Skip to main content

research: Innovations for development

Research local: co-creation generates novel options to tackle global problems

The United Nations Sustainable Development Goals (SDG) are broad mandates for transitioning to fair and sustainable agrifood systems. However, because of their global view, they often operate at a scale not clearly seen or understood by local stakeholders.

New research led by the International Maize and Wheat Improvement Center (CIMMYT) scientists offers participatory action research (PAR) as a potential bridge between the macro scope of the SDGs and the needs and desires of local communities.

The article, Participatory action research generates knowledge for Sustainable Development Goals, published in the June 2023 issue of Frontiers in Ecology and the Environment, examines two decades of participatory action research activities in Malawi, a highly rural society dependent on rainfed agriculture.

Trying out conservation agriculture wheat rotation alongside conventionally grown maize, farmer’s field, Mexico. (Photo: E. Phipps/CIMMYT)

“Participatory research is known for giving voice to farmers, for accelerating adaptation and for impact,” said lead author Sieglinde Snapp, director of the Sustainable Agrifood Systems program at CIMMYT. “What is novel in this study is that new discoveries were documented, showing the scientific contributions possible through PAR.”

Co-creation

Participatory action research is a knowledge generation process, characterized by a series of steps to facilitate improved understanding and development of innovations, within a local context. The PAR approach involves engaging stakeholders, to co-create solutions with researchers.

Because knowledge is often local, access to natural resources is highly heterogeneous, climate variability is unpredictable and socioeconomic circumstances are context-dependent, any intervention must be flexible and locally specific to ensure sustainability.

PAR prioritizes empowerment of marginalized communities to build long-term partnerships which support transformational changes at local, regional and national levels.

Yet the evidence base for PAR methodology remains fragmented and is often inaccessible.

“This is the first paper that shows how action research produces new knowledge through a systematic, iterative process that derived ‘middle ways’, such as shrubby food crops as a farmers preferred form of agroforestry,” said Snapp.

Solving wicked problems

Participatory research is well-suited to address conflicts and trade-offs that are key aspects of so-called wicked problems. For instance, annual crops—maize and soybean—are excellent producers of food but feature limited aboveground vegetation and belowground activity to regenerate soil nutrients, while perennials provide soil regeneration services but no food products.

By engaging closely with local stakeholders, PAR identifies “goldilocks options,” or middle ways, such as semi-perennial shrubs and vines that produce food while also promoting soil health.

Genetic and agronomic improvement efforts have almost entirely overlooked semi-perennial plant types to address food–soil trade-offs.

Challenges

Building relationships between researchers and stakeholders; the investment required in selecting representative sites, action learning activities, synthesis of findings, communication and documentation; and the inherent variability of research conducted under real-world conditions are barriers to establishing PAR systems. Living laboratories and education on PAR approaches need investment. Reward structures may need to shift, with greater attention to considering research impact on SDGs and awareness that time lags may occur in publishing scientific findings through PAR.

Demonstrating conservation agriculture to other farmers in Malawi. (Photo: T. Samson/CIMMYT)

“Our findings detailing the efficacy of PAR shows that the potentially high upfront costs to invest in relationship building and learning across disciplines, this is a worthwhile trade-off,” said Snapp.

Through PAR, human condition and social-science questions can be addressed, along with biological and environmental science questions, as illustrated in this Malawian case study.

The findings generated by PAR have relevance beyond the sub-Saharan Africa context because they provide new insights into the development of nature-based solutions that meet local needs, a critical requirement for rural communities in many parts of the globe.

ASEAN – CGIAR Innovate for Food Regional Program

The primary focus of this project is on regenerative agriculture practices, including circular economy principles, co-identified and digital decision-support tools co-designed for at least two priority production systems (one upland and lowland rice-fish production system and another upland system), enabled by policymakers, and used by scaling partners in at least three Association of Southeast Asian Nations member states.

The project aims to align with the Sustainable Development Goals: SDG 5 – Gender Equality; SDG 13 – Climate Action; SGD 17 – Partnerships for the Goals.

Participation Agreement for Supply of Materials-CAIGE Project

The CAIGE Project seeks to offer the University of Sydney and Australian grain breeders access to provider sites, materials, and data at times to be agreed by the parties. Offer support to the recipient and Australian grain breeders to choose materials from CIMMYT and enter into supply orders.

The project aims to align with the Sustainable Development Goals: Contributing to SDG 2 – Zero Hunger.

  • Every alternate year, a set of elite spring wheat lines is shared with the CAIGE program in Australia.
  • Joint evaluation of CIMMYT & Australian lines across Australia, October 2022 (N=312 lines).

