Skip to main content

research: Genetic resources

FFAR’s food security webinar at COP27 highlights need for genebank collection diversity research

Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s El BatĂĄn headquarters, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)

As part of the Agriculture Innovation Mission for Climate (AIM for Climate) Roadshow at the 27th annual UN Climate Change Conference of the Parties (COP27), the Foundation for Food & Agriculture Research (FFAR) and its partners are hosting a webinar on November 11, 2022 to highlight the Fast Tracking Climate Solutions from CGIAR Genebank Collections program and the importance of crop improvement research for building climate resilient supply chains.

Fast Tracking Climate Solutions from CGIAR Genebank Collections is expanding CGIAR’s and other organizations’ crop improvement research. This initiative is key to developing new crop varieties adapted to the stresses of climate change, including disruptions caused by drought, heat and flooding. Through this ambitious research program, scientists have already developed critical traits using the genebanks, strengthening the identification of high-value genetic diversity from germplasm collections and more efficiently leveraging this diversity to develop new varieties of climate-resilient crops.

Join virtually to learn more about this program’s pioneering research, the value of collaboration in this research and opportunities to engage further.

WHEN: November 11, 2022, from 11 a.m. to 12 p.m. EST

WHO: Jeffrey Rosichan, FFAR (moderator)

Bram Govaerts, director general a.i. (secretary general and CEO), the International Maize and Wheat Improvement Center (CIMMYT), CGIAR

Éliane Ubalijoro, member of the Global Diversity Crop Trust executive board, Global Crop Diversity Trust

Gary Atlin, senior program officer in the agricultural development initiative, Bill & Melinda Gates Foundation

Sarah Hearne, principal scientist, CIMMYT, CGIAR

RSVP: Please register for the webinar to receive call-in information. This event is free and open to the public.

AIM for Climate is a joint initiative by the United States and United Arab Emirates seeking to address climate change and global hunger. The initiative brings together partners to increase investment in climate-smart agriculture and food systems innovation. Specifically, AIM for Climate is advancing research through Innovation Sprints. As an AIM for Climate Knowledge Partner and an Innovation Sprint Partner, FFAR has two other Innovation Sprints in addition to the genebanking project: AgMission and the Greener Cattle Initiative.

For more information, contact Jamie Nickel, communications & legislative affairs associate, at jnickel@foundationfar.org.

About the Foundation for Food & Agriculture Research

The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement USDA’s research agenda. FFAR’s model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.

Cover photo: Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s El BatĂĄn headquarters, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)

CIMMYT project helps educate farmers in Zimbabwe on seed practices and improved varieties

Jubilant farmers after buying seed during day two of a fair in Masvingo District, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

The International Maize and Wheat Improvement Center is working with its partners to support farmers in Zimbabwe embrace conservation agriculture and improved seed varieties to achieve more successful harvests in areas affected by climate change.

The R4 Rural Resilience and ZAMBUKO initiatives aim to help farmers through a number of activities. These include demonstrations of seed and conservation agriculture, field days and seed fairs, which look to develop farmers’ awareness about improved seed and novel varieties.

The fairs highlighted the importance of good seed practices and the benefits of improved varieties to both farmers and seed companies, who attended the events.

The initiative, which is run in collaboration with the Department of Specialist Services (DRSS), the Agricultural Advisory and Rural Development Services (ARDAS) and the World Food Program (WFP), with financial support from the Swiss Agency for Development and Cooperation (SDC) and the United States Agency for International Development (USAID), helps those in the industry see the advantages of improved varieties over old ones, which may have been on the market for more than 20 years.

“It is now very critical for farmers from all walks of life to abandon old varieties which they have grown for decades and adopt the recently released varieties that offer some solutions to the new challenges,” said James Gethi, a seed systems scientist with CIMMYT. “There has been massive investment in research that has specifically focused on addressing the adversity of climate change and variability it brings, such as prolonged dry spells, heat stress, and new diseases that have emerged. As such, it is beneficial to the farmer to shift to the latest varieties as they suit the environmental context better compared to the older varieties.”

