Skip to main content

research: Genetic resources

Scaling impact of dryland crops research through regional crop improvement networks

A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.

The meeting followed a series of consultative visits and discussions between three CGIAR research centers — the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) — African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.

“The idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, it’s really a collaborative model,” said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).

Paradigm shift for African National Agricultural Research Institutes

Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. “Dryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food security”, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.

Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.

Director General of Uganda’s National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.

He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. “The NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projects”, said Agona.

Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

Challenge to deliver effectively

During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. “It is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,” said Govaerts.

Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.

CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.

The meeting heard One CGIAR’s commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITA’s Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.

PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.

Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.

A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

International Year of Millets, 2023

The gathering commemorated the International Year of Millets by listening to a keynote address on “Millets for food and nutritional security and mitigating climate change – #IYM2023” by Lake Chad Research Institute, Nigeria, Research Director, Zakari Turaki. The keynote was followed by statements on the importance of millets for various countries and wider Africa from: Sanogo Moussa Daouda, representing Director General of Mali’s Institut d’Économie Rurale (IER); Ibrahima Sarr, Director of Senegal’s Institut Sénégalais de Recherches Agricoles’s Centre National de Recherches Agronomiques; Hamidou Traore, Director of Burkina Faso’s Institut de L’Environnement et de Recherches Agricoles; and Ambrose Agona, Director General of NARO, Uganda.

High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzania’s Agricultural Research Institute (TARI), Francis Kusi of Ghana’s Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegal’s Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).

AVISA Achievements

Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.

Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forum’s efforts to build on the gains made by the project in developing the new approach.

“By the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of land”, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.

The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghana’s Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).

CGIAR Initiative: Breeding Resources

Crop breeding has the potential to significantly contribute to addressing the global challenges of poverty, malnutrition, hunger, gender inequality, environmental degradation and climate change. Rapid population growth, climate change and market crises in low-income and middle-income countries mean that crop breeding must be far more agile and professional than ever before. Data-driven, modernized breeding with tools and technologies such as genomic selection, quantitative genetics, high-throughput phenotyping and bioinformatics, are needed to accelerate and advance improvement in varieties.  

Across the CGIAR-NARES (National Agricultural Research and Extension Systems) crop breeding networks, there is huge opportunity to reach the full potential to improve the lives of farmers and consumers: to share innovations to their full potential; reduce costs associated with services such as bioinformatics; de-fragment disparate data and incompatible technologies; apply consistent standards; and improve access to tools, technologies and shared services.

This Initiative aims to improve the genetic, economic, social and environmental performance of breeding programs across the CGIAR-NARES breeding network.

This objective will be achieved through:

One year of Women in Crop Science at CIMMYT

To mark International Women’s Day 2023, Nele Verhulst, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), shares progress from the Women in Crop Science group and how their work tries to contribute to gender equality in agriculture and science.

Growing up in the nineties in Belgium, I was interested in feminism, but I also assumed that the fight for equal rights for women and men had been fought and won. Studying bioscience engineering in the 2000s, more than half of the students were women, so this demonstrated to me that we were all set (although the large majority of professors were men, it seemed to be just a matter of time for that to be resolved). I have now been working in Latin America as an agronomist and researcher for more than 15 years and have come to realize that there is still a lot of work to do to achieve equal opportunities for female farmers, farm advisors, scientists, and other professionals in agriculture.

At CIMMYT, between 20 and 25 percent of staff in the science career track – careers involving field, lab, data, and socioeconomic work – are female. Because of that, Alison Bentley and I started a group of women in crop science at CIMMYT about one year ago on the International Day of Women and Girls in Science in 2022. In our first meeting, we aimed to connect, discussed how to build a network (we did not even have a list of all women in science at CIMMYT, so it was hard to know who to invite), and decided whether we wanted to commit to additional actions to achieve a more inclusive environment at CIMMYT.

Since that first meeting, we have organized coffee mornings and other events, and have split into smaller working groups to draft action plans on ten topics: gender in the workplace strategy development, advancement for locally recruited staff, mentorship, recruitment processes, microaggressions, harassment policies, work-life balance, family friendly work environment, raising external awareness about women in agriculture, and ensuring internal visibility.

Our group is also linked to the worldwide network of Women in Crop Science and the One CGIAR Women in Research and Science (WIRES) group.

I have enjoyed being able to make some first small changes – who knew sanitary facilities would turn out to be a recurring topic! – but most of all I have loved the opportunities over the past year to connect with women with a shared passion for crop science in all its aspects. That passion and the opportunities it creates to improve the lives of farmers and rural communities is the most important thing we are celebrating today.