Data provided

  • Grain yield under full irrigation and drought
  • TKW under full irrigation and drought
  • Quality traits (protein, sedimentation volume etc) under full irrigation
  • Disease traits: Leaf and Yellow rust, and soil borne disease
  • Stem rust (Debre Zeit – Ethiopia and Njoro –Kenya

2022/23: Additional set of new cohorts of lines sent to Australia for quarantine and seed increase process.

CAIGE Australia team will visit CIMMYT Obregon March 2024

CIMMYT-Australia Scientists field evaluation, October 2022

Direct release of CIMMYT wheat in Australia

Commercial cultivation of Borlaug 100 wheat in Australia (commercialized by Rebel seeds)

Regenerative Agriculture Boosts Second Green Revolution

CIMMYT leds different regenerative agriculture projects with companies like Nestlé and Bimbo that positively impact food security and rural communities in Mexico. These initiatives aim to boost productivity through regenerative agriculture practices to positively impact food security, the environment and social inclusion in the Mexican countryside.

Read the full story.

 

An Example of International Cooperation: China and CIMMYT

Awais Rasheed has established a high-throughput KASP molecular breeding platform and made outstanding contributions to promoting China-Pakistan cooperation. He has discovered and validated 90 KASP markers available for wheat breeding, accounting for 60 percent of similar markers internationally, which are widely used in China and 15 other countries.

Read the full story here.

A promising partnership

In August 2022, the arrival of a container ship at the port in Cotonou, Benin signaled a major milestone in a developing South-South business relationship that holds the potential to produce a massive change in agricultural practices and output in Benin and across West Africa.

The delivery of six-row seeder planters from India marks the initial fruit of a collaboration between Indian manufacturer Rohitkrishi Industries and Beninese machinery fabricator and distributor Techno Agro Industrie (TAI) that has been two years in the making.

Connecting partners in the Global South

A major area of focus for the Green Innovation Centers for the Agriculture and Food Sector (GIC) projects launched in 15 countries by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger is fostering cooperation between nations in the Global South.

Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya, Nepal (Photo: Peter Lowe/CIMMYT)

This story began through the partnership between the Green Innovation Centers for the Agriculture and Food Sector and The International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and 2 in Asia.

GIC in India has been working with Rohitkrishi to develop appropriate mechanization solutions for smallholding farmers in India since 2017.

Under this new cross-border goal, GIC India discussed with Rohitkrishi the opportunity to adapt machines to the agroecological and socio-economic systems of African countries where continued use of traditional farming methods was drastically limiting efficiency, productivity, and yield. Rohitkrishi assessed the need and pursued this opportunity for long-term business expansion.

Small machines for smallholders

Before connecting with farmers and manufacturers in Benin, Rohitkrishi was busy solving problems for smallholding farmers in India, where large manufacturers focus on agricultural machinery designed and produced to meet the needs of the bigger, commercial farms. Sameer Valdiya of GIC India and Sachin Kawade of Rohitkrishi put their heads together to develop a plan for producing machines that could make a difference—and then convince smallholding farmers to try them.

A farmer pulls a row seeder, Maharashtra, India. (Photo: Green Innovation Center-India)

By adapting an existing machine and incorporating continuous feedback from farmers, they created a semi-automatic planter. This unique, co-creative process was accompanied by an equally important change in farmer mindset and behavior—from skepticism to the demonstrated impact and cost-benefit of the planter that was clear to each farmer.

These farmers were the first to adopt the technology and promoted it to their peers. Their feedback also drove continued improvements—a fertilizer applicator, new shaft and drive, safety features, night-lights and (perhaps most importantly) a multi-crop feature to make it useful for planting potatoes, ginger, and turmeric.

Today, Rohitkrishi has distributed 52 semi-automatic planters across India, and these machines are being used by up to 100 farmers each. Users are seeing a 17-20 percent increase in productivity, with an accompanying increase in income, and 30 percent of users are women.

The seeders are a roaring success, but Rohitkrishi is focused on continued improvement and expansion. As they continue to respond to adjustments needed by farmers, the company plans to sell 1000 semi-automatic planters per year by 2025. Reaching that goal will require both domestic and foreign sales.

Market opportunity meets technological need

Thanks to the active partnership of CIMMYT and Programme Centres d’Innovations Vertes pour le secteur agro-alimentaire (ProCIVA), TAI in Benin emerged as a promising early adopter of Rohitkrishi’s planters outside India. Seeing a remarkable opportunity to establish a foothold that could open the entire West African market to their products, Rohitkrishi began the painstaking process of redesigning their machine for a new context.

