Skip to main content

research: Genetic resources

China calls on G20 to support CGIAR to boost global food security

Representatives from the G20 Foreign Ministers’ meeting on July 7-8. (Credit: Antara Foto/Pool/Sigid Kurniawan/rwa.)

The G20 Foreign Ministers’ meeting held on July 7-8 in Bali saw Chinese State Councillor and Foreign Minister, Wang Yi, highlight support for CGIAR as part of a proposed cooperation initiative to boost global food security.

Foreign Minister Wang Yi highlighted the need to help CGIAR increase innovation and build cooperation on agricultural science and technology among countries. Addressing the meeting, Wang said the food and energy sectors are crucial for the healthy performance of the world economy and the effective implementation of the UN 2030 Agenda for Sustainable Development. 

His statement was made shortly before the signing of Letters of Intent for Cooperation between the Chinese Academy of Agricultural Sciences (CAAS) and two CGIAR Research Centers, the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI).  

CIMMYT, IRRI and CAAS intend to establish a joint Center in Hainan to address global food security through advances in wheat and rice breeding. The collaboration aims to enhance the environmental sustainability of rice and wheat based agri-food systems, promote biodiversity conservation, combat climate change, and improve the health and welfare of growers and consumers. 

Jean BaliĂ©, Regional Director, South East Asia and Pacific, CGIAR, and Director General of IRRI said: “Our new agreement solidifies and updates a longstanding and fruitful partnership. Today we face a different and growing set of challenges to our food, land and water systems, and we welcome the opportunity to strengthen knowledge and information exchange from across CGIAR that will contribute to a transformation of global food, land and water systems.” 

CIMMYT Director General, Bram Govaerts added: “This state-of-the-art breeding center will help us develop and deploy the new nutritious, high-yielding and resilient varieties that Asian farmers need to feed and nurture the most populous region of the world sustainably or within planetary boundaries.” 

In three decades of collaboration, CAAS and CGIAR have cooperated on germplasm exchange, breeding new varieties of crops, and providing opportunities for staff collaboration, development and training. 

In wheat research, the partnership has added as much as 10.7 million tons of grain – worth $3.4 billion – to China’s national wheat output. Additionally, eight CIMMYT scientists have won the Chinese Friendship Award – the highest award for foreign experts who have made outstanding contributions to China’s economic and social progress. 

A reaffirmation of Chinese support for CGIAR comes on a tide of growing recognition that more investment is needed to tackle hunger.  

Earlier in the year the G7 Foreign Ministers’ Communiqué underlined the urgent need to address risk in global food systems citing this as a top foreign policy objective. At the same time, the G7 Agricultural Ministers Communiqué cautioned that slowing down work to address longer term goals of food systems transformation, in order to address short term food crises, will have negative consequences in the medium and long term. In this context CGIAR’s System Board Chair, Marco Ferroni, recently highlighted the need for world leaders to look at the big picture to solve the food crisis.

Untapped potential of genome-edited crops explored in new research

Analysis of evidence by scientists of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR concludes that the scientific risks of genome editing are similar to those of traditional breeding: all new varieties, however developed, need to be tested for agronomic performance in a range of environments.

Social risks are mainly that these powerful technologies may be rendered inaccessible to less-commercial crops and farmers if intellectual property (IP) and regulatory policies make them expensive or difficult to use.

Genome editing has demonstrated potential to contribute to food security, improved nutrition, and value addition for farmers and consumers.

Many countries are still uncertain about whether to grow, or if and how to regulate genome-edited crop varieties. The Court of Justice of the European Union (CJEU) has stated that genome-edited crops should be considered as transgenics in the EU for regulatory purposes, a decision that could limit their use in Africa. On the other hand, several countries, including USA, Canada, Brazil, Colombia, Argentina, Chile, Kenya, Nigeria, Israel, India, and Japan have determined that genome-edited crops should not be regulated like transgenics if they do not contain foreign DNA.

Policies should enable choice and avoid the risk that genome editing technologies for crops benefit only those who can pay premium price. Smallholder farmers should have equal access to advanced technologies, should they wish to use them, as well as relevant and objective information about their value and how to use them.

Read the full study: Genome-edited crops for improved food security of smallholder farmers

CIMMYT Position Statement on Novel Genome Editing Technologies in Crops

China to build international agricultural breeding center in Hainan

The Chinese Academy of Agricultural Sciences (CAAS), the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI) are establishing a breeding center in Sanya, Hainan Province, China.

