued to meet with farmers in the villages and explain the benefits of collective farming. In the beginning, a few large farmers joined the program, and this led to the adoption of the practices by other small farmers. Trust was built over time.

The International Potato Center (CIP) developed a comprehensive Package of Practice (PoP) with illustrations of key field operations, major pests, and diseases. Accompanied by concise guidelines on input application methods, fertilizer and pesticide dosages, and timing during the crop cycle, the PoP was translated into Hindi, printed as a leaflet, and distributed to farmers in both pilot sites. Designed as a quick reference guide, the leaflet helps farmers with all aspects of potato and seed production, including efficient pest and disease identification and management.

Rita Devi recalls receiving information on water conservation, optimizing fertilizer dosage, and pest control, all of which led to monitored and restricted input use and financial savings.

“Now we know the correct amount of fertilizer dosage, and could save money,” said Rita Devi, who joined the pilot program in the rabi season of 2023–24 and implemented lessons she learned in the training and demonstrations. The financial savings were tangible and motivated her to move forward.

One of the lessons learned by her community is how to optimize irrigation for rabi potato, which requires five to six irrigation cycles in the region. The CIP team gave clear instructions on when these cycles should take place: first light irrigation 5–10 days after planting to cover one-third of the ridge, on-demand irrigation covering half of the ridge in subsequent cycles, stopping irrigation 8–10 days before harvest, and avoiding waterlogging at all times.

Farmers engaged in growing and harvesting potatoes (Photo: TAFFSA)

Harnessing collective strengths

The SFLF initiative aimed to strengthen farmers’ bargaining power by improving supply chain integration. A key focus was to help farmers collectively procure quality inputs such as seeds and fertilizers from reliable and affordable sources. High-quality seeds were sourced directly from Punjab, replacing expensive, substandard local options. Negotiated prices and proper storage ensured that farmers in Nalanda had seamless access to these resources. Similar arrangements were made for fertilizers and pesticides.

Rita Devi is a passionate supporter of the initiative for its financial and operational benefits. “Even if no one else makes the provision, we will form a farmer group to procure seeds from Punjab,” she asserts, reflecting the project’s effectiveness. Her determination shows how collective action and better linkages can empower smallholder farmers and optimize their farming practices.

In another exercise, Rita Devi tested crop diversification. After harvesting potatoes, she planted maize and moong beans on her farm to increase her farm income.

Farmer engaged in growing and harvesting potatoes (Photo: TAFFSA)

SFLF’s tangible and intangible impact

Ranjan attests to a noticeable change in farmers’ confidence: “SFLF has helped farmers by increasing knowledge and income. Information from local experts in the village and neighbouring villages also helped the farmers. Earlier, farmers were afraid of the quality of seeds they bought from the market. With the CIP linkages, they get assured quality and variety of seeds.”

With better seed quality and improved farming practices, Rita’s income from crops has improved. However, her profit is limited to the small plot. She is resourceful in her income generation: she plans to sell the surplus seed she has acquired to farmers during the rabi season in 2024.

Most farmers in the SFLF program have roughly doubled their incomes and net returns, after adjusting for production costs, compared to non-SFLF farmers.

Rita Devi hopes that as word spreads about the positive impact on yields and market values, more farmers will join the SFLF model. Additionally, subsequent seasons of the pilot will help refine the model to address all the prevalent issues they face.

Proudly announcing the 2025 Derek Tribe Award recipient – Velu Govindan

Dr Velu Govindan from CIMMYT pictured here in action during field days as part of CIMMYT’s Global Wheat Program activities in Obregón, México. (Photo:CIMMYT Comms / Dinorah Guzmán Espinosa).

We have the great pleasure of announcing the Derek Tribe Award recipient for 2025 is Dr Velu Govindan, the Principal Scientist – Wheat Breeder at The International Maize and Wheat Improvement Center (CIMMYT) in Mexico.

Dr Govindan received the award in recognition of his work in plant breeding and genetics. His pioneering work on accelerating genetic gains in wheat has led to the release of over two dozen climate-resilient, zinc-enriched wheat varieties, significantly benefiting farmers across South Asia, Africa and Latin America, highlighting his influence on global food security.

The Crawford Fund’s Derek Tribe Award recognises the distinguished contributions of a citizen of a developing country to the application of research in agriculture or natural resource management in a developing country or countries. These people are often unsung heroes in their fields, with long and dedicated service that has incredible impact.

The Award was inaugurated in 2001 to mark the outstanding contributions of Emeritus Professor Derek Tribe AO OBE FTSE, Foundation Director of the Crawford Fund, to the promotion of international agricultural research.

Dr Velu Govindan from CIMMYT, pictured here in wheat trials in India, is the Crawford Fund’s 2025 Derek Tribe Award recipient (Photo: CIMMYT/Velu Govindan).

Velu is in very distinguished company with his Derek Tribe award, with other CIMMYT awardees including Sanjaya Rajaram, who received the inaugural award in 2001 and was also the recipient of the world food prize in 2014, Ram Kanwar Malik (2015) and Ismail Çakmak (2007). Details about previous recipients of the Crawford Fund Derek Tribe Award are available here.

“Velu has an outstanding record of applying cutting-edge research to enhance agricultural productivity and natural resource management in developing countries. Over the past 15 years, his research at CIMMYT, Mexico, has played a pivotal role in breeding high-yielding, climate-resilient, and biofortified wheat varieties, addressing food security and malnutrition challenges across South Asia and Africa,” said Shaun Coffey, Chief Executive Officer, the Crawford Fund.

“Velu’s research has had significant impact, leading to the release of over 25 improved wheat varieties, benefitting millions of smallholder farmers in India, Pakistan, Nepal, Bangladesh, Ethiopia, and Mexico,” he said.

“Dr Govindan has been instrumental in integrating genomic selection, high-throughput phenotyping, and precision breeding techniques to accelerate genetic gains in wheat and zinc mainstreaming efforts at CIMMYT. His collaborations with national agricultural research systems (NARS) in developing countries have strengthened local breeding programs, enabling faster varietal development and dissemination,” said Shaun.

Velu’s work has received significant funding from international agencies such as the Bill & Melinda Gates Foundation, USAID, and other national and international funding, further demonstrating its global impact.