This ambitious project faced numerous challenges–from language barriers, to the definition of roles amongst major players, to major COVID-19 and supply chain delays. The arrival of the seeders, however, is a major accomplishment. Now Rohitkrishi and TAI will begin working with government representatives and farmer-based organizations to ensure the equipment performs well on the ground and meets Benin’s agroecological requirements.

Once final testing is completed in the coming months, Rohitkrishi’s seeders will have the chance to demonstrate what a difference they can make for soy and rice production in Benin.

“When developing countries with similar contexts and challenges forge alliances and business connections to share their knowledge, expertise, and problem-solving skills with each other, this kind of direct South-South collaboration produces the most sustainable advances in agricultural production, food security, and job creation,” said Rabe Yahaya, agricultural mechanization specialist at CIMMYT.

Scale mechanization through a starter pack that comprises a two-wheel tractor – a double row planter as well as a trailer and sheller (Photo: CIMMYT)

Meanwhile, CIMMYT is studying this pilot project to identify opportunities for reproducing and expanding its success. Through the Scaling Scan–a web-based, user-friendly tool to assess ten core ingredients necessary to scale-up any innovation–CIMMYT is helping Rohitkrishi and TAI set ambitious and reachable goals for scalability.

Most importantly, the Scaling Scan results will identify areas for course correction and help Rohitkrishi and its partners continue to be sensitive to farmer feedback and produce equipment better suited to needs on the ground.

Ethiopian machines for Ethiopian farmers

Techno-Nejat owner Usman Abdella, operations manager Ali Mussa, and GIZ project manager Ralf Barthelmes with a recently completed seed cleaner at Techno-Nejat workshop in Adama, Ethiopia. (Photo: Adane Firde)

In many sub-Saharan countries, including Ethiopia, smallholder farmers of legume, wheat, and maize struggle to maintain their own food security, produce higher incomes, and promote economic growth and jobs in agricultural communities.

As farmers, fabricators, and aid workers collaborate to move forward on this problem, innovative solutions are moving out into the field – and generating new ideas across the continent.

Where are machines for small farmers?

Machines tailored to local needs and conditions can often make a big difference–but most agricultural technology is designed and produced to meet the requirements of massive, commercial farms. To help close this gap, Green Innovations Centers (GIC) work to connect smallholding farmers with locally produced technology that can transform their business, their family lives, and their local economies.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD No Hunger, the GIC collaborate with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

Technician at Techno-Nejat workshop, Adama, Ethiopia. (Photo: Adane Firde)

The need for seed

Informal seed systems, in which farmers save and reuse seed, and exchange low quality seed with other farmers, are prevalent among Ethiopian smallholder farmers. Seed cleaning plays an important role in helping farmers build high-yielding seed development systems by removing seed pods and other chaff, eliminating seeds that are too small or infected, and refining the seeds to a high-quality remainder.

After GIC staff in Ethiopia identified seed cleaning as a critical need for smallholding farmers in the country, researchers set out to develop a solution that was affordable, sustainable, and adaptable to local demands.

Local machines for local farmers

In 2022, GIC Ethiopia partnered with Techno-Nejat Industries in Adama, Ethiopia, to design and produce a first run of mobile seed cleaners for use by smallholding farmers across the country. Techno-Nejat has an established track record in agricultural fabrication and was eager to take on the new collaboration.

In early March, the company completed the initial delivery of eight seed cleaners. The machines process chickpea, soy, wheat, and barley seed with a maximum capacity of 1.5 tons per hour. With wheels and a compact, efficient design, they are also easy to move from one farmer’s property to another. At a cost of US $7,500 and a production time of 55 days, the machines have potential both for expansion within Ethiopia and scaling up for export.

Mr. Zogo, owner of Techno Agro Industrie in Benin, with Ali Mussa, Adama, Ethiopia. (Photo: Adane Firde)

Seeding future collaboration

Smallholding farmer cooperatives will take delivery of the first eight seed cleaners in the coming weeks. And while Ethiopian farmers are ready to experience the immediate benefits for their operations, this innovation is also showing promise for additional collaboration.

“Through existing GIC networks, we have connected with Techno Agro Industrie, a company manufacturing seed cleaners in Benin,” said Techno-Nejat’s owner Usman Abdella. “We welcome partnership opportunities, and we extend the red carpet,” Usman said.

As funding for GIC’s mechanization effort winds down, this organic, private Ethiopia-Benin partnership holds promise to generate continued benefits of innovation after the project has concluded, fostering South-South collaboration within Africa.

