Skip to main content

research: Genetic resources

Pairwise Licenses Gene Editing Tools to CIMMYT to Fast-Track Smallholder Farming Systems’ Transformation

Durham, N.C., and Texcoco, Mexico (June 12, 2025) – Pairwise has entered a landmark licensing agreement with the non-profit, international agricultural research organization CIMMYT to provide access to its Fulcrum™ gene editing platform, including the advanced SHARC™ CRISPR enzyme. This partnership will accelerate the development of improved crop varieties for smallholder farmers across 20 countries where CIMMYT implements integrated research and development initiatives.

CIMMYT, based in Mexico and operating in 88 countries, is a key member of the CGIAR network and a global leader in developing sustainable solutions for food and climate security. Under the license, CIMMYT and its National Agricultural Research Systems (NARS) partners will have access to Fulcrum tools in crops including maize, wheat, sorghum, and regionally important staples like pearl millet, finger millet, pigeon pea, and groundnut.

“Advanced breeding techniques replicate what happens in nature in a faster, more focused way. We’re excited to have access to a gene editing technology that allows us to not only develop new traits but also make these traits available to farmers who can benefit from them,” said Sarah Hearne, Chief Science and Innovation Officer at CIMMYT. “CIMMYT is committed to bringing new technologies to smallholder farmers in the Global South, which aims to enhance resilience and nutritional characteristics of crops and help develop livelihoods and communities. Fulcrum will speed up the delivery of the climate resilient varieties that farmers urgently need.”

The Fulcrum™ Platform includes Pairwise-developed gene editing tools for cutting, base editing, and templated editing a toolbox which enables not only turning a characteristic on or off but also tuning it— like a dimmer switch to tailor the trait and deliver the optimum phenotype.

“Our Fulcrum Platform was built to help scientists solve urgent, real-world challenges in agriculture,” said Ian Miller, Chief Operating Officer at Pairwise. “This agreement allows CIMMYT to use our powerful CRISPR tools to deliver real-world improvements for farmers facing food insecurity and climate pressure. We outlicense to organizations like CIMMYT because Pairwise believes this transformative technology should be broadly available to those working to improve agriculture for smallholder farmers.”

Gene editing enables precision improvements in crop yield, resilience, and nutrition that could be achieved through conventional breeding but were impractical due to time and cost restraints.  By making these powerful tools more accessible, this partnership accelerates impactful innovation in regions where food system improvements are most urgently needed. Through CIMMYT’s research network, these tools will be deployed in diverse environments, providing researchers with a flexible alternative for product development and a clear pathway to real-world impact.

About Pairwise
Pairwise is agriculture’s leading gene editing powerhouse, building a healthier world through partnership and plant innovation. Co-founded by the inventors of CRISPR, our Fulcrum™ Platform accelerates the development of climate-resilient, nutritious, and sustainable crops. As trusted partners to global industry leaders and nonprofit institutions, we help breeders move faster while transforming food and agriculture for farmers, consumers, and the planet. Founded in 2017 and based in Durham, NC, Pairwise is committed to delivering innovation that makes food easier to grow — and better to eat. For more information, visit www.pairwise.com.

About CIMMYT
CIMMYT is a cutting-edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.
www.cimmyt.org

 

CIMMYT Media Contact: Jelle Boone
Head of Communications, CIMMYT
Email: j.boone@cgiar.org
Mobile: +52 595 124 7241

Pairwise Media Contact:
Email: communications@pairwise.com

The Guardians of Diversity: The Work of Carolina Sansaloni

Carolina Sansaloni, Curator of the Wheat Collection at the Germplasm Bank and a specialist in genotyping highlights the role of women in preserving agricultural biodiversity and encouraging new generations to pursue their passion for research.

Carolina Sansaloni, genotyping specialist and wheat curator, emphasizes the role of women in science and agricultural conservation. (Photo: Gabriela Bracamonte/CIMMYT)

Since childhood, Carolina Sansaloni has been fascinated by nature and genetics. Her desire to find answers led her down a challenging path, but one that ultimately brought her to where she is today: Curator of the Wheat Collection at CIMMYT’s Germplasm Bank, one of the most important in the world. Her work, and that of her team, is fundamental to food security and nutrition, ensuring the protection and accessibility of wheat and maize genetic diversity to meet the challenges of climate change and growing food demand.