“Beyond breeding, Dr Govindan has contributed to sustainable agricultural practices by promoting climate-smart wheat varieties that require fewer inputs and are resilient to heat, drought, and resistant to multiple wheat diseases,” he said.

Prior to his role at CIMMYT, Velu was involved in pearl millet biofortification at ICRISAT through the HarvestPlus program, leading to the development of high-iron pearl millet hybrids adopted by smallholder farmers in India.

“He is also an advocate for capacity building, training young scientists and breeders across Asia and Africa; fostering the next generation of agricultural researchers; and actively participating in policy discussions that have influenced large-scale adoption of improved wheat varieties,” said Shaun.

“The Crawford Fund congratulates Dr Govindan on his lasting impact on global food security and natural resource management. We look forward to highlighting his work with the Derek Tribe address, and further raising awareness of the benefits to Australia and developing countries of agricultural research for food and nutrition security,” concluded Shaun.

The Crawford Fund is pleased to partner with the University of Western Sydney and the University of Sydney for Velu’s visit to Australia. Plans are underway for him to be presented with his award and deliver the 2025 Derek Tribe Address in the coming months. Information regarding the 2025 Derek Tribe Address will be shared when Dr Govindan’s trip is finalised.

Originally published on the Crawford Fund website: 2025 Derek Tribe Award – Dr Velu Govindan.

Women Who Nourish the Earth: Yuridia Hernández and the Feminine Strength in Sustainable Agriculture

In the lands of Oaxaca’s Mixteca, where rainfall no longer comes as it once did and the soil begins to feel the weight of years and intensive use, a network of women producers has taken on the task of healing the land—while also healing themselves. One of these women is Yuridia Hernández, who has decided to farm differently: with more awareness, less haste, and the support of other women who, like her, believe that a different kind of farming is possible. 

Since 2023, Yuridia has been part of the Secure Maize Supply Program of the Secretariat of Food Promotion and Rural Development (SEFADER), supported technically by engineer Griselda Cruz Guzmán. On her three-hectare plot, she has begun applying agroecological practices: minimum tillage, biological pest management, the use of bio-inputs, and the reincorporation of crop residues. “We’ve gone back to practices we were already forgetting. Now we see our plants are more resilient. That motivates us to keep going,” she explains. 

Hernández, a producer from Oaxaca’s Mixteca region, proudly shows a corn cob grown on her rainfed plot. (Photo: Sarah Martínez/CIMMYT)

Last year, she planted late, like many in the region, due to delayed rains. But she didn’t give up. “This is a rainfed plot, and although the weather isn’t the same anymore, we can still produce if we change how we do it,” she says firmly. Though she works alongside her husband and eldest son in a family production unit, Yuridia makes her own decisions for her plot. “At first it was difficult—he (her husband) prefers mechanized methods, using chemicals. I would tell him: ‘wait, let’s try other options.’ And though it was hard for him to give up plowing, now he sees the results. Little by little, he’s adopted new practices.” 

Like the Earth that gives life and regenerates when treated well, Yuridia has found a shared strength in other women. “In the group, you can feel when there are more women,” she says. “The men often come in with a different mindset, they find it harder to work as a team. But among women, it’s different: it’s enough to say, ‘how should we do this?’ and we organize ourselves.” She has especially formed close ties with another producer’s daughter, with whom she shares not just the work, but also a critical and forward-looking view of farming’s future: “We have that urge to do things differently, to improve them. And that’s made us a solid team. We pull each other forward—and also bring along the men who want to join.” 

What began as an individual effort has now become a small network of learning, experimentation, and mutual support. By sharing knowledge, organizing field visits, and discussing what works and what doesn’t, Yuridia and her peers have been able to strengthen themselves and those around them: “That’s how we’ve grown stronger—by building a network.” 

Beyond her own experience, she’s attended events at research platforms like those of INIFAP and CIMMYT, where she saw firsthand that sustainable practices can be applied in her context. “That’s where I said: this works, I want to replicate this,” she shares. 

Yuridia also knows that climate change is not a distant issue. “It’s hit us hard. Rains aren’t like before, pests show up suddenly. But with these practices, the system is adapting. Where we leave more residues, the plants stay vigorous.” That’s why she doesn’t hesitate to send a message to those who support research and technical assistance: “Thank you for promoting these activities. Research really does help us. It lets us change or bring back what we already knew. If we do nothing, we’ll lose our land. But if we have tools, if we see examples, we can move forward,” she says gratefully. 

Yuridia’s testimony reminds us that caring for the planet is not an abstract task—it starts in plots like hers, in voices like hers, in hands that sow with hope, science, and community. And just like the Earth, the women who care for and work the land have an immense capacity to regenerate, sustain, and transform. 

Small grains and new methods bring resilience to Zimbabwean farmers

In Zimbabwe, farmers are turning to conservation agriculture and climate-resilient crops such as millet, sorghum and cowpeas in order to combat the growing threat of drought, which has been exacerbated by El Niño. Traditional farming methods have left soils degraded and yields diminished, prompting many farmers, such as Memory Mukototse from Kaidza village, to adopt new techniques through programmes like the R4 Rural Resilience Initiative, which is led by the World Food Programme.

By comparing conservation and conventional farming methods, farmers have discovered that practices such as minimal soil disturbance, crop rotation and maintaining ground cover can greatly enhance harvests and improve water retention. Backed by CIMMYT, this farmer-driven research and peer-to-peer knowledge exchange, facilitated through seed fairs, group coordination and exchange visits, has not only enhanced food security, but also empowered communities to adapt and flourish in the face of challenging climatic conditions.

Read the full story.

Evangelina Villegas: A Pioneer Woman in Agricultural Science, Inspired by Norman Borlaug

Norman Borlaug was awarded the Nobel Peace Prize in 1970 for leading an agricultural revolution in Mexico, specifically in the Yaqui Valley in Sonora, where he developed high-yield, disease-resistant wheat varieties that helped save the lives of thousands threatened by hunger.

Evangelina Villegas, together with Dr. Surinder Vasal (left) and Norman Borlaug (second from right), share a moment together. (Photo: CIMMYT)

His legacy, driven by CIMMYT in collaboration with the Government of Mexico, has had a profound and lasting impact on global food security. This legacy has inspired and empowered the role of numerous women in agricultural science, encouraging them to lead innovative and essential research to address global food challenges. 