Cover photo: Women participate in a public harvest event for timely sown wheat organized by the Cereal Systems Initiative for South Asia (CSISA) project with Krishi Vigyan Kendra (KVK) in in Nagwa village near Patna in Bihar, India. (Photo: Madhulika Singh/CIMMYT)

Supporting the careers of women in science

Happy Makuru Daudi, Head of Groundnut Research Program at the Tanzania Agricultural Research Institute (TARI) based at Naliendele Research Center in Mtwara, is a plant breeder specializing in groundnut. For the United Nations International Day of Women and Girls in Science, she shares with us her passion for what she does and why more women should venture into plant breeding.

What inspired you to get into your career?

I was in love with science and my intention was to be a doctor but later I changed my mind. I loved biology a lot and that set my focus on my academic path. At university I had good mentors who influenced my career direction as well.

When I achieved my first degree, I was recruited by the Government of Tanzania as an agricultural officer. My then boss, Omar Mponda, inspired me to be a plant breeder. He encouraged me and I went ahead to study plant breeding for both my Masters and PhD. My first degree was in Agronomy, I then did a Masters in Crop Science, specializing in Plant Breeding, and eventually completed a PhD in Plant Breeding as well.

What did you love about plant breeding?

I realized breeders are very active people. Always trying to improve and change things. Always looking for ways to make a difference. This desire to make a change makes us active lifelong learners.

The other thing I learnt from breeders is that they can change the life of farmers. Most smallholder farmers are women. I love my crop (groundnut) because it is a ‘woman’s crop’. If the breeder develops a product such as groundnut with high impact, it means they have changed the life of women. I realized I work a lot with women in my field and even if I only change the smallest of things, it means I get to change their lives and boost them from one step to the next.

Please elaborate on why you refer to groundnut as a woman’s crop.

Groundnut is a nutritious crop and is used a lot in processing and preparing children’s food, hence most women value it and engage in farming the crop, even though in small plots of land, in order to have nutritious food for their families’ health.

Most women especially in Tanzania view groundnut as their ATM, in that when they need money for use at home, they only need to sell some of their harvested groundnut and get cash to meet their home’s needs, such as buying schoolbooks for their children.

Women are involved in the entire groundnut value chain, that is from farming the crop in the field up to the processing stages, unlike men who mostly only come in at the market stage to sell the produce. Therefore, groundnut is source of income for many women in Tanzania.

Happy Makuru Daudi presents at the Drylands Legumes and Cereals Crop Improvement Review and Planning meeting in Ghana in January 2023. (Photo: Susan Otieno/CIMMYT)

Has the International Maize and Wheat Center (CIMMYT) and the CGIAR at large contributed in any way to your career growth?

Yes! They have contributed a lot. First in building my capacity and, as I work with them in the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. My PhD was sponsored by the Tropical Legumes III Project. I remember when interacting with scientists from these organizations, I observed how they carried themselves with confidence, both the women and men; it motivated me and built my confidence.

What was the focus of your PhD?

My PhD was on breeding for groundnut resistance for rust and high yield in Tanzania.

What is your message for young women and girls interested in getting into science, technology, engineering, and mathematics (STEM) careers?

First, they need to trust themselves. They can do anything in this world. They should not be fearful. For instance, those interested in breeding might observe that most breeders are men, and they may tell themselves that it is a difficult career and run away from it. But I would like them to tell themselves they can be and do even better than men. They only need to trust themselves and build their confidence.

Tell me about the formation of your team – are you intentional in working with women in your team?

Yes, I’m usually intentional about this. I always give equal chance to both genders but when I get an opportunity to hire for my team, it makes me happier if a woman lands the job. I realized women are good workers and ready to learn. Most of my casual laborers on my team are also women. They work meticulously. The main work for breeders entails crossing. The best people for crossing are women! I have observed that the success rate of the crosses is higher with women! Crossing is intensive work, physically as well, and needs utmost concentration. So, I trust them in this.

Is there anything else you would like to add?

I want to encourage women not to run away from sciences, and especially agricultural sciences such as breeding. We want more women breeders. They can change this world and help more people put food on the table. The agricultural sector, especially the farms, are dominated by women, and it is easier for them when they interact with other women. When we go meet them in the fields, it is easier for us to understand their needs and change their lives. So, I call girls and women to come on board in this sector and change the lives of many.