In recent years, Zimbabwe has experienced erratic rainfall and severe heatwaves during summer months, which is a key period for the growth of crops. This has led to low yields in various parts of the country, but the situation could improve through the combination of improved agronomy and varieties presented by seed and seed distribution companies who attended the fairs.

“Together with CIMMYT and other partners, we have invested in developing varieties that will help us achieve our annual food security goals,” added Busiso Mavankeni, head of the Crop Breeding Institute (CBI), which is housed within DRSS. “As such, farmers not adopting these new varieties contribute towards a huge waste of beneficial and relevant scientific research. Whilst it is not the farmers’ fault why they haven’t adopted them, we need to take deliberate steps to ensure farmers are aware of these varieties. That is the only way we can stimulate their adoption.”

Private sector partner poses with a happy farmer, who has procured drought tolerant seed. (Photo: Tawanda Hove/CIMMYT)

Improving seed management

One of the project’s core aims is to promote positive seed management practices to both farmer and seed companies. In fact, these seed companies have a key role to play in supporting farmers with this knowledge. Understanding how to store crops in optimal conditions, for example, can lead to a more successful harvest.

“It is essential for both the farmers and local agro dealers to know how to manage seed before sale and planting,” Gethi added. “For example, rarely do farmers check the expiry date of seed when they buy them from an agro dealer. Secondly, when the seed needs to be stored, it is essential for it not to be stored close to heat sources or to be unnecessarily exposed to the sun for prolonged periods. This compromises its germination potential. Furthermore, it is crucial for farmers to only buy seed from registered and reputable agro dealers.”

These important messages were relayed to farmer throughout the project’s demos and field days, which led up to the seed fairs.

In addition to purchasing seeds, farmers had the opportunity to learn about new developments and build relationships in the private sector by attending the fairs.

“With these seed fairs, we have not only brought this multitude of seed and machinery companies to your doorstep so that you easily access good seeds, but so that you can also talk and understand what new products are on offer,” explained Christian Thierfelder, principal cropping systems agronomist, innovation science leader for Africa within CIMMYT. “For this coming season, we do not want to see you growing ancient varieties but would want to see you purchase new products which perform better than the old ones.”

ARDAS agricultural extension officer Canaan Jakata was also encouraged by the success of the project’s activities and is looking forward to seeing the farmers who attended the seed fairs enjoy a successful yield during the upcoming summer season. “I am very keen on assessing the performance of farmers in my ward who bought these improved varieties at the seed fairs as compared to neighboring wards in the district which did not. Regardless of how the season turns out, I expect superior performance from my farmers,” said Jakata.

Kenya Lifts 10-year Ban On GM Foods, Allows Open Cultivation, Importation Of White GM Maize

Food crops and animal feeds produced through biotechnology innovations can now be imported into Kenya after the ban on genetically modified organisms (GMOs) was lifted.

Kenyan scientists and research institutions are now able to develop crop varieties that will benefit farmers and their communities.

In a landmark statement on October 3, the Cabinet said: “In accordance with the recommendation of the Task Force to review matters relating to GMOs and Food Safety, and in fidelity with the guidelines of the National Biosafety Authority (NBA) on all applicable international treaties including the Cartagena Protocol on Biosafety (CPB), Cabinet vacated its earlier decision of 8th November 2012 prohibiting the open cultivation of GMOs and the importation of food crops and animal feeds produced through biotechnology innovations; effectively lifting the ban on GMOs. By dint of the executive action open cultivation and importation of white (GMO) maize is now authorized.”

Read the original article: Kenya Lifts 10-year Ban On GM Foods, Allows Open Cultivation, Importation Of White GM Maize

Cover photo: A decade-long ban on genetically modified foods has been lifted in Kenya. (Photo: New Nigerian Newspaper)

CIMMYT delivers seed to Svalbard Global Seed Vault

The Ambassador of Mexico to Norway, Ulises Canchola Gutiérrez, delivers a box of CIMMYT maize and wheat varieties to the Svalbard Global Seed Vault. (Photo: Petra Pajdakovic/Crop Trust)

The Ambassador of Mexico to Norway, Ulises Canchola Gutiérrez, delivered a deposit from the International Maize and Wheat Improvement Center (CIMMYT) to the Svalbard Global Seed Vault on October 12.