Among the women who have stood out due to this influence is Evangelina Villegas, a Mexican scientist whose pioneering work in nutritional maize improvement had a global impact. Together with Dr. Surinder Vasal, Villegas developed quality protein maize (QPM), an innovation that significantly reduced malnutrition and improved nutritional quality for millions of people in developing countries. For these contributions, Evangelina Villegas was awarded the World Food Prize in 2000, becoming the first woman to receive this prestigious honor. 

Beyond her scientific achievements, Evangelina Villegas stood out for her commitment to mentoring new generations of researchers, especially women. Her efforts opened doors for more women scientists to participate in high-impact social projects, establishing her as a role model for female leadership in agricultural science. 

Villegas’s career clearly reflects the continuation of the social and scientific commitment initiated by Borlaug. Her example highlights how his legacy has not only positively influenced science but also played a crucial role in advancing gender equity within the agricultural and scientific sectors. 

An award presented to Evangelina Villegas for the 2000 World Food Prize, recognizing her contribution to global food security. (Photo: Jenifer Morales/CIMMYT)

Today, the life and work of Evangelina Villegas continue to inspire young women researchers, demonstrating how fostering female leadership in agriculture is essential for building sustainable, inclusive, and equitable food systems capable of addressing current and future challenges. 

Evangelina Villegas in her laboratory conducting analyses that led to the development of quality protein maize (QPM). (Photo: CIMMYT)

Rising from adversity: The inspiring success of Asma and Tasin’s engineering workshop

Asma Akter and her daughter, Tasin Fahariya, have emerged as inspiring examples of resilient agriculture-based light engineering (ABLE) entrepreneurs in Bangladesh. Their journey began in the face of tragedy when Asma, at 38, lost her husband to COVID-19. As the proprietor of Belal Engineering Workshop, a family business started by her late husband 32 years ago, Asma took on the responsibility of running the manufacturing enterprise.

The initial challenges were daunting. Customers lost trust in the company’s ability to deliver quality products on time under the leadership of a woman. Even their experienced workshop staff felt insecure about their job prospects under the new management. Financial institutions were hesitant to provide loans to a woman-led business, making it difficult to purchase raw materials for production.

However, their fortunes changed with the connections they made. Tasin received training in Financial Management, Digital Marketing, and Technical Drawing and Design. These courses enhanced her professional skills and boosted her confidence to lead the business effectively. They secured a loan of over US$4,300 from Gram Unnayan Kendra (GUK), addressing their capital needs.

They connected with dealers across Bangladesh, significantly expanding their customer base. They branded their products through smart packaging and organizational branding with logos, which helped them compete more effectively in the market.

As a result of these interventions, Asma and Tasin’s business has seen remarkable growth. They’ve expanded from 10 dealer points to 14, adding new geographical regions to their network. Their order volume and sales have increased tremendously. The mother-daughter duo’s achievements go beyond financial gains—their success underscores the importance of diverse viewpoints in enhancing and optimizing manufacturing processes.

Asma Akter at Belal Engineering Workshop in Bogura

(Photos: CIMMYT)

Sonia Jannat: defying odds, reaping success as a combine harvester MSP

In the male-dominated realm of agricultural machinery services, Sonia Jannat, a 28-year-old from Jhenaidah, Bangladesh, has inscribed her name as a successful Machinery Solution Provider (MSP). Her determination—and the transformative power of new technologies—has launched her on an extraordinary journey of empowerment and financial independence.

Growing up in a farming household, Sonia was already familiar with cultivation. Rooted in agriculture, she harbored a longstanding ambition to make a meaningful impact in this field. To realize her vision, she consistently stayed abreast of the latest technologies and machinery designed to boost production while minimizing labor and time. However, life took an unexpected turn when her father fell ill with heart disease, forcing Sonia to shoulder the responsibility of financially supporting her family while pursuing her honors degree. This phase of hardship proved to be a turning point in her life.

Sonia Jannat operates one of her combine harvesters in Jhenaidah, Bangladesh. (Photo: CIMMYT)

During this challenging period, Sonia came across a YouTube video showcasing a combine harvester—a cutting-edge machine that could revolutionize harvesting. She immediately recognized its potential to transform farming practices and offer a reliable income stream. The first major hurdle was overcoming her family’s financial constraints and convincing them to invest in a machine without any tangible proof of its benefits.

In October 2020, Sonia and her family attended a live demonstration organized by the private sector, where she successfully persuaded her father to invest in a combine harvester. With the support of a machinery subsidy, she selected the best model suited to her business needs.

Sonia took part in business expansion meetings, built linkages with spare parts shop owners, dealers, and commission agents, and received operational and maintenance training—for both herself and her machine operators.

In the first season of 2021, Sonia’s combine harvester generated an impressive income of approximately US$10,000 (excluding operational and labor costs). This early success fueled her ambition, and with her family’s support, she invested in a second combine harvester, expanding the business.

Today, Sonia Jannat proudly owns three combine harvesters, generating an annual income of BDT 30 lakh (approximately US$33,000). Her customer base has grown to span around ten geographical divisions across Bangladesh. Sonia’s achievements have not only reshaped her own financial future but have also broken deep-rooted societal stereotypes. Once ridiculed for her unconventional path as an unmarried woman, she now commands respect and admiration from the very community that once doubted her.

Sonia shares with pride:

“The same society that once criticized me with comments like, ‘Why is an unmarried girl traveling around to earn money? Why is she breaking social norms?’ is now praising me. After witnessing my talent, social contributions, and support for my family, they now see me as one in a thousand girls!”

With academic credentials that include honors and a master’s degree in Bangla, Sonia’s aspirations continue to grow. She now envisions launching a new entrepreneurial venture offering a wider range of agricultural machinery services. She is committed to empowering women by actively engaging them in her business model—aiming to be an inspirational entrepreneur for many others.