Cover photo: Happy Makuru Daudi (center) discussing groundnut varieties with colleagues from TARI and CIMMYT in Mtwara, Tanzania, in 2022. (Photo: Susan Otieno/CIMMYT)

Lokesh Chaudhary

Lokesh Chaudhary is an agronomist with expertise in seed physiology, crop modelling, precision agriculture and GIS GNSS. He is currently learning about drone piloting, data collection and processing.

At CIMMYT, Chaudhary works on resilient climate agriculture, under which technology transfer is done. Expertise in agronomy, seed and machinery is required and used extensively. He supports in the execution of farmers participatory and on-station demonstrations/research trials on climate-resilient agricultural practices, monitors day-to-day field activities (irrigation, fertilizer, herbicide, insecticide, etc.) and conducts data collection of the farmers participatory/research trials.

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

In an interview, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), highlights the challenges facing crop cultivation management and agricultural product trade in Mexico and the rest of the world.

“At present, one of the most pressing challenges [in Mexico] is water scarcity exacerbated by la Niña’s occurrence,” explains Govaerts. “The global average of freshwater consumption for food production is 70 percent. However, Mexico ranks 24 in a global Water Stress Index facing high levels of stress by consuming between 40 and 80 percent of water supplies available in any given year.”

The article explores successful local sustainable grain sourcing projects in Mexico, research into sustainable global agricultural development, genetically-modified crops and their connection to biodiversity, and soil health.

Read the original article: Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

The importance of germplasm in protecting nature

At COP15, Sarah Hearne gives an overview of the CGIAR Allele Mining Initiative projects and their potential role in conserving biodiversity and nature. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Prioritizing the protection of biodiversity is an essential part of mitigating and adapting to the effects of climate change and global warming. At the 15th meeting of the Conference of the Parties to the UN Convention on Biological Diversity (CBD) (COP15), held between December 7-19 in Montreal, Canada, emphasis was placed on the important role of nature in meeting the Sustainable Development Goals (SDGs), proposing the adoption of a bold global biodiversity framework that addresses the key drivers of nature loss to secure health and wellbeing for humanity and for the planet.

On December 7, scientists from the International Maize and Wheat Improvement Center (CIMMYT), together with colleagues from CGIAR research centers and the secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture, presented at a COP15 side event on how Digital sequence information (DSI) is changing the way genetic resources are used in agricultural research and development and implications for new benefit-sharing norms.

The session, organized by the CGIAR Initiative on Genebanks explored the role of DSI to conserve crop and livestock genetic diversity and explore and utilize that diversity in plant and animal breeding programs.

Attendees at the COP15 side event on DSI discover how genetic resources are used in research and development for agriculture. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Carolina Sansaloni, wheat germplasm bank curator and genotyping specialist, illustrated how DSI is being used in the CIMMYT wheat collection to analyze structure, redundancies, and gaps, further detailing how generation and use of DSI to conduct similar analyses within national genebanks in Latin America is being supported through collaborative efforts of CIMMYT and the Alliance of Bioversity and CIAT.

CIMMYT principal scientist Sarah Hearne focused on the application of DSI to interrogate broad swathes of crop genetic diversity for potential climate change adaptation, providing examples of work from the Allele Mining Initiative projects, Mining Useful Alleles and Fast Tracking Climate Solutions, alongside earlier work funded by the Mexican Government.

The take-home message was that genetic diversity and germplasm bank collections, when explored at “global scale” with modern tools and diverse partnerships, offer a powerful resource in the efforts to mitigate the impacts of climate change. This potential is only realized through appropriate generation and sharing of DSI generated from collections of many countries of origin.

Sansaloni and Hearne also contributed to a discussion paper, titled “Digital sequence information is changing the way genetic resources are used in agricultural research and development: implications for new benefit sharing norms”. This article, developed by scientists and germplasm law experts from across the CGIAR, provides a more detailed assessment of CGIAR use of DSI and the benefit sharing options being considered by the Contracting Parties to the Convention on Biological Diversity.

CIMMYT hosts third workshop of the Community of Practice for Latin America and the Caribbean

Attendees of the third workshop of the Community of Practice for Latin America and the Caribbean outside CIMMYT headquarters, Mexico. (Photo: CIMMYT)

From November 14 to 18, the International Maize and Wheat Improvement Center (CIMMYT) and the Alliance of Bioversity International and CIAT hosted the third workshop of the Community of Practice for Latin America and the Caribbean on the use of genomic and digital tools for the conservation and use of Genetic Resources for Food and Agriculture (GRAA).