Solar powered dryers boost peanut production in Togo

Solar powered peanut dryers in Togo are helping women-run cooperatives reduce their workload and increase their profits.

A number of West African countries have climate and soil well-suited to groundnut cultivation. In the second half of the twentieth century, the region became a world leader in peanut production. In Togo, peanuts do well, but problems with postharvest processing have kept this crop performing well below its potential.

However, the introduction of the solar powered dryers has had a significant positive impact on the production and preservation of a vital crop for the local population.

From peanut stews and sauces that are staples of national cuisine to overseas export of peanut products, there is no shortage of uses for this groundnut in Togo. However, smallholding farmers struggle to preserve their entire crop in large part because of aflatoxins, which thrive when conditions are too moist and ruin peanuts.

“Peanuts are a very perishable commodity and they can spoil if not stored properly for processing,” said AĂŻssetou Koura, president of the peanut farmer cooperative in Koumonde.

This is particularly true for smallholding peanut farmers, which in Togo includes many women. The established method for drying peanuts is to lay them out in the open air, which is a labor-intensive process that leaves the crop exposed to unexpected rains and contamination by pests. “In the past, we suffered huge losses,” Aïssetou explained.

Aicha Gaba from the N’kani N’kana cooperative works with a solar dryer in Koumonde, Togo. (Photo: LarĂ© B. Penn/University of Lome)

A better way to dry

In 2021, the introduction of solar dryers began to change things dramatically for peanut farmers in cooperatives from Tovegan to Dapaong. In collaboration with the United Nations Food and Agriculture Organization (FAO), the Green Innovation Centers for the Agriculture and Food Sector (GIC) in Togo helped a local manufacturer, Guema Concept, develop solar dryer technology for local peanut farmers from plans made by the University of Hohenheim.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

The dryers are equipped with a ventilation system and a power kit that includes solar panels and a battery so they can operate during periods of reduced sunlight. They have a capacity of 12 kilograms and can complete a drying cycle in as little as two hours, which is about one quarter of the time a manual drying cycle takes. Depending on the solar exposure, cooperatives like the one in Koumonde can perform three or four cycles in a day.

“We have found a solution by preserving our products with the solar dryer,” AĂŻssetou said.

GIC has helped five smallholding farmer cooperatives procure solar dyers across Togo, and more than 50 women farmers are members of these groups whose work is benefitting from this technology.

Farmers like Aicha Gaba are also increasing their profit because the solar dryers allow them to do more work with fewer laborers.

“Our cooperative dries peanuts with only two people via the solar dryer, unlike conventional open drying, which requires five people to spread, turn, monitor and collect the peanuts,” Gaba said.

“This process reduces the workers’ wages and then saves us the money of three workers, which is a good thing for us.”

The new technology is producing better peanuts thanks to consistent moisture and temperature levels and faster processing speeds, said Djéri Bossa, a member of the cooperative in Bassar.

“Thanks to the solar dryers offered by GIC Togo, we can freely dry our products in good conditions,” Bossa explained.

“The products derived from the processing of peanuts are of improved quality, unlike the conventional open-drying method we used.”

All is not sunny

Despite the initial success of the solar dryers, there are challenges that remain for scaling up this innovation. The dyers are quite heavy and, for smallholding women, it can be difficult to maneuver the machines by themselves. At the same time, farmers say that – even with the greater volume the dryers have helped them achieve – they would still like a higher-capacity machine.

But even with the need for lighter, harder-working dryers, there is enormous potential for this innovation to spread to new areas, bring additional production and income to smallholding farmers (including many women), and help make groundnuts a bigger piece of the economic pie in Togo.

Cover photo: Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

Thank you to our partners, Laré B. Penn (University of Lomé) and Johanna Steinkuehler (GIZ Togo).

Adapting growing seasons to climate change can boost yields of world’s staple crops

Rising global temperatures due to climate change are changing the growth cycles of crops worldwide. Recent records from Europe show that wild and cultivated plants are growing earlier and faster due to increased temperatures.

Farmers also influence the timing of crops and tend to grow their crops when weather conditions are more favorable. With these periods shifting due to climate change, sowing calendars are changing over time.

Over thousands of years of domesticating and then breeding crops, humans have also managed to artificially change how crop varieties respond to both temperature and day length, and in turn have been able to expand the area where crop species can be grown. Farmers can now choose varieties that mature at different rates and adapt them to their environment.

