Skip to main content

research: Maize

New CIMMYT maize hybrids available from Latin America breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in the tropical lowlands of Latin America and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities. In some countries, depending on the applicable regulatory framework for commercial maize seed, successful applicants may first need to sponsor the products through the national registration / release process prior to commercialization.

The deadline to submit applications to be considered during the first round of allocations is September 17, 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits Trial summary
Latin America Product Profile 1A

(LatAM-PP1A)

CIM19LAPP1A-11 Early-maturing, white, high-yielding, drought tolerant, resistant to MLB, TSC and ear rots FSR, GLS Appendix 1
CIM19LAPP1A-13

 

CIMMYT Latin America Stage 4 and Stage 5 Trials: Results of the 2019 and 2020 Trials and Product Announcement

Appendix 1: CIMMYT maize hybrids available under LatAM-PP1A

Appendix 2: Information on Latin America trial locations and management

Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal in English or Spanish.

APPLY FOR A LICENSE

Alternatively, applications may be submitted via email to GMP-CIMMYT@cgiar.org using the PDF forms available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)

FORM A – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO A – Solicitud para asignaciĂłn de productos mejorados de maĂ­z del CIMMYT)

FORM B – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO B – Solicitud para asignaciĂłn de productos mejorados de maĂ­z del CIMMYT)

 

When it comes to maize variety choices, can farmers have it all?

Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)
Farmer Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)

Smallholder farmers are often torn between maize seed varieties that have multiple desirable traits. Since they cannot always have it all — there are limits on what traits breeders can integrate in any given variety — they face the dilemma of which seed to pick at the expense of an equally desirable option.

Trait preference trade-offs among maize farmers in western Kenya, published in March 2021, provides evidence of this prioritization and seeks to help breeders, seed companies and other stakeholders set priorities that account for farmers’ needs and their willingness to make preference trade-offs. The researchers evaluated responses from 1,288 male and female farmers in the mid-altitude maize growing areas of western Kenya.

The study argues that farmer-centered seed systems (including seed companies) should be guided by farmers’ priorities and reflect a greater understanding of the tradeoffs these farmers make between traits and varieties. They have two key options, according to Paswel Marenya, the study’s lead researcher and adoption and impact assessment economist at the International Maize and Wheat Improvement Center (CIMMYT). The first involves prioritizing the critical must-have traits in any one variety. The second option entails having multiple varieties that meet diverse farmers’ needs and then segmenting the seed markets.

While Marenya argues that prioritization is important for balancing commercial realities and farmers’ diverse interests, he is quick to add that “market segmentation has limits imposed by the commercial viability of each segment.”

“At every turn, from breeding to farmer varietal preferences to seed company considerations, there have to be trade-offs, as one cannot keep segmenting the market forever,” Marenya said. “At some point, you must stop and choose what traits to prioritize in your breeding or commercially viable market segments, based on the most pressing challenges already identified.”

CIMMYT researchers conduct interviews in Kenya to determine farmer preferences for maize traits. (Photo: CIMMYT)

Differences in tradeoffs among men and women

From a gender lens, the paper reveals an obvious difference in tradeoffs made by men and women. Whereas the two groups desire some similar traits in their varieties of choice, women seem to be willing to make slightly larger yield sacrifices in favor of tolerance to drought and Striga and good storability. Women also valued good storability over 90-day maturity, while men appeared to place a higher value on the closed tip, a sign of resistance to moisture infiltration which causes grain rotting.

“These results imply that unless the risks of storage or pre-harvest losses are reduced or eliminated, the value of high yielding varieties can be diminished if they are susceptible to production stresses or the grain characteristics make them susceptible to storage pests,” the study states.

The study indicates that farmers may adopt stress tolerant and high yielding varieties with somewhat low storability only if advanced grain storage technologies are available.

Until then, the suggestion to policy makers responsible for maize breeding is to use “multi-criteria evaluations” of new varieties to ensure that traits for stress tolerance and storability are given optimal weighting in variety release decisions.

Additionally, information about farmer preferences should be fed back to breeding programs in national and international institutes responsible for maize genetic improvement.

Maize and wheat science to sustainably feed the world

As the world turns its attention to the policy-shaping discussions during this week’s Pre-Summit of the UN Food System Summit, the need for science and innovation to advance the transformation of food, land and water systems is clear.

The International Maize and Wheat Improvement Center (CIMMYT), with its 50-year track record of impact, success and high return on investment, is essential to these efforts.

Our new institutional brochure, Maize and wheat science to sustainably feed the world, links CIMMYT’s mission, vision and excellence in science to the urgent needs of a world where an estimated tenth of the global population — up to 811 million people — are undernourished.

CIMMYT is also a crucial wellspring of response capacity to CGIAR — the largest global, publicly funded research organization scaling solutions for food, land and water system challenges.

View and download the new CIMMYT Brochure.

View and download the new CIMMYT Brochure.Maize and wheat science to sustainably feed the world explains why we do what we do in light of these challenges.

  • CIMMYT leads maize and wheat research for food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.
  • Our research is focused on smallholder farmers in low- and middle-income countries and on improving the livelihoods of people who live on less than $2 a day.
  • CIMMYT science reaches them through innovation hubs, appropriate technologies, sustainable sourcing, and helps to address their needs and challenges through public policy guidance.

Applying high-quality science and strong partnerships, CIMMYT works for a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems.

Protecting plants will protect people and the planet

This story was originally published on the Inter Press Service (IPS) website.

Durum wheat field landscape at CIMMYT's experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat field landscape at CIMMYT’s experimental station in Toluca, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

Back-to-back droughts followed by plagues of locusts have pushed over a million people in southern Madagascar to the brink of starvation in recent months. In the worst famine in half a century, villagers have sold their possessions and are eating the locusts, raw cactus fruits, and wild leaves to survive.

Instead of bringing relief, this year’s rains were accompanied by warm temperatures that created the ideal conditions for infestations of fall armyworm, which destroys mainly maize, one of the main food crops of sub-Saharan Africa.