Advancing gender and social inclusion in agroecology: Insights from the CGIAR Agroecology Initiative in Zimbabwe

Agriculture lies at the core of rural livelihoods, yet longstanding social inequities have stifled the potential of marginalized groups particularly women and youth to fully benefit. The CGIAR Agroecology Initiative (AE-I) recognizes gender and social inclusion as critical pillars in achieving sustainable agricultural transformation. By embedding these aspects within its framework, AE-I ensures that marginalized groups—especially women and youth—play a meaningful role in agroecology transitions.  

Current realities on women and youth in agriculture

Women and youth are central to Zimbabwe’s agricultural economy, yet they remain underrepresented or excluded in decision-making processes and face barriers to accessing   critical resources. Globally, women make up about 48% of the agricultural labor force in Sub-Saharan Africa (World Bank, 2024), yet they consistently face challenges in accessing land, credit, and markets. In Zimbabwe, these disparities are even more pronounced. In  Mbire and Murehwa districts, rural economic activities, including agriculture, rely heavily on women and youth. Women make up approximately 70% of the agricultural labor force (UNDP, 2024) in these regions, but they often lack control over resources needed to enhance productivity and economic stability such as land, credit, and markets.  

Agroecology Living Landscapes and Gender and Social Inclusion Matter

Embedding gender and social inclusion (GESI) into agroecology is not just a moral imperative but a foundational requirement for achieving lasting and transformative impact. Traditional top-down development approaches have often neglected marginalized groups’ unique needs and contributions, resulting in unsustainable outcomes. In contrast, the AE-I prioritizes inclusive and participatory processes, exemplified by its Agroecology Living Landscapes (ALLs), which serve as collaborative spaces where community members actively co-create locally relevant solutions.   

Central to the CGIAR Agroecology Initiative (AE-I) is a commitment to “do no harm—say no harm,” ensuring that the inclusion of women, youth, and other marginalized groups is safe, meaningful, and impactful. Including marginalized groups can disrupt existing power structures and opportunity hierarchies, so it must be done with contextual sensitivity. Young and old women are provided equal opportunities to participate in and contribute to the co-creation of innovations. However, systemic barriers-such as limited agency or entrenched gender norms-continue to hinder meaningful engagement. To address these challenges, AE-I collaborates with key stakeholders, such as the Ministry of Women Affairs, Community, Small and Medium Enterprises Development (MWACSMED), to advocate for gender mainstreaming. Concrete actions have included training programs, documentation of gender norms and their impacts, elevating women and youth role models, and ensuring equal participation in ALL activities. MWACSMED has evolved into a proactive stakeholder in this process. Initially a passive participant in ALL discussions, the ministry now plays a leadership role in addressing gender and social inclusion issues within the landscapes. This deliberate attention to GESI within ALLs has illuminated systemic barriers such as unequal access to resources, rigid cultural norms, and the exclusion of certain social groups.   

Conversations with farmers during ALLs meetings (Photo: CIMMYT)

Agroecology recognizes that inclusion is not merely about representation but about fostering environments where meaningful transformation can happen. For instance, cultural norms often limit the participation of women and youth in mixed-group activities. To address this, the AE-I initiated monthly “dialogues with elders,” engaging traditional authorities and community leaders to reconcile cultural traditions with transformative gender and social inclusion goals. These dialogues have yielded positive shifts in such perspectives. As one elder participant noted, “We value inputs from women and acknowledge their critical role in our community.”   

The transformative impacts of AE-I’s inclusive approach are increasingly visible. Across Murehwa and Mbire districts, Agroecology Living Landscapes (ALLs) are reshaping community dynamics by empowering previously marginalized groups, such as elderly women, to contribute to agricultural innovation. Within some of the activities of the Initiative, women and youth engagement is quite impressive, with over 60% of participants in seed fairs and field days. These figures highlight the significant potential for expanding women’s and youth’s opportunities to advance agroecological goals through gender- and youth-focused interventions. It also demonstrates their eagerness to engage in knowledge-sharing opportunities. Such initiatives improve livelihoods and build women’s and youths’ agency as active contributors to agricultural innovations. 

Inclusivity within ALLs is further is reinforced by low barriers to entry, emphasizing a willingness to learn and transform their crop and livestock production rather than asset ownership. This approach has expanded participation among resource-poor farmers, breaking down traditional exclusionary practices brought by other Donor programs.  

As one farmer remarked, “In the past, only those with cattle or fenced homesteads could join such programs on transformative change. Now, even those of us without such assets can participate.”  

Such practices have strengthened the confidence of marginalized farmers, enabling them to navigate complex production dynamics collectively.   

Building Economic Independence and Transforming Food Systems

The AE-I’s focus on inclusive value chains has begun to yield tangible economic benefits. In Mbire and Murehwa, women are transitioning from subsistence farming to economic independence by engaging in agroecological business models. For example, Sasso poultry farming has become a viable income-generating activity, allowing women to reinvest in their farm-level activities. Youth are also leveraging their involvement in agriculture to build assets, diversify income and nutritional sources, and secure a more stable future. 

A critical challenge remains exploitative market dynamics that limit farmers profitability. Farmers have raised concerns about the informal urban markets, where asymmetric power dynamics and a lack of competitive pricing mechanisms enable buyers to dictate unfavorable prices. Middlemen in the poultry markets suppress prices by 40%, while unstructured sorghum buyers pay 20–30% below market rates, eroding farmers’ profitability.  

Addressing these bottlenecks through cooperative-led marketing, digital trading platforms (e.g., Hamara App), and guaranteed off-take agreements ensures equitable economic participation and a resilient food system. 

Drudgery and Women in Agri-Food Systems

The transition to agroecology offers both opportunities and challenges, particularly for women, who bear the brunt of agricultural labor. In many rural communities, women are responsible for labor-intensive activities, including land preparation, weeding, and post-harvest handling.  

While agroecological practices promote sustainability and resilience, some approaches—such as conservation agriculture—can initially increase women’s workload, exacerbating drudgery and limiting their time for other economic or social activities.  

To ensure that agroecology transitions are both equitable and scalable, it is essential to integrate appropriate-scale mechanization that reduces labor burdens while maintaining ecological integrity. By embedding gender-responsive technologies into agroecological systems, AE-I can foster inclusive, productive and sustainable farming solutions. 