CIMMYT was the ninth depositor in the Seed Vault in 2022, with a contribution of 263 accessions of maize and 3,548 accession of wheat.

“Professionally, I am pleased to carry out this activity that contributes to the conservation of genetic resources and guarantees food security of two of the major crops that feed the world,” said Rocio Quiroz, assistant research associate at CIMMYT. “When we prepare a shipment as a team, it is extraordinary because we contribute to the perpetuity of each accession deposited in the vault. Very few people have the privilege of doing so.”

Maize and wheat seeds begin their journey to the Seed Vault from CIMMYT Headquarters in Texcoco, near Mexico City, on September 22. (Photo: Francisco AlarcĂłn/CIMMYT)

What is the Seed Vault?

The Seed Vault is a genebank collection that holds duplicates of seeds from more than 1,700 genebanks around the world, playing the role of a backup collection. By protecting these varieties from catastrophic loss, the Seed Vault contributes towards food security for future generations.

Owned by Norway and managed in partnership between the Norwegian Ministry of Agriculture and Food, NordGen, and the Crop Trust, the Seed Vault currently holds 1,165,041 seed varieties, with capacity for millions more.

In 2020, CIMMYT was the largest contributor, providing 173,779 maize and wheat accessions from 131 countries.

Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)

How is germplasm stored at CIMMYT?

CIMMYT’s own germplasm bank contains approximately 150,000 unique collections of wheat seed and its ancestors and is the largest unified collection in the world for a single crop.

For maize, the germplasm bank contains more than 28,000 samples, including the world’s largest collection of maize landraces, representing nearly 90% of maize diversity in the Americas.

Carolina Sansaloni, manager of the wheat genebank at CIMMYT, said, “I am proud of all CIMMYT germplasm bank staff that made a great effort to send an additional 3,800 accessions to the Svalbard as safety duplications. This contribution is for the food security of humanity.”

Fast Tracking Climate Solutions from CGIAR Germplasm Banks

The Fast Tracking Climate Solutions from CGIAR Germplasm Banks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of common bean and maize biodiversity, held in trust for humanity in the genebanks of CGIAR, to develop the raw ingredients of new climate-smart crop varieties for small-scale farmers in the Northern Triangle: Guatemala, Honduras and El Salvador.

Aligned with, and building upon the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, this project aims to identify common bean accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Additionally, within the maize work, the project focuses on transferring valuable novel genetic variation identified from landraces under the aligned project into breeding materials suitable for variety development in the Northern Triangle.

Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, the UK Biotechnology and Biological Sciences Research Council, and the ongoing Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, this project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

Objectives:

  • Support faster and more cost-effective discovery and deployment of climate-adaptive alleles from the world’s germplasm collections.
  • Test integrated approaches for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.

Annual Report 2021 launched

Today, the International Maize and Wheat Improvement Center (CIMMYT) is excited to share with you the Annual Report 2021: From Discovery to Scaling Up.

Read the CIMMYT Annual Report 2021Read the web version of the Annual Report 2021

Download the Annual Report 2021 in PDF format

Download the financial statements 2021

Our latest Annual Report captures the three ways in which CIMMYT science makes a difference:

  1. The scientific pathway from discovery and validation: In 2021, we embarked on an ambitious initiative to apply environmental genome-wide association methods to predict how today’s maize, rice, sorghum, cassava, groundnut, and bean varieties will perform in the future under climate scenarios, and help them succeed in three or four decades from now.
  2. Translating science to innovation: Last year, we made important strides in boosting the resilience of maize and wheat to a hotter and drier world — and to the threats of ever-evolving and invasive pests and diseases.
  3. Scaling up innovation for farmers and society: In collaboration with dozens of public- and private-sector partners in the countries where we work, in 2021 we scaled up sustainable technologies and farming practices for hundreds of thousands of farmers.