Drought and famine are not strangers to southern Madagascar, and other areas of eastern Africa, but climate change bringing warmer temperatures is believed to be exacerbating this latest tragedy, according to The Deep South, a new report by the World Bank.

Up to 40% of global food output is lost each year through pests and diseases, according to FAO estimates, while up to 811 million people suffer from hunger. Climate change is one of several factors driving this threat, while trade and travel transport plant pests and pathogens around the world, and environmental degradation facilitates their establishment.

Crop pests and pathogens have threatened food supplies since agriculture began. The Irish potato famine of the late 1840s, caused by late blight disease, killed about one million people. The ancient Greeks and Romans were well familiar with wheat stem rust, which continues to destroy harvests in developing countries.

But recent research on the impact of temperature increases in the tropics caused by climate change has documented an expansion of some crop pests and diseases into more northern and southern latitudes at an average of about 2.7 km a year.

Prevention is critical to confronting such threats, as brutally demonstrated by the impact of the COVID-19 pandemic on humankind. It is far more cost-effective to protect plants from pests and diseases rather than tackling full-blown emergencies.

One way to protect food production is with pest- and disease-resistant crop varieties, meaning that the conservation, sharing, and use of crop biodiversity to breed resistant varieties is a key component of the global battle for food security.

CGIAR manages a network of publicly-held gene banks around the world that safeguard and share crop biodiversity and facilitate its use in breeding more resistant, climate-resilient and productive varieties. It is essential that this exchange doesn’t exacerbate the problem, so CGIAR works with international and national plant health authorities to ensure that material distributed is free of pests and pathogens, following the highest standards and protocols for sharing plant germplasm. The distribution and use of that germplasm for crop improvement is essential for cutting the estimated 540 billion US dollars of losses due to plant diseases annually.

Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations. Human-driven climate change is the challenge of our time. It poses grave threats to agriculture and is already affecting the food security and incomes of small-scale farming households across the developing world.

We need to improve the tools and innovations available to farmers. Rice production is both a driver and victim of climate change. Extreme weather events menace the livelihoods of 144 million smallholder rice farmers. Yet traditional cultivation methods such as flooded paddies contribute approximately 10% of global man-made methane, a potent greenhouse gas. By leveraging rice genetic diversity and improving cultivation techniques we can reduce greenhouse gas emissions, enhance efficiency, and help farmers adapt to future climates.

A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)

We also need to be cognizant that gender relationships matter in crop management. A lack of gender perspectives has hindered wider adoption of resistant varieties and practices such as integrated pest management. Collaboration between social and crop scientists to co-design inclusive innovations is essential.

Men and women often value different aspects of crops and technologies. Men may value high yielding disease-resistant varieties, whereas women prioritize traits related to food security, such as early maturity. Incorporating women’s preferences into a new variety is a question of gender equity and economic necessity. Women produce a significant proportion of the food grown globally. If they had the same access to productive resources as men, such as improved varieties, women could increase yields by 20-30%, which would generate up to a 4% increase in the total agricultural output of developing countries.

Practices to grow healthy crops also need to include environmental considerations. What is known as a One Health Approach starts from the recognition that life is not segmented. All is connected. Rooted in concerns over threats of zoonotic diseases spreading from animals, especially livestock, to humans, the concept has been broadened to encompass agriculture and the environment.

This ecosystem approach combines different strategies and practices, such as minimizing pesticide use. This helps protect pollinators, animals that eat crop pests, and other beneficial organisms.

The challenge is to produce enough food to feed a growing population without increasing agriculture’s negative impacts on the environment, particularly through greenhouse gas emissions and unsustainable farming practices that degrade vital soil and water resources, and threaten biodiversity.

Behavioral and policy change on the part of farmers, consumers, and governments will be just as important as technological innovation to achieve this.

The goal of zero hunger is unattainable without the vibrancy of healthy plants, the source of the food we eat and the air we breathe. The quest for a food secure future, enshrined in the UN Sustainable Development Goals, requires us to combine research and development with local and international cooperation so that efforts led by CGIAR to protect plant health, and increase agriculture’s benefits, reach the communities most in need.

Barbara H. Wells MSc, PhD is the Global Director of Genetic Innovation at the CGIAR and Director General of the International Potato Center. She has worked in senior-executive level in the agricultural and forestry sectors for over 30 years.

CRP Maize Annual Report 2020

The CGIAR Research Program on Maize (MAIZE) is proud to release its 2020 Annual Report.

Read the 2020 MAIZE Annual Report

Read the 2020 MAIZE Annual Report

In 2020, faced with the extraordinary challenges posed by the COVID-19 pandemic, MAIZE continued its mission to strengthen maize-based agri-food systems while improving the food security and livelihoods of the most vulnerable, especially resource-constrained smallholder farmers and their families.

MAIZE and its partners made great advances in the development of improved stress-tolerant maize varieties, the battle against fall armyworm (including the announcement of three first-generation fall armyworm-tolerant maize hybrids), testing and promoting of conservation agriculture and sustainable intensification, and in deepening our grasp of how to best empower women in the quest for gender equality and social inclusion in maize-based agri-food systems.

Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR Consortium partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, South Asia and Latin America.

CIMMYT announces new Director General ad interim

Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with José Francisco Gutiérrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico's Guanajuato state.
Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with JosĂ© Francisco GutiĂ©rrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico’s Guanajuato state.

Today the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) announced leadership changes.

The Board approved the appointment of Martin Kropff, current Director General of CIMMYT, as Global Director of Resilient Agrifood Systems of CGIAR. He will play a critical role in enabling an effective transition to the new structure of CGIAR and implementing the CGIAR 2030 Research and Innovation Strategy. In this role, Kropff will be hosted by the CGIAR System Management Organization and will be based in Montpellier, France.

“We congratulate Dr. Kropff on his new position. We are convinced that he will bring to CGIAR the same excellence in science, innovation and effective management that he brought to CIMMYT,” said Board of Trustees Outgoing Chair Nicole Birrell, who completes her term in October this year.