Women in Murehwa receiving training on how to use the basin digger (Photo: CIMMYT)

To address this, the Initiative has facilitated the adoption of labor-saving technologies, improving access to mechanized solutions that ease women’s workload. In Mbire and Murehwa districts, 43 out of 95 women farmers now have access to basin diggers, significantly reducing the effort required to establish planting basins in conservation agriculture. Additionally, four multigrain threshers have been introduced in each district, enabling women to process small grain cereals more efficiently, cutting down the time spent on post-harvest handling.  

These innovations not only alleviate physical strain but also increase productivity, allowing women to participate in value-added activities and play a greater role in decision-making processes within the food system.  

By prioritizing appropriate-scale mechanization, the AE-I ensures that agroecology transitions foster inclusivity, sustainability, and economic empowerment for women farmers. 

Wrap up

The CGIAR Agroecology Initiative’s work in Mbire and Murehwa provides a step forward for centering gender and social inclusion into agricultural development. Through participatory methods, inclusive partnerships, and a focus on actor agency and opportunity for behavior change, the Initiative has redefined what it means to build sustainable and equitable food systems. For donors, partners, and other stakeholders, the AE-I offers a compelling case for investing in inclusive approaches that transform agriculture and uplift entire communities. As agroecology continues to evolve, centering gender and social inclusion will remain vital for achieving sustainable, impactful outcomes.  

 

Sowing a Seed of Hope: Transforming Lives through Mixed Farming in Nepal

Birma Sunar Tending (Photo: Lokendra Chalise/CIMMYT)

In Nepal, hope is slowly taking root in the mid-hills as communities and farmers transform traditional systems into productive, diversified, nutritious and market-oriented farming systems. Through the CGIAR Mixed Farming Systems (MFS) Initiative, farmers like Ms. Birma Sunar and communities like Gurbhakot in Surkhet are building a transformative pathway. Since 2022, CIMMYT and IWMI have been supporting communities in planning and engaging stakeholders in identifying organizational and technical solutions. The initiative aims to increase milk production through improved forages, improve nutrition and income diversification through high-value fruit trees, and improve water efficiency in vegetable production through micro-irrigation.   

Birma’s Journey: Overcoming Challenges, Cultivating Dreams

Birma Sunar, 49, a determined farmer from Surkhet, represents the aspirations of countless smallholder farmers struggling to survive on limited means. A Dalit woman and an amputee, her small plot of land was once dedicated to subsistence farming, leaving her family struggling to make ends meet. The maize and wheat she grew barely lasted a year, and her family of seven was struggling for food. With her husband earning meager wages as a day laborer, the family often faced food insecurity.  

Her perspective on farming began to change when she became involved with the Mixed Farming Initiative. Birma received training in the cultivation of high-value fruit trees and the planting of Napier grass to feed dairy cattle, as well as micro-irrigation techniques. With her new skills and the eight mango saplings and one lychee tree she received from the Initiative as part of  action research, she hopes to increase her family’s income..   

I was unaware of commercial farming,” says Birma. “I have a lime tree and a banana tree in my field however, it used to be for home consumption. But now, once my mango and lychee trees start giving fruits, I hope to sell the produce in local markets and earn enough to buy essential household items and feed my family.”  

Last year, she planted high-value fruit saplings that are now growing into healthy plants, giving her hope for stability and food security in the future.   

Birma Sunar intercultivating a mango plant (Photo: Lokendra Chalise/CIMMYT)
Youthful Aspirations: Santosh’s Agricultural Renaissance

After working abroad for a few years in the hope of a brighter future, Santosh KC, 25, returned home, disheartened yet determined. Equipped with the knowledge gained from his agricultural education and a passion for change, he started a nursery for high value fruit trees and improved forages and ventured into dairy farming with Napier grass.  

The journey was not easy. In the first year, Santosh faced losses, and his family doubted the viability of his efforts. But with unwavering dedication, he turned his fortunes around. Today, Santosh cultivates 45 ropanis (2.29 hectares) of land, raises 22 goats, and earns a steady income. He also participates in the Mixed Farming Initiative training organized jointly with the Gurbhakot municipality and mentors farmers on the benefits of mixed farming.   

For many youths, farming doesn’t seem like a viable option. However, with support for modern agricultural techniques and market integration, we can build livelihoods that are not just sustainable but rewarding,” shares Santosh.  

A Municipal Vision: Building Resilient Communities

The Initiative has been jointly implemented by CIMMYT and IWMI in the local municipality of the working district. With the support of the initiative, the Gurbhakot municipality is playing a critical role in scaling up the benefits of mixed farming. Recognizing the value of the crops, the municipality has embraced Napier grass and high-value fruits as key components of its agricultural strategy. By prioritizing mangoes, lychees, oranges, and lemons, the municipality aims to improve household nutrition and create commercial opportunities for farmers.  

We distributed high-value fruit trees to farmers last year under the theme ‘One Home, Two Fruit Plants’. This year, we’re planning a study to identify the best topography for different fruits. This knowledge will allow us to scale our goal to integrate these practices into larger public programs, creating decent livelihoods for farmers,” said Mr. Hasta Pun, Mayor of Gurbhakot Municipality.   

Mayor Hasta Pun (Photo: Lokendra Chalise/CIMMYT)
A Vision for the Future  

The Mixed Farming Initiative has been critical in identifying solutions to bring tangible improvements to smallholder farmers like Birma and Santosh, but it has also strengthened local governance and resilience. In the three years of implementation, the pilot program in Gurbhakot in Surkhet and Halesi-Tuwachung in Khotang has set the stage for scaling up these efforts in more municipalities. By 2030, the initiative aims to impact 13 million people and ensure equitable opportunities for women, youth, and marginalized communities.  

By nurturing the saplings of high-value fruits and integrating forages, local leaders and farmers in the mid-hills of Nepal remain motivated and committed to rewriting their story —One of hope, resilience, and the promise of a food-secure future.   

Why early-stage on-farm sparse testing could be a game changer for crop breeding in Africa

(Photo: CIMMYT)

Over 80% of the world’s 570 million farms are smallholder farms under 2 hectares, supporting rural livelihoods in impoverished regions. Smallholder farmers, who form a significant portion of the 690 million people experiencing hunger, need improved crop varieties to thrive under challenging conditions like low inputs, climate change stresses, and pests. 