CIMMYT director general Bram Govaerts presented the current challenges: “A global food crisis fueled by conflict, trade disruptions, soaring commodity prices and climate change.” He also expressed CIMMYT is ready to respond to the immediate and long-term threats facing humanity. “We have solid, science-informed solutions, policy recommendations and proven methodologies that will help avert the global food security crisis that looms,” he said.

We want to thank all our funders and partners for their collaboration and support, year after year.

Drought and heat tolerance in bread wheat landraces

Climate change is predicted to cause losses of more than 20% in agricultural production by 2050. With a growing global population, crops adapted to the effects of climate change, such as drought and heat, are necessary for the maintenance of productivity levels to meet the demand for food.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with scientists from the Universidad AutĂłnoma Agraria Antonio Narro, set out to analyze bread wheat landrace traits against seven climactic variables: mean temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean temperature, heat index of maximum temperature, and drought index. The method used genome-environment associations (GEA) and environmental genome-wide association scans (EnvGWAS), which have traditionally been poorly applied in this type of research.

Based on a sample of 990 bread wheat landraces from the CIMMYT genebank, the study discovered proteins associated with tolerance to drought and heat. With these results, new genotypes with resistant alleles can be selected for breeding programs to produce resistant varieties adapted to extreme environments and the effects of climate change.

Read the study: Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.)

This work was implemented by CIMMYT as part of the Seeds of Discovery (SeeD) Initiative in collaboration with Universidad AutĂłnoma Agraria Antonio Narro (UAAAN), made possible by the generous support of the MasAgro project funded by the Government of Mexico’s Secretariat of Agriculture and Rural Development (SADER). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of SADER.

Cover photo: Field hand collecting wheat in Ciudad Obregon, Mexico. (Photo: Peter Lowe/CIMMYT)

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.

Because error has a price

A systematic review conducted by a team of scientists from the International Maize and Wheat Improvement Center (CIMMYT) has revealed that many farmers around the world incorrectly identify their crop varieties, with significant impacts on their farming practices, yields, profits, and research.

The review, published this month in Outlook on Agriculture, brings together information from 23 published studies to sketch crop variety misclassification among farmers, its determinants, and the implications of classification errors on the farm and in research.

“We found that seven out of ten farmers incorrectly identified the grown variety when they were asked to identify the variety by its specific name. When farmers were asked if the grown variety was either improved or local, three out of ten farmers made incorrect classifications,” said Michael Euler, first author of the study and agricultural resource economist at CIMMYT.

Whether farmers correctly identify crop varieties has a knock-on effect on their farming practices, which in turn affects their crop yields and income. This can bleed into research, impacting experiments and evaluation studies of agricultural technologies and methods. For example, scientists might assign treatment and control groups based on incorrect farmer variety classification, potentially leading to biased estimates and data discrepancies.

“Varietal misidentification can lead to improper agronomic management, forgone farm revenue, and seed system malfunctioning. From a monitoring and evaluation perspective, the potential presence of bias in estimates due to varietal misclassification is problematic as it may mask the true costs and benefits of seed technologies,” said Euler.

Immature wheat seeds. Ciudad Obregon, Mexico 2017. (Photo: Peter Lowe/CIMMYT)

The study is the first systematic review of the use of DNA fingerprinting – a method that uses molecular markers to identify crop varieties – to assess how accurate farmers are in identifying their varieties and the impacts this has on seed markets, crop performance, farm profits, and research.

“The use of DNA fingerprinting to identify crop varieties in farmers’ fields has emerged only recently. The review of existing literature, nonetheless, shows its potential to strengthen the functioning and effectiveness of seed markets, supply chains, and extension services,” said Vijesh Krishna, co-author of the study and senior scientist at CIMMYT.

The results of the review show that cases of farmers misidentifying varieties are widespread, causing problems for farm productivity and profits, as well as research. The authors also found that DNA fingerprinting can shed light on what drives farmers to misidentify varieties and how they can minimize misclassification.

“Varietal misidentification is not only related to farmer and farm characteristics but also depends on the properties of the seed system through which seeds are obtained. We need more comprehensive modeling approaches to improve our understanding of the system-level drivers of farmer varietal misclassification,” said co-author and CIMMYT senior agricultural economist Moti Jaleta.