“Through my tenure as CIMMYT Director General, we built a strong and committed team. I am sure that — with the support of the Management Committee, the Executive Committee, the Board, and the three CGIAR Science Group directors — the work of CIMMYT will find a good place in CGIAR,” said Martin Kropff.

New Director General ad interim

Effective July 1, 2021, in accordance with CIMMYT’s Constitution, the Board of Trustees appointed Bram Govaerts as CIMMYT’s Director General ad interim.

Govaerts has been part of the CIMMYT family since 2007. He is Chief Operating Officer and Deputy Director General for Research (Sustainable Production Systems and Integrated Programs) ad interim. He is also the director of CIMMYT’s Integrated Development Program.

Govaerts is renowned for pioneering, implementing and inspiring transformational changes for farmers and consumers in meeting sustainable development challenges. He brings together multi-disciplinary science and development teams to integrate sustainable, multi-stakeholder and sector strategies that generate innovation and change in agri-food systems.

“On behalf of the full Board, we want to thank Dr. Govaerts for his leadership and willingness to ensure that the Center, our research and our operations continue to run smoothly to serve our mandate and mission, as well as the broader One CGIAR vision,” said Board of Trustees Incoming Chair Margaret Bath.

“The world needs CIMMYT and our mission now more than ever, to respond to the challenges that are ahead. We are ready to take up this role, as CIMMYT has done ever since Norman Borlaug and his talented team started their work in the service of the poorest. Let us continue celebrating his legacy by generating further impact through our science,” Govaerts said.

Govaerts is the ninth Director General to serve since CIMMYT was founded in 1966.

Waging war against the fall armyworm

The fall armyworm is an invasive pest that eats more than 80 different crops, but has a particular preference for maize.

It is native to the Americas. It was first reported in Africa in 2016, and quickly spread throughout the continent. It reached India in 2018. It has since been reported in many other countries across Asia and the Pacific, and it reached Australia in 2020.

Millions of families in these regions are highly dependent on maize for their income and their livelihoods. If the fall armyworm keeps spreading, it will have disastrous consequences for them.

Scientists at CIMMYT have been working hard to find solutions to help farmers fight fall armyworm. Researchers have developed manuals for farmers, with guidelines on how to manage this pest. They have also formed an international research consortium, where experts from diverse institutions are sharing knowledge and best practices. Consortium members share updates on progress in finding new ways to tackle this global challenge. Scientists are now working on developing new maize varieties that are resistant to fall armyworm.

The fall armyworm can’t be eradicated — it is here to stay. CIMMYT and its partners worldwide will continue to work on this complex challenge, so millions of smallholder farmers can protect their crops and feed their families.

For more information on the fall armyworm and CIMMYT’s work, please visit staging.cimmyt.org/fallarmyworm.

Annual Report 2020 launched

We began 2020 with grim news of the COVID-19 pandemic spreading from country to country, wreaking havoc on national economies, causing countless personal tragedies, and putting additional pressure on the livelihoods of the poor and hungry.

The global crisis exposed the enormous vulnerability of our food system.

If we have learned anything from the past year, it is that we need to urgently invest in science for renewed food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.

During this time, the dedication and resilience of the CIMMYT community allowed us to continue making important advances toward that vision.

We hope you enjoy reading our stories and will join us in actively working towards resilience, renewal and transition in our agri-food systems, to ensure that they are strong in the face of current and future crises.

Read the web version of the Annual Report 2020

Download the Annual Report 2020 in PDF format

Download the financial report 2020

Hybrid seed production and marketing advances

“My goal is to produce and sell 200 metric tons of hybrid maize by 2025,” says Subash Raj Upadhyaya, chairperson of Lumbini Seed Company, based in Nepal’s Rupandehi district.

Upadhyaya is one of the few seed value chain actors in the country progressing in the hybrid seed sector, which is at a budding stage in Nepal. He envisions a significant opportunity in the domestic production of hybrid maize seed varieties that not only offer a higher yield than open-pollinated varieties but will also reduce expensive imports. Leaping from one hectare to 25 hectares in hybrid maize seed production within three years, Upadhyaya is determined to expand the local seed market for hybrids.

Nepal has long been a net importer of hybrid seeds — mainly rice, maize and high-value vegetables — worth millions of dollars a year to meet the farmers’ demand, which is continuously rising. Although hybrid varieties have been released in the country, organized local seed production and marketing were not in place to deliver quality seeds to farmers. The hybrid variety development process is relatively slow due to lack of strong public-private relationships, absence of enabling policies and license requirements for the private sector to produce and sell them, lack of suitable germplasm and inadequate skilled human resources for hybrid product development and seed production. This has resulted in poor adoption of hybrid seeds, especially maize, where only 10-15% out of 950,000 hectares of Nepal’s maize-growing area is estimated to be covered with hybrid seeds, leaving the balance for seeds of open pollinated varieties.

This is where experts from the International Maize and Wheat Improvement Center (CIMMYT) have stepped in to unlock the untapped potential of domestic maize production and increase on-farm productivity, which is currently around 2.8 metric tons per hectare. Aligning with the goals of the National Seed Vision (NSV 2013-2025), the USAID-funded Nepal Seed and Fertilizer (NSAF) project, implemented by CIMMYT, fosters private sector involvement in the evaluation, production and marketing of quality hybrid seeds to meet the growing domestic demand for grain production, which is currently being met via imports. In 2020, Nepal spent nearly $130 million to import maize grain for the poultry industry.

A graphic shows the Nepal Seed and Fertilizer (NSAF) project’s innovations and intervention in hybrid seed. (Graphic: CIMMYT)

Teach a man to fish

Strengthening and scaling hybrid seed production of different crop varieties from domestic sources can be a game-changer for the long-term sustainability of Nepal’s seed industry.

Through the NSAF project, CIMMYT is working with eight partner seed companies and three farmers cooperatives to produce seeds of maize, rice and tomato. CIMMYT has played a vital role in making suitable germplasms and market-ready products of hybrids sourced from CGIAR centers available to the Nepal Agricultural Research Council (NARC) and partner seed companies for testing, validation and registration in the country. But this alone is not enough.