“For me, the greatest satisfaction is knowing that what we do at CIMMYT helps more people put food on their tables. It’s not an individual effort; it’s a collective effort for a greater good,”

But the Germplasm Bank’s impact goes beyond conservation. Its team of scientists, technicians, laboratory staff, and field workers plays a critical role in research and safeguarding one of the world’s most valuable collections of maize and wheat. From seed collection and storage to characterization and distribution for genetic improvement programs, each woman on this team is an essential part of CIMMYT’s mission: generating science and innovation for a food-secure and fed world.

The journey for women in science has not been easy. Sansaloni acknowledges that while she has had mentors and support throughout her career, many women still face challenges in the scientific field.

“A woman’s voice in science has to be earned. We face obstacles, but with perseverance, support, and determination, we can overcome them,” she says.

Leaving her home in Argentina to pursue her passion was one of her biggest challenges. “The biggest challenge was leaving my environment, my family, my friends, but I knew that my motivation was science and its power to change the world.” Today, her story inspires many young women to embrace their curiosity and pursue careers in science.

To girls who dream of science, she says, “Explore, question, discover. With effort and dedication, nothing is impossible.”

To parents, she advises: “Encourage your children’s curiosity, let them make their own choices, and you will be amazed at their ability to innovate.”

We honor all the professionals at CIMMYT, whose knowledge, commitment, and dedication are key to achieving a world of food security and nutrition.

If you’ve ever dreamed of changing the world, science is a great place to start.

Svalbard and Humanity’s Food Security

The World Food Prize honored Cary Fowler and Geoffrey Hawtin for their lifelong dedication to preserving genetic resources critical to global food security. They have led efforts to protect seeds from over 6,000 crops by establishing germplasm banks worldwide, including the Svalbard Global Seed Vault, to safeguard biodiversity against climate threats. With partners like INIFAP, CIMMYT has played a key role in conserving the genetic diversity of staple crops, ensuring these resources are available for future agricultural resilience.

Read the full story.

This year’s World Food Prize underscores the value of seed banks and their stewards

The World Food Prize this year celebrates the essential role of genebanks in global food security—a mission at the heart of CIMMYT’s work. Through its maize and wheat collections, CIMMYT’s genebank preserves crop diversity that is critical for developing resilient, climate-adapted varieties. Highlighted by former CIMMYT maize curator Denise Costich, this recognition underscores the value of conserving genetic resources, which allow CIMMYT and its partners to create solutions for a rapidly changing agricultural landscape. As a vital part of the global genebank network, CIMMYT’s efforts ensure that biodiversity remains a foundation for food security and resilience worldwide.

Read the full story.

Seeds to beat the heat in lowland tropics

South Asia, a region heavily impacted by climate change, faces rising temperatures, erratic monsoon rains causing intermittent drought and excessive moisture within the season, and frequent episodes of heat waves. These extreme weather events are challenging agrarian practices and affecting millions, especially smallholder farmers dependent upon rainfed cultivations. The halcyon days of consistent environmental conditions are gone, and adaptation and mitigation strategies have become essential in South Asia.

In May 2024, over 20 districts in the Terai region of Nepal and many parts of northern India recorded maximum temperatures between 40°C and 45°C, with several districts also experiencing heat waves during the same period. The temperature rise is not limited to the lowland plains; the effects are also being felt in the mountains, where rapid snowmelt is becoming increasingly common. In the Hindu Kush Himalayas region of Pakistan, farmers have had to shift their cropping cycles by a month to cope with drought stress caused by rising temperatures, which are leading to the early melting of snow in the region.

Partners in South Asia visiting heat stress tolerant hybrids demonstration in Nepal (Photo: CIMMYT-Nepal)

Collaborating to rise above the challenge

Amid the growing climate crisis, the Heat Stress Tolerant Maize for Asia (HTMA) project was launched by CIMMYT in 2012, with support from the United States Agency for International Development (USAID) under the Feed the Future initiative of the U.S. Government. The overarching goal of the HTMA project was to help farm families, particularly maize growers, to adapt to the impacts of soaring heat on maize productivity in South Asia. The project was implemented in partnership with 28 public and private sector stakeholders across the region and beyond to develop a multipronged approach to overcoming these challenges.

“Our aim is to develop and deploy maize hybrids with high yield potential and possess traits resilient to heat and drought stresses,” said P.H. Zaidi, Principal Scientist, and HTMA project lead at CIMMYT. Zaidi noted that during heat stress “high temperatures alone are not the only limiting factor- it is the combination of high temperature with low atmospheric humidity (high vapor pressure deficit), that creates a “killer combination” for maize production in the Asian tropics.”