Including farmers’ decisions on when to grow crops and which varieties to cultivate are vital ingredients for understanding how climate change is impacting staple crops around the world and how adaptation might offset the negative effects.

In a ground-breaking study, a team of researchers from the Potsdam Institute for Climate Impact Research (PIK), the Technical University of Munich and the International Maize and Wheat Improvement Center (CIMMYT) investigated how farmers’ management decisions affect estimates of future global crop yields under climate change.

“For long time, the parametrization of global crop models regarding crop timing and phenology has been a challenge,” said Sara Minoli, first author of the study. “The publication of global calendars of sowing and harvest have allowed advancements in global-scale crop model and more accurate yield simulations, yet there is a knowledge gap on how crop calendars could evolve under climate change. If we want to study the future of agricultural production, we need models that can simulate not only crop growth, but also farmers’ management decisions.”

Using computer simulations and process-based models, the team projected the sowing and maturity calendars for five staple crops, maize, wheat, rice, sorghum and soybean, adapted to a historical climate period (1986–2005) and two future periods (2060–2079 and 2080–2099). The team then compared the crop growing periods and their corresponding yields under three scenarios: no adaptation, where farmers continue with historical sowing dates and varieties; timely adaptation, where farmers adapt sowing dates and varieties in response to changing climate; and delayed adaptation, where farmers delay changing their sowing dates and varieties by 20 years.

The results of the study, published last year in Nature Communications, revealed that sowing dates driven by temperature will have larger shifts than those driven by precipitation. The researchers found that adaptation could increase crop yields by 12 percent, compared to non-adaptation, with maize and rice showing the highest potential for increased crop yields at 17 percent. This in turn would reduce the negative impacts of climate change and increase the fertilization effect of increased levels of carbon dioxide (CO2) in the atmosphere.

They also found that later-maturing crop varieties will be needed in the future, especially at higher latitudes.

“Our findings indicate that there is space for maintaining and increasing crop productivity, even under the threat of climate change. Unfortunately, shifting sowing dates – a very low-cost measure – is not sufficient, and needs to be complemented by the adaptation of the entire cropping cycle through the use of different cultivars,” said Minoli.

Another important aspect of this study, according to Anton Urfels, CIMMYT systems agronomist and co-author of the study, is that it bridges the GxMxE (Gene-Management-Environment) spectrum by using crop simulations as an interdisciplinary tool to evaluate complex interactions across scientific domains.

“Although the modeled crops do not represent real cultivars, the results provide information for breeders regarding crop growth durations (i.e. the need for longer duration varieties) needed in the future as well as agronomic information regarding planting and harvesting times across key global climatic regimes. More such interdisciplinary studies will be needed to address the complex challenges we face for transitioning our food systems to more sustainable and resilient ones,” said Urfels.

Read the study: Global crop yields can be lifted by timely adaptation of growing periods to climate change

Cover photo: Work underway at the International Maize and Wheat Improvement Center in Zimbabwe (CIMMYT), is seeking to ensure the widespread hunger in the country caused by the 2015/6 drought is not repeated, by breeding a heat and drought tolerant maize variety that can still grow in extreme temperatures. CIMMYT maize breeders used climate models from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) to inform breeding decisions. (Photo: L. Sharma/Marchmont Communications)

Scaling Scan website launched

The Scaling Scan website has been launched offering the latest news, manuals, videos, trainings, a directory of consultants, and a forum to engage with peers and experts on how to use the Scaling Scan tool to support scaling processes.

The website, which was developed by Lennart Woltering, scaling advisor with the International Maize and Wheat Improvement Center (CIMMYT), and the Scaling team in CIMMYT, builds on the success of the Scaling Scan, a user-friendly tool designed for anyone to learn about scaling: appreciate that context is king, that innovations don’t scale alone, and that collaboration is key for success

“The idea behind the Scaling Scan has always been to make it accessible to users of all levels, to bring the discussion on scaling to the ground and therefore, just like the tool, the materials on the site are available in English, French, and Spanish,” said Woltering.

It features materials used in training programs and workshops by CIMMYT’s scaling team over the past five years, repurposing them neatly for users around the world to assess the scalability of their own pilot projects and innovations. The website also includes a forum where users can engage in conversations, exchange information, and ask experts and other users questions and advice related to scaling. The platform also acts as a conversation space, allowing users around the world to share their experiences with the Scaling Scan, ask questions, and learn from each other. This has the added benefit of helping the Scaling Scan team understand on the ground needs so that they can create more user-friendly content.