The project also carried out the partners’ capacity building on research and development, parental line maintenance, on-station and on-farm demonstrations, quality seed production and seed quality control to equip them with the required skills for a viable and competitive hybrid seed business. The companies and farmer cooperatives received hands-on training on hybrid seed production and marketing coupled with close supervision and guidance by the project’s field staff assigned to mentor and support individual seed companies. CIMMYT’s NSAF project also provides financial support to selected hybrid seed business startups to enhance their technical and entrepreneurial skills. This is a new feature, as prior to the project starting nearly all of the seed companies were mainly involved in aggregating open-pollinated variety seeds from farmers and selling them with no practical experience in the hybrid seed business.

In 2018, CIMMYT, through the NSAF and Heat Stress Tolerant Maize for Asia (HTMA) projects, and in close collaboration with NARC’s National Maize Research Program, engaged its partner seed company to initiate the first hybrid maize seed production during the winter season. Farmers’ feedback on the performance of the Rampur Hybrid-10 maize variety showed it could compete with existing commercial hybrids on yield and other commercial traits. As a result, this response boosted the confidence of seed companies and cooperatives to produce and market the hybrid seeds.

“I am very much motivated to be a hybrid maize seed producer for Lumbini Seed Company,” said a woman hybrid seed grower, whose income was 86% higher than the sale of maize grain from the previous season. “This is my second year of engagement, and last year I got an income of NPR 75,000 (approx. USD$652) from a quarter of a hectare. Besides the guaranteed market I have under the contractual agreement with the company, the profit is far higher than what I used to get from grain production.”

To build the competitiveness of the local seed sector, CIMMYT has been mentoring partner seed companies on business plan development, brand building, marketing and promotion, and facilitating better access to finance. As part of the intervention, the companies are now selling hybrid seeds through agro-dealers in attractive and suitable product packages of varied sizes designed to help boost seed sales, better shelf life and compete with imported brands. They have also started using attractive seed packages for selected open-pollinated rice varieties in a bid to increase market demand. Prior to the project’s intervention, companies used to sell their seeds in traditional unbranded jute bags which are less suitable to maintain seed quality.

AbduRahman Beshir, NSAF seed systems lead, gives an explanation on CIMMYT’s hybrid maize seed interventions during a field visit in Nepal. (Photo: CIMMYT)

Unite and conquer

Encouraging public-private partnerships for seed production is crucial for creating and maintaining a viable seed system. However, the existing guidelines and policies for variety registration are not private sector friendly, resulting in increased informal seed imports and difficulty to efficiently run a business. This draws attention to conducive policies and regulations patronage in research and varietal development, product registration, exclusive licensing, and seed production and marketing by the private sector.

CIMMYT supports the Seed Entrepreneurs Association of Nepal (SEAN), an umbrella body with more than 2,500 members, to promote the private sector’s engagement in the seed industry and foster enabling policies essential to further unlock Nepal’s potential in local hybrid seed production and distribution. Together, CIMMYT and SEAN have facilitated various forums, including policy dialogues and elicitations on fast track provision of R&D license and variety registration by the local private seed companies. These are vital steps to realize the targets set by NSV for hybrid seed development and distribution.

To further enhance linkages among seed sector stakeholders and policy makers, CIMMYT, in coordination with NARC’s National Maize Research Program, organized a high-level joint monitoring field visit to observe hybrid maize seed production performance in April 2021. As part of the visit, Yogendra Kumar Karki, Secretary of the Ministry of Agriculture and Livestock Development, accompanied by representatives from the National Seed Board, National Planning Commission, Ministry of Finance, NARC, Seed Quality Control Center and SEAN, interacted with seed grower farmers and seed companies on their experiences.

The trip helped build a positive perception of the private sector’s capability and commitment to contribute to Nepal’s journey on self-reliance on hybrid seeds. “The recent advances in hybrid seed production by the private sector in collaboration with NARC and NSAF is astounding,” said Karki, as he acknowledged CIMMYT’s contribution to the seed sector development in Nepal. “Considering the gaps and challenges identified during this visit, the Ministry will revisit the regulations that will help accelerate local hybrid seed production and achieve NSV’s target.”

In continued efforts, CIMMYT is also partnering with the government’s Prime Minister Agricultural Modernization Project (PMAMP) maize super zone in the Dang district of Nepal to commercialize domestic maize hybrid seed by partner seed companies. This will enable companies to invest in hybrid maize seed production with contract growers by leveraging the support provided by the PMAMP on irrigation, mechanization and maize drying facilities.

“Our interventions in seed systems integration and coordination are showing very promising results in helping Nepal to become self-reliant on hybrid maize seeds in the foreseeable future,” said AbduRahman Beshir, seed systems lead for the NSAF project. “The initiative by the local seed companies to further engage and expand their hybrid seed business is an indication of a sustainable and viable project intervention. The project will continue working with both public and private partners to consolidate the gains and further build the competitiveness of the local seed companies in the hybrid maize seed ecosystem.”

Nepal’s seed industry is entering a new chapter that envisages a strong domestic seed sector in hybrid seed, particularly in maize, to capture a significant market share in the near future.

From science to impact: a chat with women scientists at CIMMYT

At the International Maize and Wheat Improvement Center (CIMMYT), staff are one of our most important assets. We anchor our commitment to diversity and inclusion through our vision, mission and organizational strategy. We interpret workplace diversity as understanding, accepting and valuing all aspects of one’s identity, including gender.

Scientists such as Itria Ibba, head of the Wheat Chemistry and Quality Laboratory, Thokozile (Thoko) Ndhlela, maize line development breeder, and Huihui Li, quantitative geneticist, empower the rest of the maize and wheat research community to do more for those who need sustainable food systems the most.