The international cooperation will be conducive to the exploration and utilization of germplasm resources of the research organizations, biological breeding research, technical training, and the innovation of the global seed industry.

Read more: https://english.news.cn/20220714/df773960de9f42ba898341e27cdb3f09/c.html

CRISPR, 10 years on: Learning to rewrite the code of life

In just a decade, CRISPR has become one of the most celebrated inventions in modern biology. It is swiftly changing how medical researchers study diseases: Cancer biologists are using the method to discover hidden vulnerabilities of tumor cells. Doctors are using CRISPR to edit genes that cause hereditary diseases.

But CRISPR’s influence extends far beyond medicine. Evolutionary biologists are using the technology to study Neanderthal brains and to investigate how our ape ancestors lost their tails. Plant biologists have edited seeds to produce crops with new vitamins or with the ability to withstand diseases. Some of them may reach supermarket shelves in the next few years.

Read more: https://www.nytimes.com/2022/06/27/science/crispr-gene-editing-10-years.html

CIMMYT and CGIAR senior leaders share vision ahead

(Left to right) Bram Govaerts, Claudia Sadoff, JoaquĂ­n Lozano and Kevin Pixley stand for a group photo next to the Norman Borlaug sculpture at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)
(Left to right) Bram Govaerts, Claudia Sadoff, JoaquĂ­n Lozano and Kevin Pixley stand for a group photo next to the Norman Borlaug sculpture at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

Senior leadership from CGIAR had the opportunity to strengthen ties with senior leaders and researchers from the International Maize and Wheat Improvement Center (CIMMYT) during a visit on April 25–26, 2022. Claudia Sadoff, Executive Management Team Convener and Managing Director for Research Delivery and Impact, visited CIMMYT’s global headquarters in Texcoco, Mexico, and the experimental station in Toluca, west of Mexico City. Joining her was Joaquín Lozano, CGIAR’s Regional Director for Latin America and the Caribbean.

On April 25, 2022, scientists provided an overview of CIMMYT’s research in Africa and Asia and discussed with Sadoff how CIMMYT’s science and operations contribute to the One CGIAR 2030 Strategy. Examples included sustainable agri-food systems research in South Asia and maize research in Africa, with emphasis on work that aligns with CGIAR’s Action Areas and impact. These sessions underlined CIMMYT’s involvement in multiple CGIAR Initiatives, its influence on policy, and evidence of translating science into impact on the ground.

Lozano and Sadoff toured the facilities, including the CIMMYT Museum, the Wellhausen-Anderson Plant Genetic Resources Center, and the Applied Biotechnology laboratory. Along the way, scientists explained their latest research and answered questions about conservation agriculture, innovation hubs, climate-smart technologies, and scale-appropriate mechanization.

In the afternoon, CIMMYT and CGIAR representatives had targeted discussions on poverty reduction, gender equity and social inclusion, climate adaptation, environmental health and biodiversity,

The remainder of the first day was spent at the Bioscience complex, with visits to the wheat molecular breeding lab, the greenhouse, the wheat quality laboratory, and the maize quality laboratory, which hosted a discussion on nutrition and health.

(Left to right) JoaquĂ­n Lozano, Claudia Sadoff, Carolina Sansaloni, Bram Govaerts and Alberto Chassaigne stand for a group photo inside the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)
(Left to right) JoaquĂ­n Lozano, Claudia Sadoff, Carolina Sansaloni, Bram Govaerts and Alberto Chassaigne stand for a group photo inside the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

Honoring our roots, growing into the future

On April 26, 2022, Lozano and Sadoff joined representatives from the Mexican and Indian governments, CIMMYT colleagues, and other partners at CIMMYT’s experimental station in Toluca for a dedication event for the late Sanjaya Rajaram.

In Sadoff’s speech, she praised CIMMYT’s highly committed staff and shared her honor at being invited to such an event. “Dr. Norman Borlaug, Dr. Sanjaya Rajaram, Dr. Ravi Singh, and many more talented researchers who have worked and continue to work at CIMMYT have built an outstanding international research organization that has been a role model for other CGIAR centers,” she said. “In view of this impressive history, it is very important that we all contribute to continue CIMMYT’s legacy and to multiply its impact worldwide, but also to honor those great colleagues who have truly inspired us with their impressive achievements.”