Challenges of breeding for smallholder farmers 

Particularly at early stages, breeding programs face difficulties replicating the diverse and resource-constrained environments of smallholder farms, referred to as the Target Population of Environments (TPE). The TPE encompasses all locations where new crop varieties will be grown, characterized by varied biophysical conditions, environmental stresses, and farming practices. 

Conventional research stations, where new selection candidates are tested, don’t fully replicate smallholder conditions. Practices like manual labor for weed management or intercropping are common among smallholders but rarely modeled on research stations. This mismatch can lead to inaccurate predictions of crop performance on farms and discarding potentially successful candidate varieties. 

Early-Stage On-Farm Sparse Testing (OFST)

Early-stage OFST shifts testing to hundreds of smallholder farms at early stages, addressing two major issues. First, it evaluates crops under real-world, farmer-managed conditions. Second, it captures the diversity within the TPE by conducting trials on numerous farms. 

Using farm-as-incomplete-block (FAIB) designs, small farms test 3–5 candidate varieties, aligning with their plot size and resource constraints. A genomic relationship matrix connects trials across farms, ensuring comparability between farms and enhancing selection accuracy through the sharing of information. This approach reduce replication and enable testing more candidates, thereby improving breeding efficiency and providing a basis for accelerated parent recycling. Smallholder farmers are highly diverse, and careful sampling ensures a wide range of farmers can participate. The small land requirements of this approach allow small, poor and/or women farmers to equally participate. 

(Photo: CIMMYT)
On-Farm Testing and on-station testing: complementary yet demanding approaches

Early-stage on-farm testing complements, rather than replaces, on-station trials. Controlled assessments for traits like disease resistance and managed abiotic stresses remain essential at research stations. Conversely, insights from early-stage OFST can help refine on-station testing to better represent farming realities.

Scaling early-stage OFST demands strong partnerships between CGIAR, NARES, and farmers for decentralized trial management. Farmers must consent to participate and be compensated for risks. Additionally, significant resources and coordination are required to ensure trials are representative and reliable. 

Despite these challenges, early-stage OFST holds transformative potential. By aligning breeding programs with smallholder realities, it can deliver improved crop varieties faster and more effectively, enhancing food security for those who need it most. 

For more information, see the article: Accelerating Genetic Gain through Early-Stage On-Farm Sparse Testing by Werner et al., Trends in Plant Science. 

Accelerating genetic gain through early-stage on-farm sparse testing.  

Accelerating genetic gain through early-stage on-farm sparse testing 

Werner, Christian R. et al. 

Trends in Plant Science, Volume 0, Issue 0 

How Atubandike dialogues are redefining gender and youth inclusion in Zambian agriculture

Women and youth are essential drivers of agricultural and economic resilience in Zambia’s rural farming communities. However, they frequently encounter significant barriers such as restrictive social norms and inadequate access to vital resources which hinder their ability to participate fully in the economy.

Female youth sharing her views (Photo: Moono Seleketi).

Recognizing the critical roles of women and youth in shaping the present and future of Zambian agriculture, the ‘Atubandike’ approach, under CIMMYT’s USAID-funded Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub project, has been actively engaging with communities to address systemic barriers faced by these groups. This initiative combines digital tools with face-to-face interactions, creating spaces where community members can share their stories, challenges, and questions to co-create solutions.

Atubandike, which means ‘let’s have a conversation’ in the local Tongo language, was launched in Zambia in 2023 as an advisory service. The model represents a scalable, community-led approach that empowers marginalized groups, including women and youth, as active contributors and leaders in agriculture. With each interaction building upon the previous one, this ongoing work advances the broader mission of fostering inclusivity and resilience across Zambia’s agricultural sector.

To uncover and tackle the structural barriers faced by women and youth, the Atubandike team recently engaged over 1,700 farmers across 14 communities in Southern Zambia, gaining critical insights into the biases that persist in rural areas.

Stereotypes and structural barriers

The community conversations highlighted generational divides and deeply rooted stereotypes that cast youth as disengaged or disinterested in farming. Older community members opined that young people are more drawn to urban lifestyles and reluctant to take on the demanding labor associated with agriculture. One elderly farmer said: “Many youths prefer a comfortable lifestyle and quick money. They don’t have the patience for the hard work farming requires.”

In contrast, younger participants shared that this perception overlooks the genuine obstacles they face such as limited access to land, financing, training, and mentorship opportunities. They emphasized that their lack of involvement often stems from these barriers rather than a lack of motivation.

Young male farmer speaking (Photo: Moono Seleketi).

The consultations also underscored pervasive gender norms that limit women’s roles in agriculture. Despite their significant contributions to household food security, female farmers are often relegated to secondary roles, focusing on ‘women’s crops such as groundnuts, while men cultivate staple crops such as maize and cash crops such as soybean. A participant shared, “The community always perceives men as the real farmers because they are considered the heads of the household.” This perception frequently limits women’s access to critical resources and their decision-making power within the agricultural sphere.

However, through Atubandike’s sessions, communities are beginning to confront these entrenched norms, shedding light on the vital contributions of women and youth in agriculture. This shift is laying the groundwork for a more equitable approach, where both men and women, young and old, are recognized as essential to farming success and household resilience. As these conversations grow, Atubandike is paving the way for solutions that promise meaningful and lasting change for both women and youth in agriculture.

Community-driven solutions

  • Building youth capacity through skills and leadership: Many community members expressed a strong desire to see more youth involved in agricultural activities, emphasizing the importance of hands-on training. “We need to get the youth involved in actual farming [tasks] such as irrigation and crop management. It keeps them busy and teaches them valuable skills,” shared one local leader.

To support this vision, Atubandike is training young community members as digital champions, equipping them with both technical expertise and leadership skills that allow them to mentor their peers and encourage youth participation in agriculture. These digital champions not only extend the reach of Atubandike’s initiatives but also serve as relatable role models, inspiring other young people to engage in agriculture as well as see it as a viable and rewarding path.