It wasn’t easy to find a convenient time for the four of us to have a conversation — me, because of COVID-19 travel restrictions, from the Netherlands, Itria in Mexico, Thoko in Zimbabwe and Huihui in China – but we managed. I enjoyed hearing about their work, what sparked — and continues to spark — their passion for maize and wheat research and had the chance to share some thoughts about where the CGIAR transition is taking us.

Martin Kropff, Itria Ibba, Thoko Ndhlela and Huihui Li share a discussion over Zoom. (Photo: CIMMYT)

Martin Kropff: Hello Itria, Huihui and Thoko, great to see you! I’d love to hear more about what you do. Why do you think your work is important in this day and age?

Itria Ibba: Hello Martin! I lead the [CIMMYT] Wheat Chemistry and Quality Laboratory. I am very passionate about my work, which I believe is very important.

In the lab we work both on the improvement of wheat technological and nutritional quality. Both of these aspects are fundamental for the successful adoption of a wheat variety and, of course, to promote a healthy and nutritious diet. Development of nutritious varieties is especially important because — especially in developing countries — the basic diet doesn’t provide all the micro and macronutrients necessary to live a healthy life. Since my focus is wheat, a staple crop that is mainly used for human consumption, I think the work that I am doing can actually have a direct and real impact on the lives of many people.

Kropff: It is important that you — on the quality side of the work — can give feedback to the breeders, and they listen to you. Is it happening?

Ibba: I believe that yes. Of course, quality cannot be the only target in the selection process where several other traits such as yield potential, disease resistance and tolerance to abiotic stresses have to be considered. However, especially for wheat, quality needs to be considered because it is strictly associated with the economic value of a specific variety and plays a fundamental role throughout the whole wheat value chain. The feedback we are giving is being taken positively. Of course, it could be ‘heard’ more.

Kropff: If I may ask, do you think you’re being treated as a scientist regardless of your gender? Or does it matter?

Ibba: Personally, I have always felt that I was respected, in my lab and in my team, especially at CIMMYT. At the beginning, I had some concerns because I am a bit young
 Mainly because of that, yes, but not because I am a woman. I cannot say anything bad from that perspective.

Kropff: I think that young people must have the future in our organization. Sometimes when people get older — I try not to be like that, but I am also getting older — they think that they know everything and then you have to be very careful, because the innovations are mostly coming from young people. But young minds come up with new ideas. What about your work, Huihui? You are contributing in a completely different way than Itria and Thoko, and you are coming from a mathematical point of view. When I see you, I always think about math.

Li: Yes, due to my major, sometimes I feel like I am a stranger working in an agricultural research organization. Because I can’t breed new varieties, for example. So, what’s my position? I ask myself: how can I have a successful career in agriculture? But I think that in this new era, this new digital era, I can do more.

Kropff: Data, data, data!

Li: Yes! We can do smart agriculture based on big data. We can do a lot of things with prediction, so that breeders can save time and effort. Maybe we cannot breed the varieties directly or we cannot publish our new findings in high impact journals, but we can play an essential role for this work to be successful. I think that’s my added value: to be useful to breeders.

Kropff: And you are! Thoko, what about you?

Ndhlela: I’m a maize breeder. I’m responsible for two product profiles in southern Africa and these are extra early, early and nutritious maize. I feel like my work is very important, given that I am focusing on developing and deploying nutritious and stress-tolerant maize varieties to people who rely on maize as a staple food crop. White maize is the one that is mainly consumed and yet it doesn’t contain any of the micronutrients such as vitamin A, zinc, iron. We are working towards closing that gap where people have limited or no access to other foods that contain those micronutrients. If we provide them with maize that is nutritious, then we close that gap and addressing the issue of malnutrition. It is especially critical, for young children. According to UNICEF, 53% of the mortalities in children globally are due to micronutrient deficiencies. My work aims to address to a greater extent the problems that farmers face.

Thoko Ndhlela presents on provitamin A maize at a CIMMYT demonstration plot in Zimbabwe. (Photo: CIMMYT)

Kropff: Are you working on provitamin A maize?

Ndhlela: Yes!

Kropff: It’s orange right? How are consumers adopting it? Does that require extra marketing activities?

Ndhlela: Yes, because in most countries where maize is a popular staple food, people use yellow maize mostly for livestock feeds. But when it comes to the main food, they mainly use white maize. So there has to be that extra effort. We have been working with HarvestPlus on that front, and so far in southern Africa we’ve made good strides in terms of getting people to accept the maize.

Back in the day, when they were first introduced to the idea of eating yellow maize as main food, that maize came from food relief and not in a good state, so there was that negative attitude, which they remembered when we came in with vitamin A maize [which has a yellow color]. We told them, “This is different” and the fact that we did demos, they grew the maize, they harvested and consumed it, led to their acceptance of it. Right now, we have so much demand for seed, especially across southern Africa. Seed companies that we work with say that the seed is sold out and people are still looking for it.

Kropff: I’m very happy to hear this. We have to make sure that what we do is demand-driven, right? And on your role as a woman in research in Zimbabwe. Do you feel like you are taken seriously as a scientist?

Ndhlela: I really do, yes. I am really given space to be myself, to do my work and have that impact on the ground.

Ibba: Martin, I have a question regarding One CGIAR. Will there be any changes within CIMMYT regarding redistribution of research areas? Will some of the research areas change the research focus or implement new research groups and strategies?

Kropff: I could talk for five hours about this. CGIAR has big plans to change the structure, to change the initiatives, to change everything this year.
I believe that CIMMYT is strong, we have a lot of impact. The quality of our work is really high, and I want to make sure that CIMMYT’s work — your work — finds a solid landing in the new CGIAR.

They’re envisioning a restructuring in three large science groups. Several Directors General suggest that we shouldn’t start breaking everything up but that we take whole programs as we have them now and bring them into the new science groups. It’s complicated but everyone wants the CGIAR to be successful.

In terms of research, what we do as CIMMYT already provides solutions, for example, the Integrated Development Programs, such as CSISA, MasAgro, SIMLESA. This has now been taken over by the whole CGIAR. These are programs where you work with national systems and you look at what is important to them, and where innovation is needed. Not focusing on single solutions but integrated solutions from different disciplines. When the research needs come directly from the stakeholders, we become more demand-driven. And that makes life even more exciting.