However, like most technologies, DNA fingerprinting has its limitations. It may not always be feasible in all settings, and the costs may offset the benefits in areas where formal seed markets are already well-functioning.

“DNA fingerprinting is considered a reliable method to accurately identify varieties grown by farmers and is increasingly seen as the ‘gold standard’ for varietal identification. However, it requires a high-quality reference library, a well-designed sampling strategy, and accurate tracking of plant samples from collection sites to the point of analysis,” said CIMMYT senior scientist and co-author David Hodson.

Based on the results of the analysis, the authors recommend integrating DNA fingerprinting into existing national data collection toolboxes to accurately estimate adoption and turnover rates of improved crop varieties and to evaluate existing genetic crop diversity on farms. Understanding and promoting genetic crop diversity are crucial steps for enhancing food security and increasing the climate and pest and disease resilience of crops.

Having accurate estimates of adoption and turnover rates of varieties, combined with seed supply system assessment, can also help researchers and decision-makers pinpoint any bottlenecks or loopholes in the “lab to farm” process, according to the authors.

“The review aims at helping researchers and policymakers strategize to more effectively assess the functioning and effectiveness of seed diffusion systems to deliver modern seeds to smallholders,” concluded Krishna.

Read the full study: Because error has a price: A systematic review of the applications of DNA fingerprinting for crop varietal identification

Cover photo: Farmer examines wheat seed. Ciudad Obregon, Mexico 2017. (Photo: Peter Lowe/CIMMYT)

Gene Editing for Reducing Aflatoxin in Groundnuts

The Gene Editing for Reducing Aflatoxin in Groundnuts project seeks to advance safer and nutritious groundnut varieties with durable genetic resistance to Aspergilli infection and aflatoxin contamination via gene editing. These new technologies will help address associated health and disease burdens, malnutrition, and trade and economic losses for smallholder farming communities in sub-Saharan Africa and globally. The main output of this project will be gene-edited varieties with reduced levels of aflatoxins.

Cereal seed systems

For certified seed to reach a farmer’s field for cultivation, it passes through many hands – international and national breeding programs, government regulatory agencies, private seed companies, and retailers or agrodealers. These organizations each play an important role in the design, testing, production and distribution of improved maize and wheat varieties.

Together, these processes, actors, and the relationships between them form a seed system, which incorporates the production, conservation, exchange, and use of propagation materials for crops. As defined by the CGIAR Community of Excellence for Seed Systems Development (COE), seed systems are complex, involving arrangements between public and private sectors, layers of regulation, and years of research and development, and are specific to each crop, country, agroecological environment and market context.

The International Maize and Wheat Improvement Center (CIMMYT) has extensively researched and worked with the facets and actors of cereal seed systems in Latin America, Asia and Africa, specifically in relation to cereal crops, and with maize and wheat in particular.

The role of CIMMYT scientists in supply and demand

Breeding teams use traditional and advanced techniques to identify improved maize and wheat breeding lines according to the desired traits determined by farmers and consumer markets. In addition to higher grain yields, other preferred traits include more and larger grains or fruit, resistance to pests and diseases, tolerance to environment pressures (such as drought or poor soils), better nutritional quality, or flavor and ease of processing.

These lines are used for further breeding, testing, seed multiplication by public and private sector partners. Others engage in varietal testing on farmers’ fields and support seed companies in production.

To foster smallholder farmers’ access to these improved varieties, CIMMYT implements a seed systems strategy divided into supply side development, concerning breeding and seed production, and demand side development, covering issues related to variety distribution and uptake. On the supply side, CIMMYT scientists’ work is carried out in three phases:

  • Product development phase: Breeders advance through CIMMYT’s breeding funnel (pipeline) the most promising materials from one improvement stage to the next. The best candidates are first tested in field trials at research stations and then in farmers’ fields. Afterwards, CIMMYT organizes field days to showcase the best performing materials to public and private sector partners.
  • Product allocation phase: Local partners request new CIMMYT products and sign licensing agreements that protect the new seed from private ownership claims and help accelerate marketing and distribution in target regions at affordable prices.
  • Release and commercialization phase: Farmers can obtain and benefit from seed of improved maize and wheat once national authorities register and release varieties that excel in national performance trials and public and private sector partners begin seed production and marketing or distribution.