This was also emphasized in a recently published article that he co-authored.

The development of heat stress-tolerant maize involves the use of cutting-edge breeding tools and methods, including genomics-assisted breeding, double haploidy, field-based precision phenotyping, and trait-based selection. Over 20 such hybrids have been officially released in India, Nepal, Bangladesh, Pakistan, and Bhutan. Between 2023 and 2024, over 2,500 metric tons of seed from these hybrids were distributed to farmers, helping them beat the heat.

Agile partnerships-from discovery to scaling

The first phase of the project (2012-2017) focused on discovering heat-tolerant maize varieties. During this time, pipeline products underwent field evaluations in stress-prone environments, leveraging the project’s product evaluation network of public and private partners, who contributed by managing trials and generating performance data. In the second phase (2018-2023), the focus shifted toward the deployment and scaling of heat-tolerant hybrids and strengthening seed systems in target countries to enable large-scale delivery, benefiting millions of farm families, particularly in South Asia’s rainfed ecologies. For example, the seed produced in 2023-2024 sufficed to cover over 125,000 hectares and benefited nearly 2.5 million people in the region.

HTMA project partners gathered in Nepal for the annual and project closure meeting (Photo-CIMMYT-Nepal)

Hailu Tefera, from USAID, praised the project’s success during the annual review and project closure meeting held in Nepal from August 21-22, 2024. We have seen great strides in scaling heat stress tolerant hybrids in the region. This initiative aligns with the US Government’s Global Food Security Strategy, where building farmers’ resilience to shocks and climate vulnerability is central,said Tefera, acknowledging the adaptive and agile partnership demonstrated by the project’s partners throughout HTMA’s discovery and scaling phases.

One of the project’s key achievements was creating a multi-stakeholder platform and leveraging resources across the region. Partners, including national agricultural research systems, seed companies, and higher learning institutes, expanded the project’s impact. The collaboration we fostered under the HTMA project is a working example of effective partnerships,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program. He highlighted how synergies with other developmental projects in the region, especially projects supported by the USAID country mission in Nepal helped launch local hybrid seed production, transforming the country from a net importer of hybrid maize seeds to producing locally in just a few years, and such seeds of resilience cover nearly 10,000 hectares in 2023/24 alone. Using heat tolerant (HT) maize seed allows smallholder farmers to harvest nearly one metric ton per hectare additional yield than normal maize under stress conditions.

The value of the seed these new hybrids was validated by adopter farmers who grow maize in stress-vulnerable ecologies by expressing their willingness to pay a premium price for HT hybrid seed as per the study conducted in Nepal and India. “The spillover effect of the project is helping countries like Bhutan to strengthen their seed systems and initiate hybrid seed production for the first time,” added Prasanna, expressing gratitude to USAID and all project partners.

The salient achievements of the project, including technical know-how, outputs, outcomes, and learnings were compiled as an infographic, titled “HTML Tool‘ and it was formally released by Narahari Prasad Ghimire, Director General of the Department of Agriculture, Government of Nepal, during the HTMA meeting in Nepal.

Rewarding achievement

Subash Raj Upadhyay, Managing Director of Lumbini Seed Company in Nepal, recalls the early days of producing heat stress-tolerant hybrid maize seed in Nepal, which began in 2018. “Our journey started with just one hectare of seed production in 2018 and 2019, and we expanded to 30 hectares by 2022. This was the first time that we started hybrid maize seed production in Nepal, specifically RH-10, a heat stress tolerant hybrid from CIMMYT, released by the National Maize Research Program of Nepal. The support of USAID’s projects like the Nepal seed and fertilizer project was crucial for our success,” said Upadhyay, who was among the award recipients for setting a potent example in scaling up heat stress-tolerant hybrids.

HTMA TOOL- an infographic launched during the meeting (Photo-CIMMYT Nepal)

In addition to Lumbini Seed Company, Jullundur Seed Private Limited Company in Pakistan was also recognized for its efforts in seed scaling. The National Maize Research Program of Nepal and the University of Agricultural Sciences, Raichur, India, were acknowledged for their rewarding achievement in research and development during the project period.