I think that when we listen to our stakeholders, there will always be a maize and wheat component [in agricultural research]. When we interviewed them in 2020, they stated that things [that are on top of their wish list for agricultural research and development are] breeding, agronomy, big data, and wheat, maize and rice.

I always say: what we need is food systems that deliver affordable — you said it already, Thoko — sufficient and healthy diets produced within planetary boundaries. And for all those criteria, wheat and maize are key because they are efficient, they are produced very well, they provide a good basis of nutrition, and you can produce them within planetary boundaries.

But, back to you. Could you share a story or anecdote about a turning point or defining moment in your work?

Ibba: Personally, I’ve had different turning points that led me to this career but I believe that one of the most important moments for me was when I started my PhD in Crop Science at Washington State University. There for the first time in my scientific career I understood the importance of working together with breeders, molecular scientists, cereal chemists and even with food companies in order to deliver a successful product from farmers all the way to consumers. The research done there had a real impact that you could see and I loved it. Also for this reason, I am happy to now work at CIMMYT because this happens here, as well, but at a bigger scale. You can clearly see that the work and research you do are directly used and go into new wheat lines and new varieties which are grown by different farmers across the world. It’s amazing. That’s what I think had a bigger impact for me.

Itria Ibba presenting on wheat quality in her lab at CIMMYT HQ, Mexico. (Photo: CIMMYT)

Ndhlela: I think the biggest moment in my work was when I was first employed as a scientist at CIMMYT. I always looked at CIMMYT scientists as role models. I remember many times that CIMMYT jobs were being advertised for technicians, and people would say, “Oh, this is yours now!” and I told them, “No, no, no, I will only join CIMMYT as a scientist.” And I waited for that moment. And it came and was a turning point in my career and I really thought that now I can express myself, do my work without limitations. And to reach impact!

Another great moment in my work is when I hear that hundreds of farmers are growing and consuming the varieties that I am involved in developing and deploying. I really want to hear people talking of impact: how many tons of certified seed is being channeled from seed companies to the growers, and how many peoples’ lives are we improving. I think that really defines my work. If the varieties don’t get to the farmer, then it is just work going to waste.

Li: Sometimes I feel inferior because I can’t breed a variety, or have big papers in agriculture-related journals, but one day I looked up my citation of my publications and I felt self-satisfied. I could feel my impact. Actually, several of my papers are highly cited; my total citation is more than 3,000 right now.

Kropff: Oh good!

Li: Yes! That means that my work has impact and many people are using the algorithm I developed to have even more impact. Papers that cite my work are published in Science and Nature, Nature Genetics, etc. I feel useful and like my work plays an essential role in research.

Kropff: That’s the thing: there’s impact in science and impact in farmers’ fields and at CIMMYT it comes together. Colleagues at CIMMYT are taking your results and using them to make a difference through crop variety improvement and other things.

Ndhlela: How do you think that One CGIAR will help strengthen our research towards the Sustainable Development Goals across the geographies where we work?

Kropff: I have always promoted the idea of ‘One CGIAR’. Even before joining CIMMYT. But it is complicated because we’re bringing 13 CGIAR Centers together. I saw it at Wageningen University: when you have one organization, you can be so much stronger and more visible, globally.

Because together we [One CGIAR] are the global international organization for agricultural research. We add something [to our global partners such as] the Food and Agriculture Organization of the UN (FAO) which works on agricultural policy, and IFAD that has international development programs and World Food Programme which delivers food — most of it staple crops — to those who need it the most. But supplying food is not a sustainable approach, we want to have sustainable food systems in those countries, so that people can produce their own food. That’s where research is necessary, and knowledge is necessary.

I am super proud that the wheat and maize and agronomy work we do is so well adopted. Farmers are adopting our varieties across the globe. These are new varieties I’m talking about — this is key — which are on average 10 years old and they respond to current challenges happening on the ground. Regarding your work, Thoko, with maize, I just got data from Prasanna [CIMMYT’s Maize Program and CGIAR Research Program on Maize Leader, Prasanna Boddupalli] that farmers are growing drought-tolerant maize and other maize varieties from CIMMYT on 5 million hectares in eastern and southern Africa! All of this is because of a good seed systems approach with the private sector: small seed companies delivering our varieties scaling our great breeding work. Taking it to the farmers!

I think that the work that we do is super important to reach the Sustainable Development Goals. Number one —– well, it’s number two, but for me it is the first —– is ending hunger. Because when you’re hungry, you cannot think or live normally. Poverty is also an incredibly important challenge. But I would put hunger as number one. I don’t think any of us here have had real hunger. My parents did, in the Second World War and let me tell you, when I heard those stories, I realized that that’s something that nobody should go through.

Climate change as well. We have to keep innovating because the climate keeps changing. I was just reading today in a Dutch newspaper that 2 degrees won’t be reached, it will be more. And in the Netherlands the land is so low, so that even with dykes, we will not be able to manage in the next 50 years. People will have to start moving. In the Indo-Gangetic Plains, they’ll have to plant short duration rice, use smart machinery such as the Happy Seeder, then plant short duration wheat — all just to stay ahead of the looming 50 ˚C weather.

Do you agree?

Ibba: Well, yes, but I hope that in the end there will be good coordination between the CGIAR Centers and everything. But if it works well, then I definitely think that it will be more impactful. That’s for sure.

Kropff: What can supervisors and mentors do to encourage women in science careers?

Li: I think this is a good question Martin. I am sure that Itria and Thoko will agree with me: women need more than just our salary. I think that women are more emotional, so, most of the time, when my supervisor is more considerate and careful in regard to my emotions, I feel touched and actually, more motivated. I simply need more consideration, emotionally. I have some experience in this with students [who work for me]. When I want to stimulate their motivation, I compare the two effects. Say, I increase their salary. I feel that the male student is happier than the female. [Laughs] On the other hand, I try to be more considerate with all of my students and ask them about their families or express concern about something. When I do this, I don’t get much of a reaction from the males but the females are grateful. I think the same works for me.