On the demand side, CIMMYT scientists work to support seed systems development though its work on:

  • Farmer preferences and demand for varieties: Scientists look to understand current and future preferences and needs for varieties. This involves the use of innovative tools, such as product concept testing, on-farm testing and ranking, and participatory varietal evaluation.
  • Seed industry development: Small and medium sized seed businesses, as well as agrodealers, play a critical role in the distribution of seed. Our work looks to understand entry points for support to the seed industry for advancing faster uptake of new varieties by farmers.
  • Consumer demand for grain: The preferences of consumers and agroindustry for grain and grain-based foods provide an important source of demand for new varieties. CIMMYT scientists engage with consumers and agroindustry for innovation in food product design and testing consumer acceptance. Insights gains are reported back to breeding and seed production teams for design of future cereal varieties.

Gender-sensitive seed systems

A team of social scientists at CIMMYT with expertise in economics, gender and marketing works to understand the needs and preferences of farmers, consumers, and the agroindustry for new varieties. They develop retail strategies, such as targeted marketing, in-store seed assessment support and price incentives, promote the adoption of better policies in support of seed companies and seed markets.

CIMMYT explores mechanisms to help seed companies adapt their products to women’s preferences. Research shows that beyond yield potential, women seek different characteristics in seeds than men. For example, women are more inclined to favor a variety with a longer grain shelf life. Similarly, when women engage in participatory variety selections, they tend to make more objective evaluations of varieties than men.

Our experts advance strategies to promote inclusive and effective delivery systems, helping both female and male farmers obtain the seed that works best for their specific needs. This ongoing model gives CIMMYT feedback from farmers and public and private sector partners, which informs subsequent breeding research.

Why are cereal seed systems important?

CIMMYT contributes to new improved seeds getting to farmers, consumers and agroindustry, which ultimately leads to lasting positive impacts in terms of food security and economic development.

Cereals such as maize and wheat play a critical role in global food security. Increasing their productivity in the Global South remains a key developmental priority. Smallholders face increasing pressure to sustain and increase their yields in the face of three main issues: climate change, which increases the frequency of severe drought, floods, and pest and disease outbreaks; rapidly rising costs of inputs, such as land, labor, fertilizer; and unfavorable marketing conditions for their grain.

As a critical entry point for improved agricultural technology, seed systems are in urgent need of improvement and modernization. Since the onset of the Green Revolution in the 1960s, the discovery, development, and delivery of improved seed for smallholder farmers has remained an essential part of global and local initiatives to increase smallholder productivity.

What does a sustainable, inclusive, and productive seed system look like?

For the future, there are serious challenges for expanding and deepening the impact from investments in breeding. Market intelligence systems are urgently needed to support breeding teams in future product design and evidence-based prioritization. Innovation is needed in terms of how actors within the systems inform and support farmers to experiment with new seeds.

CIMMYT is working with CGIAR partners to implement a new, 10-year strategy. Effective seed systems achieve the widespread adoption of varieties that capture the gains from crop improvement and connect actors along the value chain so that all can benefit from a productive crop, from seedbank to soil. In close collaboration with national agricultural research systems (NARS), CGIAR has had historic success introducing improved cultivars to smallholder producers of staple crops, with high return on investment. However, there is still some standing criticism that large, public breeding programs take a technologically-biased and supply-pushed approach to agricultural innovation.

Cereal crop breeding programs can become more demand-oriented by employing more market segmentation strategies – breaking down target client markets into smaller, more geographically and demographically specific groups – and developing a more accessible description and profile of its products. Using similar approaches, CGIAR is likely to expand demand-oriented programs in genetic innovation and seed systems development in the new phase of operations.