“The recognition exemplifies the public-private partnership that we demonstrated under the HTMA project, where the public sector mainly focused on strategic research and product development, and seed companies took charge of seed delivery and scaling,” said Zaidi during the project’s phaseout meeting in Nepal, attended by over 60 participants from the project’s target and spillover countries. “Such partnership models need to be strengthened and replicated in other projects. It is important to consolidate the gains and maintain the momentum of the HTMA project in the years to come to benefit millions of smallholder farmers, echoed Prasanna, who presented certificates of recognition to the partners in the presence of USAID representatives, senior government officials from Nepal and project partners from South Asia and beyond.

Context-dependent agricultural intensification pathways to increase rice production in India

Rice is a critical staple for food security and a key export crop for India. The study published in Nature Communications explores context-specific pathways for increasing rice production in India, focusing on sustainable intensification — boosting yields without harming the environment or farm profitability.

The research analyzed over 15,000 field records across seven major rice-producing states in India using advanced machine learning techniques. The study identified nitrogen application and irrigation as key factors limiting yields, particularly in Eastern India (Bihar and Uttar Pradesh). By targeting farms with nitrogen and irrigation deficiencies, the study projects that yield gains could more than triple compared to general recommendations. Specifically, farms suffering from co-limitation by both nitrogen and irrigation could see the most significant gains in productivity and profitability.

Four scenarios for sustainable intensification were evaluated, ranging from blanket application of current nitrogen recommendations to highly targeted interventions. The analysis showed that targeted strategies, focusing on farms with the greatest yield constraints, could significantly improve nitrogen use efficiency and result in greater yields and profitability without excessive resource use.

The study highlights the potential of data-driven, context-specific solutions for rice intensification in India, emphasizing that targeted interventions could offer both higher returns for farmers and better environmental sustainability. It suggests a move away from “one-size-fits-all” approaches towards more precise, farm-specific recommendations based on local conditions and data. This approach could help close yield gaps while aligning with sustainable development goals.

Read the full study.

CIMMYT Director General visit to UQ

CIMMYT Director General Bram Govaerts’ visit to The University of Queensland (UQ) on September 27, 2024, reinforced a long-standing partnership aimed at tackling global food security and sustainability challenges. For over 50 years, CIMMYT’s collaboration with Australian researchers has advanced wheat breeding, contributing significantly to Australia’s agricultural resilience. The visit emphasized expanding research on key crops like sorghum, millets, and legumes, while promoting sustainable practices and climate resilience in agriculture. This collaboration continues to drive innovations that benefit not only Australia but also regions across the Indo-Pacific and Africa.

Read the full story.

Melinda Smale: Exploring the Economic Value of Crop Diversity Conservation

Melinda Smale’s groundbreaking work in agricultural economics, particularly her collaboration with CIMMYT, has played a pivotal role in advancing the understanding of crop diversity conservation. At CIMMYT, Smale worked with plant breeders and agronomists to analyze maize landraces and wheat genetic diversity, contributing to the development of strategies that support sustainable agriculture and food security. Her research has informed CIMMYT’s efforts to preserve biodiversity and enhance the resilience of farming systems, directly aligning with the organization’s mission to improve global food security through science and innovation.

Read the full story.

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El Batán, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

CIMMYT scientists deliver training to improve agriculture in Uzbekistan

Scientists from the Research Institute of Plant Genetic Resources in Uzbekistan (RIPGR) attended training on gene bank management and genetic resources, coordinated by CIMMYT-Türkiye on 13-20 April 2024. Hosted at the Turkish Department of Agricultural Economics and Project Management (TAGEM), the training is supported by the World Bank Group, which is helping Uzbekistan to modernize the country’s agriculture. With one of the highest levels of wheat consumption in Central Asia, the modernization project aims to increase Uzbekistan’s wheat yield and meet demand for the crop.

The course included lectures on status and activity of the Turkish Seed Germplasm Bank (TSGB), policy instruments and international perspectives on plant genetic resources, herbarium techniques, biotechnology studies, and genetic resources. Uzbek scientists also became acquainted with scientific laboratories, visiting the field station in İkizce Gölbaşı and learned about the breeding, pathology, and agronomy activities at the station as well as the collaboration activities between CGIAR Research Centers and TAGEM.

Country-wide expertise

In addition to sessions at CIMMYT’s office in Türkiye, participants also visited the National Gene Bank in Ankara and the National Gene Bank of Izmir.