Huihui Li at work in her lab in China. (Photo: CIMMYT)

Kropff: I always intend to treat everyone equally and I think I do. But then some people need to be treated differently. That is situational management based on the capabilities and also the personality of people. Do we have to be more mindful of how one works with women?

Li: Well, people are diverse.

Kropff: Right. On the one hand, people should be treated as they want to be treated based on their individual personality, and then on the other hand you want to make sure that women are taken as seriously as men in, say, science.

Ndhlela: I agree with Huihui. Supervisors should give maximum support to women because they already have full plates. The field of science is challenging, so if they feel that they’re not being given enough support, they tend to get discouraged and demoralized. So, supervisors and colleagues need to take that into account. Like Huihui said, women are more emotional than our counterparts. And they need that support. When dealing with women in a professional setting, supervisors could take a visionary style where they give us space to work and do our assigned duties without a lot of interference. Micromanagement is frustrating. From my experience, women in science are serious and they can work with minimum supervision and they are really out there to achieve objectives.

Ibba: I agree with both of you. Space and trust, and constructive criticism. Apart from the strength and support from one’s supervisor, it would be good to implement a mentorship program for young scientists. Sometimes you need a non-supervisor voice or someone that can guide you [who you do not report to]. Human Resources also need to play a key role in supporting women and men, and ensuring zero discrimination. But I’m sure that all we really want is to be treated as humans [laughs]. We all have emotions.

Kropff: Thank you very much colleagues for this open discussion. This has been very interesting and given me a lot of food for thought. Our conversation makes me miss pre-COVID-19 informal moments at work and at conferences, social moments where people open up. But here we show, we can do that during Zoom meetings as well with videos on to read each other’s body language and with groups that are small. Thank you for the inspiration!

Hands-on experience in seed production

AbduRahman Beshir, CIMMYT seed systems lead, explains the stages of hybrid seed production to postgraduate students at a field trip in Rupandehi, Nepal. (Photo: Bandana Pradhan/CIMMYT)

Recently, a group of 40 postgraduate students from Nepal’s Agriculture and Forestry University (AFU) were able to learn first-hand about hybrid maize seed production in a field site managed by a partner seed company of the International Maize and Wheat Improvement Center (CIMMYT). Bringing in a whole new and rare experience altogether, the students got a glimpse of the progress and challenges of the seed industry as of today.

The field trip followed the development of a revised curriculum for AFU’s Seed Science and Technology program, initiated in November 2019, which stresses the importance of creating linkages between university students and private seed companies. Through the USAID-supported Nepal Seed and Fertilizer (NSAF) project, CIMMYT is working towards enhancing partnerships between agricultural universities and the seed industry, and revisiting the curriculum has been the first stepping stone.

In collaboration with AFU and Lumbini Seed Company, CIMMYT organized an off-campus participatory learning experience to enrich students’ understanding of hybrid seed production initiatives by the private sector and the opportunities that lie in the various business models of Nepalese seed companies. The initiative is part of a concerted effort by CIMMYT and its partners to alleviate the critical limitations of skilled manpower in the industry.

Subash Raj Upadhyaya, managing director of Lumbini Seed Company, shares his experience in hybrid seed production during the field visit. (Photo: Bandana Pradhan/CIMMYT)

A deep dive into hybrid seed

The program began with an on-site briefing on the recent developments of hybrid seed production by the private sector.

“Nowadays, farmers are increasingly demanding hybrid seeds over open-pollinated varieties due to their higher yields,” explained Subash Raj Upadhyaya, Managing Director of Lumbini Seed Company. This seed demand is almost entirely met via imports.

Since 2018, the company has been successful in producing and marketing hybrid maize seed such as Rampur Hybrid-10, a variety originally sourced from CIMMYT and released in Nepal by the National Maize Research Program with technical and financial support from the NSAF project. Going from one hectare to 25 hectares of hybrid maize seed production in the course of three years, Lumbini Seed Company has demonstrated the capability of local private seed companies building up the country’s capacity in this area.

“The collaboration between public and private seed stakeholders is helping Nepal to realize hybrid seed self-reliance in the foreseeable future,” explained AbduRahman Beshir, seed systems lead for the NSAF project at CIMMYT. “What is needed is competitive products augmented by quality seed production and effective marketing strategies.”

Beshir described the important stages of seed production and the components of robust seed systems, while Hari Kumar Shrestha, a seed systems officer at CIMMYT, detailed the requirements for quality seed production and certification of hybrid seeds as per government guidelines in Nepal. Participating students were then able to practice detasseling and roughing off-type plants from a single row in a hybrid maize production field, under the guidance and supervision of the team from CIMMYT and the seed company.

This was followed by an interactive discussion with representatives from Lumbini about their activities, developments and limitations, and a tour of the company’s seed processing, laboratory and storage for the group to observe the techniques used to produce, maintain and market quality seeds.

Postgraduate students observe the tassels of maize plants in Rupandehi, Nepal. (Photo: Bandana Pradhan/CIMMYT)

A nourishing experience

Applying the theoretical learnings of plant breeding and agronomy courses in a practical setting was an eye-opener for the postgraduates.

Student Sadhana Poudyal shared how the event had boosted her confidence in performing critical activities such as identifying the key features of pollen and seed parents. Now majoring in Seed Science and Technology, Poudyal previously worked with the Nepal Agriculture Research Council (NARC) and was granted a scholarship by CIMMYT, through the NSAF project, to begin a postgraduate program in 2019. “I was fascinated to learn about the remarkable progress made in hybrid seed production and I feel motivated to work in this sector in the future,” she said. Poudyal plans to use these learnings during her research into baby corn at NARC after completing her studies.

“I have always been keen on learning plant genetics and breeding as I foresee a good scope in this area,” said Lokendra Singh, another student at AFU. “This trip was definitely insightful, and I thoroughly enjoyed receiving a practical lesson on the advantages and limitations of the various types of hybrids including single and three-way cross hybrids. Today’s experience has doubled my enthusiasm to work as a plant breeder after my graduation.”