The workshop, attended by 33 participants from 14 countries, was held at CIMMYT headquarters and highlighted topics such as the analysis of genotypic data derived from the DArTseq platform and the analysis of gaps in germplasm collections.

“It was very gratifying to be able to form this Latin American network of germplasm banks together with our colleagues from the Alliance of Bioversity International and CIAT,”said Carolina Sansaloni, Wheat Germplasm Bank Curator & Genotyping Specialist. “Training and knowledge exchange among germplasm banks is essential for better conservation, exploration and utilization of genetic resources in each country.”

Some of the participants shared the following comments and feedback:

  • “Excellent initiative, it is a fundamental support for the strengthening of plant genetic resources conservation systems and the creation of international collaborative networks. Thanks to CIMMYT and the Alliance of Bioversity International and CIAT for the invitation.” Mexico’s National Institute for Forestry, Agriculture and Livestock Research (INIFAP)
  • “Excellent workshop, a very important space for the exchange of knowledge and experiences, it also allows the formation of collaborative work networks between institutions and professionals from different countries with related research.” Escuela de Ciencias Agrarias, Universidad Nacional Costa Rica
  • “This workshop has allowed me to get in contact with colleagues from Latin America and to open the possibility of working together to advance in the characterization and contribute to the conservation of the collections we manage.” Instituto Nacional de Tecnología Agropecuaria, Argentina
  • “This has been a very profitable week for me as curator of the germplasm bank in Brazil. I learnt new concepts and tools that will generate advances in my work.” Brazilian Agricultural Research Corporation (EMBRAPA)

This workshop would not have been possible without the support of the CGIAR’s Genebank Initiative, DivSeek International and Analitek-Illumina.

CIMMYT scientists rank in top 1% of highly cited papers

Jill Cairns in front of CIMMYT headquarters. (Photo: Sam Storr/CIMMYT)

Three scientists from the International Maize and Wheat Improvement Center (CIMMYT) are included in Clarivate’s 2022 Analysis of the most highly cited academic papers.

Maize Physiologist Jill Cairns, Distinguished Scientist and Head of Wheat Physiology Matthew Reynolds, and Biometrician José Crossa, all from CIMMYT, were recognized in the 2022 analysis.

Jose Crossa chairing a session on adding value to phenotypic data. (Photo: Alfonso Cortés/CIMMYT)

This year, 7,255 Highly Cited Researcher (HCR) designations were issued to 6,938 individuals globally. The award is given to scientists with papers that rank in the top 1% by citations. Matthew was awarded for his contribution to scientific literature in plant and animal sciences, while José and Jill were awarded for their contributions to scientific literature across several fields of research (cross fields).

Of the world’s population of scientists and social scientists, Highly Cited Researchers are 1 in 1,000.

The analysis highlights disparities in the locations of top cited scientists. For example, 82.9% of recipients are from just ten countries and regions, out of a possible 70, and 71.4% are from the United States of America, China, the United Kingdom, Germany, or Australia. While the recognition is only given to individual scientists, Matthew, José, and Jill’s success is related to strong scientific collaborations worldwide.

Matthew Reynolds at IWC9 in Sydney, Australia. (Photo: Julie Mollins)

Groundnut ESA crop improvement network sets regional and country level priorities

Members of Umoja, Tuaminiane, Upendo and Ukombozi groundnut farming groups in Naliendele, Tanzania showing their groundnut harvests in May 2022. (Photo: Susan Otieno/CIMMYT)

The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project has developed draft national groundnut target product profiles in Malawi, Mozambique, Sudan, Tanzania, Uganda and Zambia.

Groundnut is grown in eastern and southern Africa, where it remains an important food and oil crop from small holder farmers.

The new findings from the project are a result of work from groundnut crop breeding and improvement teams from the National Agricultural Research and Extension Systems (NARES) representatives from the six largest groundnut producing countries in the eastern and southern Africa region.

Their important research was carried out with the support of representatives from the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and CGIAR.

Developing target product profiles for groundnut

For the first time, through the International Maize and Wheat Improvement Center (CIMMYT)-led AVISA program, funded by the Bill & Melinda Gates Foundation, groundnut breeding teams discussed and documented country level priorities at a meeting in Dar es Salaam, Tanzania.

Their findings were developed using a standard target product profile template recently developed by CGIAR Excellence in Breeding (EiB) in conjunction with CGIAR’s Market Intelligence Initiative. The template serves as a tool to capture market segments and develop targeted product profiles.