  •  Towards a more inclusive future for Zambian agriculture
    The Atubandike initiative – by fostering open community dialogue, empowering digital champions, and promoting household-level collaboration – lays the foundation for a more inclusive future for Zambian agriculture. As each community engagement builds momentum, CIMMYT, through the AID-I project, creates a cycle of empowerment and growth that ensures women and youth are not only heard but also empowered to lead.
Women celebrating at community meeting (Photo: Moono Seleketi).

Amidst the challenges of erratic weather patterns and economic constraints, building resilience through cross-generational and gender-inclusive collaboration is crucial. Atubandike is addressing these geographic and social challenges and paving the way for a future where every farmer, regardless of age or gender, plays a pivotal role in Zambia’s agricultural success.

Enhancing agricultural research with FAO’s AGRIS and AGROVOC programs: A conversation with CIMMYT’s knowledge management team

Farmer examines wheat seed (Photo: CIMMYT).

In a recent series of conversations with CGIAR knowledge management teams, Sara Jani and Valentina De Col interviewed Jesús Herrera de la Cruz, CIMMYT’s Deputy Director of Knowledge Management and Information Technologies. They discussed CGIAR’s collaboration with the Food and Agriculture Organization of the United Nations (FAO) on AGRIS and AGROVOC – two key resources in agricultural research. AGRIS is a comprehensive bibliographic database focusing on agriculture and nutrition, while AGROVOC is a multilingual thesaurus covering a wide range of agricultural terms.

Benefits of being in AGRIS

CIMMYT has shared its knowledge products with AGRIS and plans to do so more. What are the benefits of your center’s participation in AGRIS?

Jesús: When I think about it, there’s one clear benefit: projection. AGRIS allows CIMMYT to be part of one of the most important databases in our field, if not the most important. This link allows us to showcase our work on a global scale. Another critical benefit is trust. AGRIS is a trusted source of accurate and reliable information. In today’s age, where the internet is flooded with information, having a trusted source like AGRIS is invaluable. It ensures that CIMMYT’s contributions are part of a verifiable and respected database, which is crucial to maintaining the integrity and credibility of our work.

Importance for CGIAR of sharing research results through AGRIS

From a broader perspective, do you think it is important for CGIAR to share its research results with a wider community and global users through AGRIS? If so, why?

Jesús: Absolutely, and it’s not just important—it’s our mandate. As part of our commitment to make our public goods as accessible as possible, AGRIS is one of the main channels we use to fulfill this mandate. The more we share our scientific outputs, the better we fulfil our mission. This sharing aligns with our goals and enhances our ability to collaborate and fulfil our mission.

CIMMYT’s knowledge content: content types and topics  

How would you describe the knowledge content produced by your center and made available through your repository? In which specific research areas does your center publish?

Jesús: CIMMYT focuses primarily on maize and wheat improvement, genetic resources and conservation agriculture. Recently, CIMMYT has expanded its research into other crops, although these newer projects are not yet strongly reflected in our repository. We expect this to change in the coming years as new research results becomes available. In addition to our scientific content, our repository includes institutional documents, such as financial reports and other forms of historical memory. These items are often overlooked, but they provide a richer understanding of the history of our work by offering insights into the context in which our research took place.

Importance of AGRIS for agricultural research institutions such as CGIAR

Do you think it is important for agricultural research institutions or networks such as CGIAR, to have access to a comprehensive bibliographic database such as AGRIS? If so, what are the specific benefits of having access to such a database?

Jesús: As I mentioned earlier, having access to AGRIS is more than important— it is essential. AGRIS is a cornerstone for ensuring we remain compliant with our mandate. It’s a trusted source that provides control and guarantees the credibility of the content within it. This reliability is invaluable to researchers and readers alike. AGRIS is a source of truth and its role in maintaining the integrity of our scientific output cannot be overstated.

Improving searchability and interoperability with AGROVOC

CGIAR contributes to and uses AGROVOC as a common vocabulary. How does this collaboration affect the discoverability and interoperability of your data?

Jesús: Absolutely. AGROVOC significantly enhances the discoverability and interoperability of our data. By using controlled vocabularies such as AGROVOC, we can ensure consistent and accurate data exchange across platforms. AGROVOC is the definitive controlled vocabulary in our field, and it plays a crucial role in maintaining the standardization necessary for seamless interoperability. For us, it’s not just a tool, it’s a cornerstone of our data management strategy, and it’s essential that it continues to be the standard.

The discussion focused on the role of AGRIS in increasing the visibility and accessibility of CIMMYT’s research results. By continuing to strengthen links with the AGRIS and AGROVOC programs, the CGIAR is well placed to increase the global impact of its research and ensure that vital agricultural knowledge reaches those who need it most around the world.

For more info on the CGIAR and FAO collaboration:

Report: https://hdl.handle.net/10568/116236

Brief: https://hdl.handle.net/10568/116448

Webinar: https://youtu.be/0klZSY1c0UU?si=mlVvEQSpF1KNFSvG

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

ZARI promotes climate-smart agriculture to strengthen research excellence, innovation, and sustainability

The Zambia Agricultural Research Institute (ZARI) has undergone a significant transformation, fueled by a strategic subgrant from the Bill & Melinda Gates Foundation through the Africa Dryland Crop Improvement Network (ADCIN). Established in August 2023 and convened by CIMMYT through its Dryland Crops Program (DCP), ADCIN is a collaborative network aimed at uniting over 200 scientists from more than 17 countries across sub-Saharan Africa. Its mission is to create a dynamic and sustainable network to develop and deliver improved varieties of dryland crops in the region. By leveraging the collective expertise of its multidisciplinary members, ADCIN strives to accelerate the access of enhanced crop varieties to smallholder farmers.

This support has led to the modernization of ZARI’s research facilities, improved irrigation systems, and enhanced data management capabilities, positioning the institute as a leader in climate-smart crop research. Key advances include speed breeding and controlled drought research, which have led to higher crop yields and better adaptation to climate challenges. These improvements have not only strengthened Zambia’s agricultural research capacity but also fostered regional collaboration and knowledge sharing, benefiting farmers, scientists, and institutions across Southern Africa. The institute’s improved infrastructure, including expanded water storage and solar power, has ensured uninterrupted research, even during power outages. As a model for other NARES institutions, ZARI’s transformation highlights the critical role of strategic investment in agricultural research to address the growing challenges of climate change and food security across Africa.