It is critical to engage students on the recent advances in seed science so that they are encouraged to pursue a career in agricultural research in Nepal. “One of the major challenges is recruiting a workforce with critical skills and knowledge in the local seed industry since many students go abroad after they graduate,” said Upadhyaya. “We look forward to partnering with agricultural universities for many similar on-site learnings.”

Educational experiences in the field, such as this, provide a better picture of the recent advancements and limitations in the seed sector which are usually not reflected in the textbooks. Creating a larger pool of skillful human resources, particularly in hybrid product development, improved seed production technologies and quality seed production, will not only help strengthen the local seed industry but also reduce the country’s dependency on imports in the coming years.

AAA drought-tolerant maize now available in Myanmar

This month smallholder farmers in Myanmar’s central dry zones will be able to access drought-tolerant hybrid maize for the first time. The variety, known as TA5085, was jointly developed by the International Maize and Wheat Improvement Center (CIMMYT) and Syngenta, and has been commercially registered as ASC 108 by Ayeryarwady Seed in Myanmar. An initial, two-acre seed production pilot by Ayeyarwady Seed resulted in a yield of 1.2 tons per acre.

TA5085 was developed as an International Public Good as part of the decade-long Affordable, Accessible, Asian (“AAA”) Drought-Tolerant Maize project, a public-private partnership between CIMMYT and Syngenta and funded by the Syngenta Foundation. The project aims to make tropical maize hybrids accessible to Asian smallholders, especially those producing under rain-fed conditions in drought-prone areas.

An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)
An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)

“AAA maize is not just a product,” said B.S. Vivek, regional maize breeding coordinator and principal scientist at CIMMYT. “The development of affordable and accessible drought-tolerant maize hybrids helps drive the maize seed market in underserved maize markets in Asia.”

TA5084, the previous iteration of this variety, was first commercialized in central India, where climate change is driving rising temperatures and increasingly erratic rainfall. From 2018 to 2020, TA5084 adoption in the region grew from 900 to 8,000 farmers. In 2020, 120 metric tons of AAA-maize were planted on 6,000 hectares in central India. Farmers who switched to TA5084 earned an average of $100/ha more than those using conventional maize.

“Despite the unprecedented challenges we all faced in 2020, AAA hybrid maize sales more than doubled from the previous year, to 120 tons,” said Herve Thieblemont, head of Seeds2B Asia and Mekong Director at the Syngenta Foundation. “I’m delighted to report that the second country to introduce AAA maize is Myanmar. Our local seed partner Ayeyarwady Seed recently completed the registration and will proceed with the first sales this coming season.”

The AAA initiative is one of the few examples of a public-private partnership delivering International Public Goods benefiting smallholders in central India and now Myanmar. The chosen regions are rainfed and drought-prone. Seed marketing in these regions is considered risky and unpredictable, disincentivizing multinationals and large seed companies from entering the market.

Beneficial bioactives

Popular starchy staples maize and wheat provide more than simple dietary energy, but they are often found at the center of debates around the excessive consumption of carbohydrates.

While the nutrient contribution of whole grains is commonly emphasized in dietary guidelines, the milling and subsequent processing of cereal products tends to reduce or remove much of the important protein, fat, vitamin and mineral content, and in recent years there has been increasing concern about the ultra-processing of cereal-based food products containing noxious dietary components that exacerbate the occurrence of non-communicable diseases.

For these reasons — and because of the focus on energy content — maize and wheat are not often considered to be among the categories of “nutrient-rich” foods that can contribute to reducing micronutrient malnutrition. Consequently, it is unsurprising that a popular perception that cereals make a limited contribution to nutritious diets persists. This view has not been successfully challenged by a necessarily nuanced understanding of the complex role of cereals, and particularly the carbohydrate fractions, in human nutrition.

“In addition to the hidden micronutrients, there is sound scientific and popular awareness of the importance of some dietary components such as dietary fiber,” says Nigel Poole, Emeritus Professor of International Development at the School of Oriental and African Studies (SOAS).

“Though there is as yet imperfect scientific understanding and public awareness of the carbohydrates which make up dietary fiber,” he explains, “biomedical research continues to highlight the importance of carbohydrates in health and well-being. Moreover, there is a need for further knowledge on the nature and roles of many other bioactive food components that are not usually considered to be nutrients.”

These bioactives are substances such as carotenoids, flavonoids, and polyphenols. Most of the beneficial effects of the consumption of whole grain cereals on non-communicable diseases are currently attributed to the bioactive components of dietary fiber and the wide variety of phytochemicals.

A growing body of evidence from cereal chemistry, food science and metabolic studies shows that the bioactives in cereals are important for nutrition, health and well-being. In a new working paper authored in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), Poole demonstrates that there is considerable potential for plant breeding strategies to improve these elements of grain composition. This could be done through exploiting natural variation, genetic and genomic selection methods, and mutagenesis and transgenesis in order to modify cell wall polysaccharides, and specifically to improve the starch composition and structure in breeding material through natural and induced mutations.

Rebalancing the agri-nutrition research agenda, Poole argues, is necessary in order to explore, explain and exploit the contribution to diets of hitherto less-researched nutrient-dense crops and other foods. Nevertheless, because of the quantities in which cereals are consumed, the nutritional contribution of cereals in addition to energy complements the consumption of micronutrient-rich fruits, vegetables, nuts and pulses in diverse diets.

To leverage the bioactive content of cereals — including dietary fiber — as well as the macro- and micronutrient content, a comprehensive approach to food and nutrition systems from farm to metabolism is needed, spanning research disciplines and food systems’ stakeholders throughout the agri-food industries, and embracing policy makers, nutrition advocacy, and consumer education and behavior change.

Read the full working paper: Food security, nutrition and health: Implications for maize and wheat research and development

Nigel Poole conducted research for this paper during a year-long Visiting Fellowship at CIMMYT, with support from scientists at the institution.