The groundnut breeding teams also shared information on current groundnut production metrics and trends in the six national programs. This also helped to establish a common understanding of countries’ level research priorities.

Futhi Magagula from CCARDESA and Elailani Abdalla, Mohamed Ahmed and Abdelrazeg Badadi from ARC-Sudan deliberate on groundnut market segments for Sudan. (Photo: Biswanath Das/CIMMYT)

Agnes Gitonga, market strategist at CGIAR Genetic Innovations Action Area, who led the team in understanding and applying the template, explained that the quality of a target product profile (TPP) is dependent on how well market segments are defined. “To ensure target product profiles are an accurate reflection of customer needs, who include farmers, consumers, and processors,” she said.

“National groundnut teams nominated Country Product Design Teams that will meet nationally before the end of 2022 to review and update country TPPs. These multi-stakeholder teams will ensure that the needs of diverse groups are captured and that breeding efforts are accurately focused.”.

Harish Gandhi, Breeding Lead, Dryland Legumes and Cereals (DLC) at CIMMYT, further explained that a bottom-up approach for defining country and regional priorities was used, where each country defined market segments and target product profile based on the use of the produce and growing conditions of farmers. This strategy involved each country defining its market segments and TPP, which was based on the use of the produce and growing conditions of farmers.

Building on the draft national target product profiles that were defined at the meeting, participants went on to prioritize traits such as diseases, nutrition and stress tolerance. These factors can be critical at regional level and important in identifying potential locations for conducting phenotyping. The phenotyping locations are distributed based on capacity of stations in different countries to screen for traits, such as late leaf spot disease screening in Msekera in Zambia, which is a known hotspot for the disease.

“We had a good opportunity to consider grower needs as well as consumer needs in each country for purposes of defining the relevant groundnuts market segments. I believe this will have a positive impact on future work in groundnuts in the East and Southern Africa region,” reflected Gitonga.

The collaboration of the teams involved was a key factor for the project’s success so far and will be crucial in working towards its goals in the future.

“Involving different stakeholders in designing target product profile was an effective way of enabling transformation of individual preferences (area of interest) to collective preferences (targeted product) with consumer needs and markets in mind,” said Happy Daudi, Groundnut Breeding lead at the Tanzania Agricultural Research Institute (TARI).

Tanzania Agricultural Research Institute (TARI) Naliendele Station Groundnut Research Team ((L-R) Bakari Kidunda, Gerald Lukurugu, Anthony Bujiku and Dr. Happy Daudi) deliberate on national groundnut breeding priorities. (Photo: Biswanath Das/CIMMYT)

Strengthening groundnut breeding programs in east and southern Africa

The project’s first meeting will provide an important foundation for future research, which will use the new findings as a blueprint.

Biswanath Das, Plant Breeder, Groundnut for East and Southern Africa region and NARES Coordinator and Programming lead for EiB said, “Defining national TPPs, identifying regionally important traits and mapping a testing network are fundamental building blocks of a modern breeding program.”

At the meeting, a schedule was laid out for peer-to-peer assessments of breeding programs within the regional network to take stock of current efforts and gaps. This step helps to develop customized capacity development plans for each network partner.

“Through targeted and demand led capacity development, the East and Southern Africa groundnut crop improvement network aspires to strengthen the role of each network member in collaborative, regional breeding efforts,” Das said.

The meeting laid the ground for coordinated regional groundnut breeding and took steps towards formalizing a regional NARES-CGIAR-SME groundnut crop improvement network. By building on excellent connections that already exist among national groundnut breeding teams. Das underscored that the move will strengthen alignment of NARES, CGIAR and regional research efforts around a common vision of success.

In addition, David Okello who leads groundnut research at National Agriculture Research Organization (NARO) Uganda, noted that the meeting provided a good opportunity for consolidating the existing network. He also looked forward to welcoming more groundnut improvement programs in the region on board.

CIMMYT and Join Hope sign partnership agreement

CIMMYT and Join Hope sign a partnership agreement on November 14. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) and Join Hope have cemented their partnership at a research cooperation agreement signing ceremony on November 14.

Join Hope produce seed products including maize, wheat, cotton, and soybean, as well as fertilizers, agricultural films and other products. The company will be providing some funding for five years and will receive access to CIMMYT’s international wheat nurseries and some maize inbred lines, in addition to training and other services. The funding will strengthen CIMMYT’s research efforts in China and create opportunities for training in Pakistan.