After the event, Lozano and Sadoff toured the station and praised the engaging program produced by CIMMYT.

For Lozano, it was his second visit to CIMMYT. “It was an honor to be back at CIMMYT HQ in Mexico this week with Claudia,” he said. “It’s evident that CIMMYT’s science, staff and partners support and proactively contribute to our global research strategy for a food-secure future. A big thanks to Bram Govaerts and the CIMMYT team for such a constructive dialogue and hospitality.”

The race against time to breed a wheat to survive the climate crisis

CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.

Reporter visited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.

Read more: https://www.theguardian.com/environment/2022/jun/12/wheat-breeding-climate-crisis-drought-resistant

Researchers in East Africa add the Enterprise Breeding System to their work tools

Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)
Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)

Scientists overseeing breeding, principal technicians and data management and support staff from the International Maize and Wheat Improvement Center (CIMMYT) learned about the Enterprise Breeding System (EBS) at a training in Nairobi, Kenya, on May 4–6, 2022. This was the first in-person training on this advanced tool held in Eastern Africa.

Kate Dreher, Data Manager at CIMMYT, was the primary trainer. Dreher sought to ensure that scientists and their teams are well equipped to confidently use the EBS for their programs, including the creation and management of trials and nurseries. During the training, participants had the opportunity to test, review and give feedback on the system.

“The EBS is an online comprehensive system that brings together different types of data, including field observations and genotypic data, to harmonize processes across all teams and enable optimized decision-making in the short term and continuous learning for the long term,” Dreher said.

She explained that the EBS is more efficient than the former approach of using the Excel-based Maize Fieldbook software, even though it managed several useful processes.

The EBS is currently available to registered breeding and support team members and data managers from CIMMYT, IITA, IRRI and AfricaRice, across all geographies where related programs are implemented. Currently, the EBS is used by programs in maize, rice and wheat crops.

A more streamlined approach

“Although teams sent germplasm and phenotypic data for centralized storage in two databases (IMIS-GMS and MaizeFinder) managed by the data management team in Mexico in the past, this required curation after the data had already been generated,” Dreher said. “The EBS will enable teams to manage their germplasm and trial nursery data directly within one system.”

The EBS stores information on germplasm and linked seed inventory items. It is also designed to house and perform analyses using phenotypic and genotypic data. Users can also capture metadata about their trials and nurseries, such as basic agronomic management information and the GPS coordinates of sites where experiments are conducted.

Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at CIMMYT, observed that the training gave him firsthand information on the current capabilities and use of the live version to search germplasm and seed, and the capabilities to create nurseries and trials.

“In the AGG project, we have one primary objective which focuses on implementing improved data management, experimental designs and breeding methods to accelerate genetic gain and improved breeding efficiency. Therefore, implementing EBS is one of the top priorities for AGG project,” said Yoseph, who leads the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods Project (AGG).

Lourine Bii, an Assistant Research Associate who recently joined CIMMYT and the only female research technician on the Global Maize program based in Kenya, also found the training useful. “The EBS is a fantastic system that enables an individual to create experiments. The system links a team, for instance a product development team, to get live updates on the various stages of creating an experiment, reducing back and forth by email.”

The system’s software development is ongoing. The development team continues to add and enhance features based on feedback from users.

NASDA representatives visit CIMMYT

Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco AlarcĂłn/CIMMYT)
Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco AlarcĂłn/CIMMYT)

Representatives from the National Association of State Departments of Agriculture (NASDA) of the United States visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on May 19, 2022. Ted McKinney, NASDA’s Chief Executive Officer, was joined by RJ Karney, Senior Director of Public Policy, and John Goldberg, consultant and partner at The Normandy Group.

“I wish the world could all understand what you do here. This is just fantastic,” said McKinney after seeing the broad range of work conducted at CIMMYT.

NASDA’s tour of CIMMYT’s global headquarters in Texcoco, Mexico, included visits to the museum, the maize and wheat genebanks, the greenhouse, the bioscience complex, the wheat quality laboratory and the experimental station.

In each location, the visitors met with CIMMYT representatives who provided an overview of their research areas. Discussions ranged from the importance of preserving disease resistance in wheat in order to conduct experiments, the process for using DNA to inform breeding programs, and the assessment process for wheat grain. NASDA’s representatives also gained an understanding of how CIMMYT connects experiments with the needs of farmers, ensuring that scientific progress is translated into real-life solutions.