Cover photo: Staff members bag maize at the Demeter Seeds warehouse. (Photo: Emma Orchardson/CIMMYT)

Afghan wheat landrace shows promise for rust resistance

Rust pathogens are the most ubiquitous fungal pathogens that continue to pose a serious threat to wheat production. The preferred strategy to combat these diseases is through breeding wheat varieties with genetic resistance.

Landraces are a treasure trove of trait diversity, offer an excellent choice for the incorporation of new traits into breeding germplasm, and serve as a reservoir of genetic variations that can be used to mitigate current and future food challenges. Improving selection efficiency can be achieved through broadening the genetic base through using germplasm pool with trait diversity derived from landraces.

In a recent study, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used Afghan landrace KU3067 to unravel the genetic basis of resistance against Mexican races of leaf rust and stripe rust. The findings of this study not only showcase new genomic regions for rust resistance, but also are the first report of Lr67/Yr46 in landraces. This adult plant resistance (APR) gene confirms multi-pathogenic resistance to three rust diseases and to powdery mildew.

Using genotype sequencing and phenotyping, the authors also report an all-stage resistance gene for stripe rust on chromosome 7BL, temporarily designated as YrKU. The genetic dissection identified a total of six quantitative trait locus (QTL) conferring APR to leaf rust, and a further four QTL for stripe rust resistance.

Although use of landraces in wheat breeding has been practiced for a long time, it has been on a limited scale. This study represents a significant impact in breeding for biotic stresses, particularly in pest and disease resistance.

Read the full study here: Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace “KU3067”

Cover photo: Yellow rust screening takes place at a CIMMYT experimental station in Mexico. (Credit: Sridhar Bhavani/CIMMYT)

Pilot of new wheat variety improves yield for farmers in Ethiopia

“I am happy with this wheat variety and all the support from the project,” said Agere Worku, a female farmer in Ethiopia working with the International Maize and Wheat Improvement Center (CIMMYT). “It is a lot of money that I will earn as a female farmer in my life.”

Worku is just one farmer taking part in a pilot intervention as part of CIMMYT’s Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project. Four female and four male farmers were chosen to take part from the Melke Yegna Tesfa Association, a membership group of 83 smallholder farmers, nearly half of which are female.

Participants were given Kingbird seeds, a new wheat variety, to plant in their smallholdings. The project then supported them through capacity building and advice on smart soil, water management, plant protection and agronomic packages.

“We prepared six hectares of land and sowed 1.1 tons of Kingbird seed,” said Yeshiwas Worku, chair of the Melke Yegna Tefsa Association. “There were other wheat varieties, such as Danda’a, adjacent to our experimental plot and the difference in yields was very visible. The other members of the association were eager to get Kingbird seeds, which are very different in terms of quality, yields, maturity, and disease tolerance.”

“CIMMYT is a life changer for me,” said Buzayehu Getahun, a farmer in Jeju, in the Oromia region. “I produced 3.7 tons on 0.75 hectares. Interestingly, I earned around 132,000 Ethiopian Birr (US$2,500) from this yield. I plan to build a new house for my mother in my village and will be blessed by her at her old age,” said Getahun.

Female smallholder farmer with a bag of Kingbird seed, which she will use as part of a CIMMYT project pilot. (Credit: Enawgaw Shibeshi/CIMMYT)

The impact on female farmers

After involvement in the pilot, the female farmers produced higher yields than they had experienced before.

“I used to harvest wheat three times in the previous years and earned only 0.66 tons of wheat per 0.75 hectare using seeds of other wheat varieties,” explained Worku. “But now thanks to support from CIMMYT, the yield has increased four times than the previous years; I produced 2.4 tons per 0.75 hectares. I am very happy with the high yield and feel encouraged to reinvest in other agricultural activities.”

A second female farmer, Melishew Tedela, said, “I am happy with this seed and all the support from the project. I can be witness that the other farmers who didn’t get this variety were not happy with their low yields of wheat.”