At the latter location, experts delivered sessions on a range of topics, such as the Plant Diversity and Genetic Resources Program of Türkiye; in vitro and cryopreservation techniques; the conservation, data recording, and documentation of plant genetic resources; conservation and utilization of vegetable genetic resources; conservation studies on mushroom genetic resources; studies on wheat genetic resources and wheat breeding at the international winter wheat breeding program; regional collaboration to combat wheat rust disease in Central and West Asia and North Africa (CWANA); and international winter wheat breeding strategies.

In addition to the seminar sessions, the participants also visited several locations to familiarize themselves with scientific processes in field and laboratory conditions. They visited the field gene banks, guided by Fatih Çağir, who provided brief information about the fruit genetic resources activities of Türkiye. They also visited the plant collection activities and herbarium techniques laboratory, the National Gene Bank, Herbarium, Fungarium & Seed Physiology Laboratory of the Plant Genetics Resources Department & Plant Tissue Center, and the Regional Cereal Rust Research Center.

The importance of the training course for Uzbek scientists is to study the system of rational use, conservation, and management of plant genetic resources of Türkiye and to introduce new innovative knowledge in Uzbekistan. It also consists of discussing aspects related to bilateral cooperation and sustainable development in the field of plant genetic resources as well gene bank management.

The delegation from Uzbekistan, on behalf of the Ministry of Agriculture of the Republic of Uzbekistan, and the director of the Research Institute of Plant Genetic Resources, Zafarjon Mashrapovich Ziyaev, expressed their deep gratitude to the organizers and departments for this training course.

Launch of a new Global Partnership for the Vision for Adapted Crops and Soils initiative

Traditional and nutrient-rich crops are vital for global food security. (Photo: CIMMYT)

Rome/Texcoco, Mexico – An initiative to build resilient agrifood systems grounded in diverse, nutritious, and climate-adapted crops grown in healthy soils, today marked another milestone through a new partnership between the Food and Agriculture Organization of the United Nations (FAO) and CIMMYT, a CGIAR Research Center.

FAO and CIMMYT signed a Memorandum of Understanding establishing a Partnership for the Vision for Adapted Crops and Soils (VACS) initiative. The joint Partnership will play a pivotal role leading efforts to coordinate, grow, and strengthen the VACS movement across a wide range of public and private stakeholders.

“By joining forces with CGIAR and CIMMYT, we bring together our collective capacities to build a strong momentum and platform to advance the VACS,” said FAO’s Director-General QU Dongyu. “VACS effectively brings together the Four Betters set out in the FAO Strategic Framework 2022-31: better production, better nutrition, a better environment and a better life – leaving no one behind.”

“Our 2030 Strategy focuses on strengthening agrifood systems to increase nutritional value and climate resilience,” said CIMMYT’s Director General, Bram Govaerts. “We are proud to stand united, through VACS, with FAO, whose excellent track record on policy work and networking with national governments will help equip farmers with resilient seed and climate-smart cropping systems that regenerate, rather than degrade, the soils on which their diets and livelihoods depend.”

Launched in 2023 by the U.S. Department of State in partnership with the African Union and FAO, the VACS movement aims to build sustainable and resilient agrifood systems by leveraging opportunity crops and building healthy soils to enhance agricultural resilience to climate change and improve diets. Nutrient-rich and traditional crops like sorghum, millet, cowpea, and mung bean are vital for food security and nutrition under climate change but have seen little attention so far. VACS recognizes the interdependence of crops and soils: Crops need good soil to be productive, and different crops can only be sustainably grown on some types of land.

FAO-CIMMYT partnership aims to boost farm productivity and nutrition

Since its launch the VACS initiative has supported many activities including the Quick Wins Seed Systems Project in Africa, which promotes the adoption of climate-resilient dryland grains and legumes and helps smallholders access seeds of local nutritious crops like pearl millet, finger millet, and mung bean, and connects them with markets and agri-services. Meanwhile, the VACS Fellows programme trains African breeding professionals, strengthening regional agrifood systems. In Central America, InnovaHubs partner with CGIAR, Mexico, and Norway to connect farmers with markets, technologies, and high-quality seeds. FAO, through its work, including as part of the International Network on Soil Fertility and Fertilizers (INSOILFER) and the Soil mapping for resilient agrifood systems (SoilFER) project, assists members with the implementation of sustainable and balanced soil fertility management for food security and to promote actions to enhance the link between nourished healthy soils and opportunity crops.