“The demand for Scaling Scan workshops has been overwhelming, within CIMMYT, the CGIAR, but also with development organizations like Catholic Relief Services and GIZ and the private sector and we realized that we should bank much more on its biggest asset: accessibility. So, in 2022 we started with trainings for facilitators and the website serves as the platform for them to draw inspiration, materials, and methodologies how to apply the Scaling Scan in their context,” said Woltering.

Scaling is a process that aims to achieve sustainable change at scale. This means that not only should many people benefit from a new technology, but the results of a particular project should carry over beyond its immediate context and transform communities for the better.

It’s a complex process, and there is no one single recipe or blueprint. The Scaling Scan can, however, give direction to scaling new projects and highlight key factors scaling teams need to look out for

“The Scaling Scan aims to provide a framework for people to understand how much they should scale, and what else should be taken into consideration, in addition to the technology, for the next steps in their scaling process,” said CIMMYT Scaling Coordinator Eva Marina Valencia Leñero. “It also intends to show that scaling is not only about focusing on where the innovation is ready or mature, but also whether there are enabling conditions – what we call scaling ingredients – surrounding this innovation that managers have to plan for if they want their innovation to last in the long-term.”

“Considering that the core of the tool was developed at a kitchen table with three people over two days with no funding, it is amazing that the tool has served more than 2,000 people in the last five years,” said Woltering. With support from GIZ, the Scaling Scan is now being digitized which allows for the development of different versions, for example one with more emphasis on social inclusion or on climate mitigation for the One CGIAR Low-Emission Food Systems (MITIGATE+) Initiative. The lessons from over five years of applying the Scaling Scan from rural areas in Honduras to Bangladesh are currently being written up.

Farmers in Zimbabwe embrace agroecology

Smallholder farmers display a range of small and large grains at the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Smallholder farmers in resource-poor communities of Zimbabwe and much of the Global South have been experiencing low crop productivity due to many factors, including inappropriate seeds and seed varieties, labor shortages, loss of agro-biodiversity, insufficient inputs, degrading soils, and recurrent droughts. These threats are now amplified by climate change.

This has resulted in broken food systems rendering food and nutrition insecurity commonplace. The One CGIAR initiative, Transformational Agroecology Across Food, Land, and Water Systems, led by the International Maize and Wheat Improvement Center (CIMMYT) in Zimbabwe, is designed to bring agroecological advances to smallholder famers in an effort to strengthen local food systems.

Smallholder farmers in the Mbire and Murehwa Districts of Zimbabwe were introduced to innovative agroecology interventions, premised on harnessing nature’s goods and services while minimizing adverse environmental impacts and improving farmer-consumer connectivity, knowledge co-creation, and inclusive relationships among food system actors.

Smallholder farmers register for the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove)

Farmer to farmer collaboration at seed fairs

In response to challenges related to lack of appropriate seeds and eroding agrobiodiversity and, as a way to transition prevailing food systems to more sustainable ones, farmers were invited to take part in seed fairs. The seed fair’s objective was to enable smallholder farmers to access improved and locally adapted seeds of food crops originating from the private sector and fellow farmers. In addition, the seed fairs provided a platform for learning about agroecological practices. Farmers were also given a chance to see different machinery that could aid in land, food, and feed preparation, and address their labor shortage challenges.

At the opening of the seed fair in Mbire, Dorcas Matangi, CIMMYT research associate, acknowledged that smallholder farmers operate in challenging and complex ecological, social, and economic systems and there is a need for interventions that address the natural resource base without ignoring the social and economic dynamics within communities.

“The communal culture of sharing and trading between community members can be capitalized on for a collective benefit, said Matangi. “One such case is through events such as seed fairs where we encourage farmers to showcase and sell seeds they know perform very well.”

She further explained to the participating farmers how increasing their crop diversity and using practices such as conservation agriculture techniques benefit the environment and improves food security and nutrition.

“I am grateful for these efforts,” said Grace Musandaira, supervisor of the Agriculture Advisory and Rural Development Service. “Our region is arid, and as such, it is very difficult for our farmers to achieve significant yields to assure them there is enough food for the year. In addition, the knowledge provision relating to preserving and improving agrobiodiversity through agroecological practices is set to improve rural livelihoods.”

Senzeni Nyagonye, a farmer in Mbire, said “This initiative is teaching and exposing us to so many new concepts such as conservation agriculture with mechanization. If we can apply conservation agriculture with the seeds we bought at this seed fair, we are optimistic about a great harvest.”