We caught up with Dr. Loyd Mbulwe, the Ag. Chief Agriculture Research Officer at ZARI, to get more insight into the upgrade.

Q: What were some of the challenges ZARI faced before the upgrades?

A: ZARI faced several research-related challenges that hampered its potential for innovation. These included limited access to essential research equipment, inadequate funding for critical projects, and insufficient capacity for data management and analysis. Collaboration and knowledge sharing with regional and international partners were also limited.

In terms of infrastructure, ZARI struggled with outdated laboratory facilities, inefficient greenhouse and irrigation systems, and limited storage space for seeds and plant materials. The institution’s ICT infrastructure was inadequate to support modern agricultural research needs. Operational efficiency was hampered by manual data collection, inefficient research protocols, and inadequate standard operating procedures.

Q: How has the upgrade helped ZARI overcome these challenges, and how has it improved the quality and quantity of research coming out of ZARI?

A: Recent upgrades at ZARI have significantly improved its research capabilities. New equipment and increased funding have supported larger projects, while improved data management systems have streamlined data handling and fostered greater collaboration with regional and international partners. The addition of a modern greenhouse and upgraded irrigation systems has improved water management and allowed for more controlled experiments. Expanded seed storage capacity now ensures the secure preservation of critical plant material for future research.

Automated data collection systems have reduced errors and increased efficiency, while standardized research procedures have improved the quality and reproducibility of results. Improved research documentation and targeted staff training programs have further enhanced research skills, enabling the team to produce more impactful results.

The newly constructed greenhouse facility enhances crop breeding and genetics research, enabling efficient off-season studies.  (Photo: ZARI/Zambia)
Q: How has ZARI’s research capacity improved with the upgraded facilities and new equipment?

A: ZARI has undergone significant upgrades to improve its research capacity. The new greenhouse facility has improved crop breeding and genetics research, allowing for more efficient off-season research. Speed breeding, a technique that accelerates crop generation turnover by two to five times through controlled environmental conditions, has been a game changer. The greenhouse also enables controlled drought research, providing insights into the development of climate-resilient crops. The ZAMGRO project has increased ZARI’s water storage capacity from 45 m² to 3.6 million m², enabling year-round farming and improved water management. The subgrant also enabled the installation of solar power, addressing the electricity challenges caused by recent droughts. The move to Starlink internet connectivity has also improved ZARI’s online capabilities, providing reliable, uninterrupted internet access, even in remote research sites.

An aerial view of the installed solar panels, that has resolved electricity challenges and mitigating power outages. (Photo: ZARI/Zambia)
Q: Looking ahead, what are ZARI’s future plans? Are there any further upgrades or expansions planned for the future?

A: ZARI’s future plans focus on increasing its research impact through strategic partnerships and innovation. The institute aims to establish a center of excellence for climate-smart agriculture and develop a biotechnology laboratory to advance genetic improvement and crop resilience. Expanding greenhouse and irrigation systems and improving digital infrastructure for data management are also priorities. ZARI also plans to strengthen collaborations with international research institutions and pursue public-private partnerships to transfer technology from research to practical applications. In addition, ZARI is committed to human resource development through targeted training, fellowships, and mentorship programs to nurture future researchers.

Q: What steps is ZARI taking to ensure the long-term sustainability of the upgraded facilities and research programs?

A: ZARI has implemented a comprehensive plan to ensure the long-term sustainability of its upgraded facilities and research programs. Key areas include maintenance of facilities, continuation of research programs, capacity building, partnerships, and knowledge sharing. ZARI has secured funding from partners and donors, diversified its income streams, and developed sustainable research funding models. Staff training, mentoring programs, and collaboration with international experts are key to ensuring that the research team stays abreast of new technologies. Strategic partnerships with private sector companies, joint research initiatives, and technology transfer agreements have further strengthened ZARI’s research capabilities. Regular impact assessments and collaborations with universities, research institutes, and government agencies further strengthen ZARI’s research capabilities and ensure that programs remain relevant and impactful.

An aerial view of the water storage system during installation. This has increased the capacity to support year-round farming and improved water management. (Photo: ZARI/Zambia)
Q: In what ways can this facility upgrade serve as a model or inspiration for other NARES facilities in the region? Are there any best practices that ZARI would recommend for similar projects?

A: The ZARI facility upgrade serves as a model for other NARES institutions in several significant ways. First, it highlights the importance of strategic partnerships, demonstrating how collaboration with regional and international organizations can lead to meaningful progress. Second, it emphasizes capacity building, with a focus on investing in staff training and development to improve institutional performance.

There are also several inspirational aspects to ZARI’s transformation. It demonstrates the transformative impact that research modernization can have on NARES breeding programs and shows the potential for improving agricultural research capacity. In addition, the upgrade is highly regionally relevant, addressing pressing regional challenges.

Finally, ZARI’s best practices provide valuable lessons for other institutions. The irrigation upgrade is an outstanding example, tailored to address the unique challenges posed by climate change in the region.

Unboxing the Starlink hardware: Transitioning to Starlink ensures reliable and uninterrupted internet access, even in remote research sites. (Photo: ZARI/Zambia)
Q: What was ADCIN’s role in facilitating this strategic investment, and how does it fit into the broader vision of strengthening NARES institutions across Africa?

A: ADCIN plays a key role in supporting the development and modernization of NARES institutions across Africa. Its contributions can be seen in three key areas. First, ADCIN provides technical assistance by offering expertise in research infrastructure development. Second, it provides financial support by mobilizing the resources needed to upgrade facilities. Third, ADCIN provides strategic guidance, ensuring that investments are aligned with regional research priorities and agendas.

This support fits into the broader vision of strengthening NARES institutions across the continent. ADCIN’s efforts focus on improving research capacity through upgrading facilities and equipment, fostering collaboration by promoting regional and international partnerships, and improving research quality through stronger research management and governance. As a result of ADCIN’s support, NARES institutions such as ZARI have seen significant improvements. Research output and impact have increased, regional collaboration has been strengthened, and institutions now have better access to international funding. By supporting ZARI’s strategic investments, ADCIN reaffirms its commitment to strengthening NARES institutions and promoting excellence in agricultural research across Africa.