Leveraging on the expertise and mandates of both CIMMYT and FAO, the new joint VACS Partnership will support, coordinate and amplify the impact of all stakeholders of the VACS movement, public and private, through the following functions:

  • Strategy: The Partnership will develop and maintain a VACS strategy, including by defining its mission, objectives, and approach.
  • Resource Mobilization: The Partnership will work with public and private sector donors to increase investments in VACS-aligned work.
  • Donor and Implementer Coordination: The Partnership will coordinate work among major VACS donors and implementers, including by coordinating the VACS Implementers’ Group.
  • Stakeholder Engagement: The Partnership will strengthen ties across public and private stakeholders to catalyze action in support of VACS, including by coordinating the VACS Community of Practice and the VACS Champions program.
  • Shaping the Policy Environment: The Partnership will coordinate the development of a VACS policy agenda and work to advance it at the local, national, and multinational levels.
  • Communications: The Partnership will elevate the importance of diverse crops and healthy soils as a fundamental means of advancing a range of sustainable development goals.
  • Results Management: The Partnership will develop and maintain a results management framework to track progress in achieving VACS objectives.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

About FAO

The Food and Agriculture Organization (FAO) is a specialized agency of the United Nations that leads international efforts to defeat hunger.

Our goal is to achieve food security and nutrition for all by enabling all people to have regular access to enough locally appropriate high-quality nutritious food to prevent all forms of malnutrition and to lead active, healthy lives. With 195 members – 194 countries and the European Union, FAO works in over 130 countries worldwide.

For more information or interviews:

Jelle Boone
Interim Head of Communications, CIMMYT
j.boone@cgiar.org
Mobile/WhatsApp: +52 595 1247241

Peter Mayer
FAO News and Media
peter.mayer@fao.org

G7 summit highlights importance of sustainable food systems

In a world grappling with regional conflicts, climate change, and fragile food systems, the G7 emphasized sustainable agriculture and food security as essential for global stability in a recent communique. CIMMYT supports this vision through the Vision for Adapted Crops and Soils (VACS) initiative, which the G7 recognized as essential in transforming food systems. VACS aims to boost agricultural productivity with climate-resilient crops and healthy soils.

“With our partners, we will work on concrete and ambitious actions to achieve long-term sustainable development, strong environmental, social, and governance standards, and shared prosperity worldwide,” stated the G7 communique.

Fortifying indigenous crops

The G7 statement highlights the importance of dryland crops for sub-Saharan Africa, particularly ancestral grains and peas in securing nutrient-rich diets. CIMMYT, with over 75 partners such as WorldVeg and the Kenya Agricultural and Livestock Research Organization (KALRO), implements the VACS Quick Wins Seed Systems Project across west, east, and south Africa. The project promotes adoption of dryland grains and legumes, helps smallholders obtain climate-resilient seeds, and connects them with markets and agri-services. CIMMYT and its partners recently published a report which identifies the required training in crop breeding to support project implementation across the continent.

“VACS is working to improve the livelihoods of smallholders,” said Bram Govaerts, CIMMYT’s director general. “CIMMYT is implementing VACS focused on crop breeding, seed systems, partnerships, and capacity development. These areas protect our most important grains from further fragility.”

CIMMYT is also leading genetic research by predicting novel traits necessary for future crop varieties. A 2023 study published in Molecular Plant by CIMMYT scientists identified essential traits in six crops: sorghum, pearl millet, groundnut, cowpea, maize, and common bean. These characteristics could improve global food and nutrition security. High-yielding traits in legumes are being scaled up for delivery by CIMMYT and Afriseed through the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, targeting over 35,000 smallholders in Zambia during 2023-2024.

Monitoring Field Visit in Mali, West Africa. (Photo: CIMMYT)

Capacity development through sustained global partnerships

Several G7 members, including the United States, support CIMMYT’s efforts with VACS. A key component of the initiative is capacity building for local researchers and practitioners. A recent initiative aims to train African breeding programs and research professionals, creating a cohort of VACS Fellows to strengthen local and regional food systems. In Guatemala, InnovaHubs, through partnership with CGIAR, Mexico, and Norway, brings farmers closer to markets, technologies, and high-quality seeds.

Strategy for the future

With over 130 countries depending on food imports and over 1.3 billion people considered food insecure, CIMMYT’s 2030 Strategy provides a comprehensive plan forward for agrifood systems through innovative research and partnerships. “Our partners provide the local knowledge and expertise to ensure our research has an impact on smallholder communities. Only through close collaboration with local actors can we transform global food production to become more inclusive and sustainable,” said Govaerts. “We stand ready to support G7 goals for shared prosperity.”