A total of 1,058 farmers attended two seed fairs in Mbire and Murehwa. Farmers had the opportunity to access a variety of crop seeds ranging from maize, to sorghum, millets, groundnuts, bambara groundnuts, and sunflowers. More than 200 farmers exhibited local seeds that were available for sale or exchange. Private seed companies also showcased and sold certified drought-tolerant maize, sorghum, bean and cowpea varieties.

“The seed fairs in Mbire and Murehwa were very successful”, said Matangi. “And we feel these efforts will serve as a useful case study to guide a national scale-up.”

For women in Ivory Coast, processing cassava no longer has to be a grind

Attieke is the national dish of Ivory Coast. Served with fried fish or a vegetable stew, this tangy, fermented side is the heart and soul of Ivorian cuisine. And because it’s made from cassava, attieke is gluten free. So, in addition to its status as an iconic food of hospitality from Abidjan to Yamoussoukro, attieke has the potential to catch on in distant locales.

Producing attieke is complicated—transforming tubers in the ground into a delicious bowl of couscous-like cassava involves harvesting, peeling, grinding, fermenting, pressing, and effectively storing the processed crop. And in Ivory Coast, this work is traditionally performed almost entirely by women.

A cooperative member processes cassava using a manual grinder. (Photo: Sylvanus Odjo/CIMMYT)

A grueling process

Traditional methods for processing cassava, however, are very slow and extremely laborious. “We had to use a wooden plank with nails [to grind cassava]”, said N’Zouako Akissi Benedicte, president of the local agricultural cooperative in Mahounou, Nanafoue, about 30 kilometers from the capital, Yamoussoukro. To remove the liquid from the ground cassava, Ivorian women used “a kind of screw press” that required so much strength that “it caused us pain in the chest.”

In addition to being painful and grueling, these manual methods are terribly inefficient, generating about 30 kilograms of product per hour. Benedicte said a worker could process very little cassava in a day’s work using this traditional approach. Limited physically by this hard manual labor and struggling to generate enough income to establish financial independence, women working in cassava production in Ivory Coast face difficult challenges.

Hydraulic cassava press. (Photo: Sylvanus Odjo/CIMMYT)

Lightening the load

Three years ago, things started to change for Benedicte and other women working in cassava production in her area. At that time, her cooperative partnered with the Green Innovation Centers for the Agriculture and Food Sector (GIC) of Ivory Coast to receive training to use hydraulic-powered cassava grinders and presses. These machines, which GIC helped design and adapt for the climate and cultural context of Ivory Coast, promised to significantly increase speed of production while making all aspects of cassava work more accessible to women. For instance, the grinding capacity of the equipment is around 600 kg/hr.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD no hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

Beyond helping Benedicte’s cooperative finance the purchase of the new machines and providing instruction in their use, GIC offered the agricultural cooperative a broad range of seminars on topics including selecting seed varieties, soil preparation, processing, and commercialization. This comprehensive approach set the women of Mahounou, Nanafoue up for success.

Gas powered mechanical cassava grinder in Mahounou, Ivory Coast. (Photo: Sylvanus Odjo/CIMMYT)

A message for my sisters

For Benedicte, the new grinder and press are making a huge difference. “The press with the hydraulic system is very efficient and we no longer need to use so much effort to remove the juice,” she said. According to Benedicte, workers in the cooperative are now processing up 1,000% more cassava per day and are only limited by the availability of raw material.

Better yield is also generating financial improvements for these women. “A woman who is working can buy her own machine and earn money that can be used for the education of her children,” Benedicte said. “I have a message for my sisters: a woman cannot solely depend on her husband and expect him to provide everything.”

GIC is working with 32 other groups like Benedicte in Ivory Coast, and the mechanization program has impacted the work of 1,000 women so far.

Taking the next step

There are still hurdles to overcome. In Mahounou, women producing cassava are relying on men to ignite the machines, and when a grinder or a press breaks down, it can be difficult to find spare parts. Benedicte believes electric machines could help solve both problems and take their business to the next level. “We would like to increase our production and sell it at an international level,” she said. “We would like to have a small processing unit here for women that could be used to produce high quality products for the international markets.”

GIC also has plans for a technology transfer that could reproduce this successful program in Malawi. Ivorian staff are collaborating with colleagues there to develop a cassava grinder and press for the Malawian context.

For Benedicte, there is more than food and income at stake in the success of these efforts. “It is important to be autonomous in taking charge of our own expenses,” she said. “This is being a woman. So, please, I invite my sisters to work.”