Female farmers in Ethiopia share their experiences of cultivating Kingbird wheat crops. (Credit: Enawgaw Shibeshi/CIMMYT)

The future of lowland wheat farming

Bekele Geleta Abeyo, wheat breeder and Ethiopia Country Representative at CIMMYT, said, “The Government of Ethiopia is emphasizing increasing irrigated wheat production and productivity in the lowlands to complement the intensification of rainfed wheat production in the highlands in order to achieve self-sufficiency by 2023 and feed the ever-growing population.”

With world wheat prices skyrocketing due to the Ukraine conflict, wheat technology generation and dissemination are key for sustainable agricultural practices.

CIMMYT is working to replace obsolete wheat varieties in Ethiopia that are susceptible to wheat rust, particularly yellow and stem rust, with disease-resistant products. Newer varieties like Kingbird are rust-resistant and therefore produce higher yields.

Farmer in his field of Kingbird wheat in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)

Fighting back against Ug99 wheat stem rust

Sridhar Bhavani, head of rust pathology and molecular genetics and the International Maize and Wheat Improvement Center (CIMMYT), shared potential solutions for fighting back against wheat stem rusts like Ug99.

More than 200 new wheat varieties released by CIMMYT over the last ten years have contributed to reducing the spread of wheat stem rust in East Africa, where the disease originated. Scientists identify genes resistant to Ug99 and breed new varieties that are not susceptible to stem rust pathogens.

For long-term success, combining multiple resistant genes within a single variety is the way to go.

Read more: Fighting back against Ug99 wheat stem rust

Essential actions to mitigate the food crisis, stabilize supply and transition to greater agrifood system resilience

Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)
Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)

As the Russia-Ukraine war continues to degrade global food security, a new analysis lays out concrete actions that governments and investors must do now to mitigate near-term food security risks and stabilize wheat supplies, while transitioning toward long-term resilience.

The guidance, published in Nature Food by scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners, lays out short-, medium- and long-term steps to respond to the global food crisis and ultimately lead to a more resilient global agrifood system.

“The Russia-Ukraine war will impact global food security over months — if not years,” said CIMMYT Global Wheat Program Director and lead author Alison Bentley. “We now need to move beyond defining the problem to implementing practical actions to ensure stable supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system.”

The war in Ukraine and trade sanctions against Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. More than 2.5 billion people worldwide consume wheat-based foods; those in lower- to middle-income countries dependent on imports from Russia and Ukraine are particularly affected. Some of the world’s poorest countries, such as Bangladesh, Sudan and Yemen, rely heavily on Russian and Ukrainian wheat. Given the highly interconnected nature of contemporary agrifood systems, few will remain unaffected by this new global food shock.

Mitigate the immediate crisis

The first priority, according to the authors, is to mitigate the immediate crisis by boosting wheat production in existing high- and low-productivity areas, ensuring grain access and blending wheat flour with other low-cost cereals. Bundled agronomic and breeding improvements and sustainable farming practices can reduce dependence on imported grain and fertilizer, while coordinated, multilateral policies can help conserve grain stocks for human consumption and avert trade restrictions.

Increase the resilience of wheat supply

In the medium term, the authors emphasized the need to increase the local, regional, and global resilience of the wheat supply. This can be done by expanding production within agro-ecological boundaries, supporting national wheat self-sufficiency and providing technical assistance, to increase the production of high-yielding disease-resistant wheat and to mainstream capacity for pest and disease monitoring.

Transition to system-level resilience

Finally, to reach crucially needed resilience in the world’s agrifood system, long-term measures must be taken that encompass agroecosystem diversity, address gender disparities in agriculture and rural communities and sustain increased investment in a holistic, agrifood transition.

“The current global food crisis underscores and compounds existing inequalities in our global food system,” Bentley said. “A transition to agrifood system resilience requires us to urgently balance global food supply needs with the multi-layered challenges of climate change, achieving gender equity, nutritional sufficiency and livelihood security.”


RELATED RESEARCH PUBLICATIONS:

Near- to long-term measures to stabilize global wheat supplies and food security

This research is supported by CGIAR Trust Fund Contributors.

INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

Ricardo Curiel, Communications Manager, CIMMYT. r.curiel@cgiar.org, +52 5558042004 ext. 1144.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agrifood systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.