CIMMYT calls for direct agricultural investment to address Sudan’s food crisis

Nairobi, Kenya — 26 June 2024 CIMMYT calls upon the global community to take immediate and decisive action to address the worsening food crisis in Sudan. As the country teeters on the brink of a famine that could surpass the devastating Ethiopian famine of the 1980s, CIMMYT emphasizes the critical need for both emergency food aid and long-term investment in Sudanese agriculture.

Urgent humanitarian needs and long-term solutions

Recent reports indicate that the ongoing civil war in Sudan has created the world’s most severe humanitarian crisis, with millions of people facing acute food shortages due to the impact of climate change, blocked aid deliveries, failing agricultural systems and infrastructure, and continued conflict. In response, CIMMYT highlights the necessity of balancing emergency aid with sustainable agricultural development to prevent recurring food crises.

“The escalating food crisis in Sudan demands not only immediate emergency assistance but also strategic investment in the country’s agricultural sector to ensure food security and stability,” said Director General of CIMMYT, Bram Govaerts. “We must break away from the aid-dependency model and support Sudanese farmers directly, empowering them to rebuild their livelihoods and contribute to the nation’s recovery as well as todays food availability.”

CIMMYT’s commitment to Sudanese agriculture

CIMMYT, alongside other international organizations and NGOs, has been actively working in Sudan to support farmers and improve agricultural productivity as part of the Sustainable Agrifoods Systems Approach to Sudan (SASAS) project in collaboration with USAID. With the outbreak of the civil war, SASAS has pivoted to be acutely focused on interventions that support and underpin food security in Sudan, with 13 partners operating across 7 States as the largest operating consortium on-the-ground in the country. Activities range from the provision of improved seeds and agricultural technologies to vaccination campaigns and community resource (water, land) management.

Investing in agricultural resilience

CIMMYT’s initiatives have shown significant impact, even amidst conflict. For example, the Al Etihad women-led farmer cooperative in South Kordofan has empowered its members to improve their production and incomes through collective resource management, training on best practice farming techniques, provision of agricultural inputs, and structured business planning. This cooperative model is essential for building resilience and ensuring food security in Sudanese communities.

“Sudan’s need for food assistance is growing exponentially, but donors have provided only 3.5 percent of requested aid. This gets the story backwards. Food insecurity is at the root of many conflicts. Peace remains elusive without well-functioning agricultural systems, and it is unreasonable to expect viable agricultural production without peace,” Govaerts stated.

Call for global action

CIMMYT urges the international community to –

  1. Increase funding: Support the UN humanitarian appeal for Sudan, which has received only 16% of the necessary funds.
  2. Facilitate aid deliveries: Press all parties in the conflict to allow unobstructed humanitarian access, particularly through critical routes such as the Adré crossing from Chad.
  3. Invest in agriculture: Commit to immediate agricultural development by supporting Sudanese farmers with training, resources, and infrastructure improvements so they can produce locally the needed food.
  4. Do not forget: It is easy to overlook the war in Sudan with more publicized conflicts in Gaza and Ukraine. Leaders must continue to highlight the challenges Sudan faces and the global reverberation of their precarious food security situation.

A path forward

The confluence of conflict, climate change, and economic instability has overwhelmed Sudan. However, by investing directly in the country’s agricultural sector, the international community can help break the cycle of crisis, fostering economic activity and political stability. Let us not forget, no food without peace and you cannot build peace on empty stomachs, so no peace without food.

About CIMMYT

CIMMYT is a cutting-edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

Media Contact: Jelle Boone
Head of Communications, CIMMYT
Email: j.boone@cgiar.org
Mobile: +52 595 124 7241

For more information about CIMMYT’s work in Sudan and other initiatives, please visit staging.cimmyt.org.

Noemi Valencia Torres

Noemi Valencia Torres is the Seed Health Laboratory Manager, whose responsibilities include coordinating the activities of the Seed Health Laboratory to ensure that seed is suitable for export or import, that tests are performed properly and on time, and that supplies are well managed. Perform seed analysis to detect pathogens, obtain permits to import samples, reports
Resolve unusual problems with seed imports and communicate with staff and phytosanitary authorities for seed imports.