(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYT’s Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco Alarcón/CIMMYT)
(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYT’s Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco Alarcón/CIMMYT)
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco AlarcĂłn/CIMMYT).
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco AlarcĂłn/CIMMYT).
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)

Nitrogen-Efficient Wheat Production Systems in the Indo-Gangetic Plains through Biological Nitrification Inhibition (BNI) Technology

The Nitrogen-Efficient Wheat Production Systems in the Indo-Gangetic Plains through Biological Nitrification Inhibition (BNI) Technology project aims to raise awareness of the benefits of new nitrogen-efficient wheat production systems among stakeholders in India.

By introducing technologies that maintain crop yield and quality, even with a reduced amount of nitrogen fertilizer, this project will also lessen the footprint of food production systems and combat environmental degradation.

Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks

The Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide. It aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties.

Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops, including cassava, maize, sorghum cowpea, and rice.

Building on 10 years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, and the UK Biotechnology and Biological Sciences Research Council, the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

This project works closely with the Fast Tracking Climate Solutions from CGIAR Germplasm Banks project.

Objectives

  • Support faster and more cost-effective discovery and deployment of climate -adaptive alleles from the world’s germplasm collections
  • Test integrated approaches for five major crops (i.e., cassava, maize, sorghum, cowpea, and rice), providing a scalable model for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.

CIMMYT to lead CGIAR varietal improvement and seed delivery project in Africa

Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)
Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)

As part of the One CGIAR reform, the Global Science Group on Genetic Innovation will implement a crop breeding and seed systems project for key crops including groundnut, sorghum and millet, across western and eastern African countries.

The International Maize and Wheat Improvement Center (CIMMYT), a leader in innovative partnerships, breeding and agronomic science for sustainable agri-food systems, will lead the project.

The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project aims to improve the health and livelihoods of millions by increasing the productivity, profitability, resilience and marketability of nutritious grain, legumes and cereal crops. The project focuses on strengthening networks to modernize crop breeding by CGIAR and national program partners, and public-private partnerships to strengthen seed systems. The project currently works in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Uganda and Tanzania.

“Sorghum, groundnut and millets are essential staples of nutritious diets for millions of farmers and consumers and are crucial for climate-change-resilient farming systems,” explained CIMMYT Deputy Director General and Head of Genetic Resources, Kevin Pixley. “The oversight of this project by CGIAR’s Genetic Innovation Science Group will ensure continued support for the improvement of these crops in partnership with the national agricultural research and extension systems (NARES) that work with and for farmers,” he said.

“CIMMYT is delighted to lead this project on behalf of the Genetic Innovations Science Group and CGIAR,” confirms CIMMYT Director General, Bram Govaerts.

“We look forward to contributing to co-design and co-implement with partners and stakeholders the next generation of programs that leverage and build the strengths of NARES, CGIAR and others along with the research to farmers and consumers continuum to improve nutrition, livelihoods, and resilience to climate change through these crops and their cropping systems.”

Celebrating the life of Rosalind Morris, trailblazer for women in agriculture

A recent portrait of Rosalind Morris. (Photo: Courtesy)
A recent portrait of Rosalind Morris. (Photo: Courtesy)

Rosalind Morris, a celebrated wheat cytogeneticist and professor, peacefully passed away on March 26, 2022, just a few weeks shy of her 102nd birthday. Morris fought a long battle with cancer in her 90s and, most recently, an infection of COVID-19, which proved fatal to her health.

According to her wishes, there was no funeral or memorial service. Morris’s body was cremated, and her ashes deposited in her family’s plot in Ontario, Canada.

Born in Ruthin, United Kingdom, in 1920 to schoolteacher parents, Morris pursued studies in agricultural sciences at the University of Guelph and earned a bachelor’s degree in horticulture. Morris would later earn a Ph.D. from Cornell University’s department of plant breeding, becoming one of the first two women to accomplish this feat, along with Leona Schnell.

Morris dedicated her life and career to understanding and developing wheat genes.
Morris dedicated her life and career to understanding and developing wheat genes.

A pioneer in agricultural science and one of the first women scientists of her time, Morris dedicated her life and career to understanding and developing wheat genes. Her contributions include the development of wheat genetic stocks, or wheat populations generated for genetic studies, with far-reaching impact globally in explaining wheat genetics. The work of Morris provided a premier resource base for the emerging field of functional genomics, which explores how DNA is translated into complex information in a cell.