Cover photo: N’Zouako Akissi Benedicte, president of the local agricultural cooperative, with cooperative members and mechanical cassava grinders. (Photo: Sylvanus Odjo/CIMMYT)

Smallholder farmers embrace climate-smart seed and mechanization fairs

Farmers pose with the drought-tolerant seed of their choice at a seed fair in Masvingo district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

The long-term climate outlook for sub-Saharan Africa predicts more erratic rainfalls and higher temperatures. For this reason, the rapid uptake of measures to adapt to climate change within seed systems is of paramount importance. In Zimbabwe, the adoption of “climate-smart seed varieties”, environmentally-sustainable and scale-appropriate mechanization is critical to reaching zero hunger in the face of climate change. Farmers in Zimbabwe’s Masvingo district appear to have embraced this goal. More than 1,000 farmers participated in recent R4/Zambuko climate smart seed and mechanization fairs held in the region on October 11 and 12, respectively.

The fairs were organized by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with Zimbabwe’s Ministry of Lands, Agriculture, Fisheries, Water and Rural Development. Financial support was provided by the United States Agency of International Development (USAID), the Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP). With the onset of the 2022/2023 cropping season, the new OneCGIAR Ukama Ustawi initiative will build upon this work to reach thousands more farmers in the area.

One highlight of the fairs was a strong focus on smallholder mechanization, which saw Zimbabwean and international mechanization companies displaying their products. Each demonstrated two-wheel tractors and a range of attachments, from trailers to crop production and harvesting implements. In the words of the District Development Coordinator (DDC) Kenneth Madziva, “It’s important that farmers own machinery that is appropriate to their context as we now need to move into an era of high productivity and efficient post-harvest processing. We also see some of the machinery on display quite relevant for conservation agriculture practices which aligns with the government’s Pfumvudza program.” Mechanizing the manual basin planting system in Pfumvudza to ripline seeding will dramatically reduce the farm labor usually needed to dig the basins while maintaining the key principles of conservation agriculture: no-tillage, crop residue retention and crop diversification.

According to Madziva, “Such initiatives from partners are very welcome, as rural livelihoods are predominantly agriculturally based. There is need to rapidly transition our farmers from a donor dependence to self-sufficiency, hence I am impressed with the number of farmers I have seen buy seed with their own hard-earned money.” The fairs generally strive to achieve two goals: first, ensuring that farmers are well-informed about climate adapted varieties able to withstand climate challenges such as in-season dry-spells and/or heat stress, and, second, that they buy the improved seed directly from private sector partners.

Farmers observe a two-wheel tractor engine being used to power a maize sheller. (Photo: Tawanda Hove/CIMMYT)

It is hoped that increasing famers’ exposure to scale-appropriate mechanization will translate into increased purchases of the equipment and a move away from the drudgery of both draft or manual production and processing systems. Robin Vikström, the donor representative from WFP also stated that it is high time for smallholder farmer systems be intensified, and mechanization is one of the essential triggers of intensification.

Vikström, speaking on the significance of the events said, “Such initiatives are part of a broader national resilience building strategy where our intention is to enable smallholder farmers to deal with climate shocks and stresses through capacity development trainings, diversified crop production systems, effective and well-governed Income Savings and Lending groups (ISALS) and improved livestock. This is a step forward from our tradition of distributing food, which is still necessary in certain contexts, but has to be progressed to self-reliance. The seed and mechanization fairs facilitate stronger interactions between the farmers and the private sector and furthermore the procurement of the right seed and mechanization for their ecological region. More interaction translates to better product development and increased sales which is a win-win for all stakeholders concerned. This is a major step towards sustainable achievement of food and nutrition security.”

Concerning the long-term plan of the intervention, Vikström added, “The initiative is currently set to run until 2025 with plans already underway to expand to more wards and districts as the development strategy is proving to be yielding significant results.” The seed fairs resulted in the sale of approximately 1.9 metric tons of improved white and orange maize seed, generating over $6,000 in revenue for participating private sector vendors.

Christian Thierfelder, Principal Cropping Systems Agronomist at CIMMYT and Principal Investigator for the program said, “As we expanded this year to different wards, our objective was to first create an educational platform for farmers where farmers could learn more about the various stress-tolerant seed varieties with improved genetics available from the private sector. Secondly, we wanted to create a selling platform for the private sector where various companies could have their products made much more easily accessible to the smallholder farmers. I am happy that the private sector talked about conservation agriculture, which is an important new narrative. Farmers need to grow the right seed in a good agronomic environment for the crop to succeed.”

Although this crop season’s outlook is yet to be officially communicated to farmers, there is high anticipation for a bumper harvest through improved varieties and efficient, mechanized operations and farmers were eager to buy the right seed to reap the benefits of science in their own homestead.