During World War II, Morris’s deep concern over the effects of atomic bombs dropped on Hiroshima and Nagasaki led her to study and experiment with the effects of X-rays and thermal neutrons on crop plants. In 1979, Morris became the first woman honored as a fellow of the American Society of Agronomy.

While being an acclaimed scientist internationally, Morris was also known for her passion for teaching. In the same year Morris earned her doctoral degree from Cornell University, she was hired as the first female faculty member in the agronomy department at the University of Nebraska-Lincoln (UNL) in 1947. This career would last 43 years: first as an assistant professor in 1947, becoming a professor in 1958 and remaining in that role until 1990, when she gained the title of emeritus professor of plant cytogenetics.

Morris was a trailblazer for women in agronomy during a point in history when few women were given the opportunity to pursue a career in the sciences. Morris is remembered by her peers not only for her lifelong contribution to agricultural sciences but also her immense kindness and patience.

New endeavor fast-tracks the power of crop diversity for climate resilience

Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT's global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)

A new $25.7 million project, led by the International Maize and Wheat Improvement Center (CIMMYT), a Research Center part of CGIAR, the world’s largest public sector agriculture research partnership, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

As climate change accelerates, agriculture will be increasingly affected by high temperatures, erratic rainfall, drought, flooding and sea-level rise. Looking to the trove of genetic material in genebanks, scientists believe they can enhance the resilience of food production by incorporating this diversity into new crop varieties — overcoming many of the barriers to fighting malnutrition and hunger around the world.

“Better crops can help small-scale farmers produce more food despite the challenges of climate change. Drought-resistant staple crops, such as maize and wheat, that ensure food amid water scarcity, and faster-growing, early-maturing varieties that produce good harvests in erratic growing seasons can make a world of difference for those who depend on agriculture. This is the potential for climate-adaptive breeding that lies untapped in CGIAR’s genebanks,” said Claudia Sadoff, Managing Director, Research Delivery and Impact, and Executive Management Team Convener, CGIAR.

Over five years, the project, supported by the Bill & Melinda Gates Foundation, aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Entitled Mining useful alleles for climate change adaptation from CGIAR genebanks, the project will enable breeders to more effectively and efficiently use genebank materials to develop climate-smart versions of important food crops, including cassava, maize, sorghum, cowpea and rice.

Wild rice. (Photo: IRRI)
Wild rice. (Photo: IRRI)

The project is a key component of a broader initiative focused on increasing the value and use of CGIAR genebanks for climate resilience. It is one of a series of Innovation Sprints coordinated by the Agriculture Innovation Mission for Climate (AIM4C) initiative, which is led by the United Arab Emirates and the United States.

“Breeding new resilient crop varieties quickly, economically and with greater precision will be critical to ensure small-scale farmers can adapt to climate change,” said Enock Chikava, interim Director of Agricultural Development at the Bill & Melinda Gates Foundation. “This initiative will contribute to a more promising and sustainable future for the hundreds of millions of Africans who depend on farming to support their families.”

Over the past 40 years, CGIAR Centers have built up the largest and most frequently accessed network of genebanks in the world. The network conserves and makes nearly three-quarters of a million crop accessions available to scientists and governments. CGIAR genebanks hold around 10% of the world’s plant germplasm in trust for humanity, but account for about 94% of the germplasm distributed under the International Treaty on Plant Genetic Resources for Food and Agriculture, which ensures crop breeders globally have access to the fundamental building blocks of new varieties.

“This research to develop climate-smart crop varieties, when scaled, is key to ensuring that those hardest hit by climate shocks have access to affordable staple foods,” said Jeffrey Rosichan, Director of the Crops of the Future Collaborative of the Foundation for Food & Agriculture Research (FFAR). “Further, this initiative benefits US and world agriculture by increasing genetic diversity and providing tools for growers to more rapidly adapt to climate change.”

“We will implement, for the first time, a scalable strategy to identify valuable variations hidden in our genebanks, and through breeding, deploy these to farmers who urgently need solutions to address the threat of climate change,” said Sarah Hearne, CIMMYT principal scientist and leader of the project.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors and the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), the project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods, to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

INTERVIEW OPPORTUNITIES:

Sarah Hearne – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.