CIMMYT and China have developed a win-win partnership that was established back in 1974,” said CIMMYT Director General Bram Govaerts. “Over 48 years, we have collaborated and advanced research for agricultural development in the areas of breeding, genomic research, and sustainable farming systems.”

Through this partnership, as much as 10.7 million tons of grain has been added to China’s wheat output. More than 26,000 CIMMYT wheat accessions were introduced and stored in China, and more than 300 wheat cultivars derived from CIMMYT germplasm have been released in China and are currently grown on nearly 10 percent of the Chinese wheat production area.

“The cooperation agreement that we sign today is another step in the right direction,” continued Govaerts. “It will bring us closer to the Chinese farmer and grain consumers who we all aim to serve.”

CIMMYT at COP27

COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.

Gender and food security

In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYT’s systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyone’s Business Forum, which aimed to bring together experts to determine solutions to the planet’s biggest environmental challenges.

Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.

The role of CGIAR genebanks in a climate crisis

Govaerts and Sarah Hearne, principal scientist, introduced the Agriculture Innovation Mission for Climate (AIM4C) innovation sprint on Fast Tracking Climate Solution from Genebank Collections, at a virtual side event organized by the Foundation for Food & Agriculture Research (FFAR).

Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.

Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.

The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmers’ access to seeds.

The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.

Addressing soil fertility management

Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.

Along with 20 partners, CIMMYT submitted an AIM4C innovation sprint on climate-resilient soil fertility management by smallholders in Africa, Asia, and Latin America, which was announced at COP27 alongside other sprints.

Sapkota, who leads a project that is part of CIMMYT’s AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.

Digital solutions for sustainable systems

Tharayil Shereef Amjath Babu, agricultural economist in modeling and targeting, hosted an event on Accelerating Digital Climate Services for resilient food systems in the Global South, exploring the work of two CGIAR Initiatives: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience and Transforming Agrifood Systems in South Asia (TAFSSA) on November 17.

In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.

Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)

Govaerts delivers keynote speech to Cereals and Grains 22

Bram Govaerts presents at Cereals and Grains 22. (Photo: María Itria Ibba/CIMMYT)

One of the biggest challenges facing the world today is how to balance a healthy diet for humans with agricultural production that is good for the environment. At the International Maize and Wheat Improvement Center (CIMMYT), scientists work closely with farmers to achieve these aims and contribute towards food security, as well as improving their livelihoods and nutrition.

In an opening keynote at Cereal & Grains 22 titled Risk Mitigation in the Food Chain, Bram Govaerts, Director General a. i. of CIMMYT, focused on the organization’s work towards a world with resilient agrifood systems that protect biodiversity.

Govaerts explored the sensitivity of agricultural systems to the impacts of climate change, which in turn affects farmers’ ability to successfully produce crops and their capacity to meet rising global demand for food. However, agriculture itself is not immune from contributing towards climate change, currently accounting for 24% of greenhouse gas (GHG) emissions.

The effects of climate change are not the only pressure on agrifood systems, with other system shocks such as COVID-19 and conflict causing disruption to production and yields, prices, and supply chains, said Govaerts. For example, the current Ukraine crisis, which has heavily affected wheat imports and exports, underscores the need for long-term solutions to stabilize global food security. The encroaching cost of living crisis is adding further challenges to an already delicate situation, and hunger is predicted to increase across the Global South.

Investing in solutions

Research and development (R&D) has an essential role to play in addressing this crisis. Evidence shows that for every $1 USD invested in anticipatory action to safeguard lives and livelihoods, up to $7 USD can be saved by avoiding losses in disaster-affected communities. Simply put, proactive investment in agricultural science will save money in the long run by solving problems before they reach critical point.

CIMMYT’s R&D projects focus on extensive research on climate change adaptation and mitigation in maize and wheat-based production systems, helping smallholder farmers adapt to climate shocks and to raise and maintain yields in profitable and sustainable ways, and on capacity building for stakeholders in the development and application of new technologies.

Scientists are also harnessing the power of genebanks and breeding, focusing on safeguarding, characterization, and use of biodiversity to identify characteristics of seeds for genetic gain, adaptation to climate change, and better nutritional quality. This means farmers can access more and better seeds that respond to agrifood needs.

These innovations are only as effective as their level of adoption, which is why CIMMYT works closely with actors at all levels of agrifood systems.

Climate science at work in Africa

Govaerts shared examples of CIMMYT’s climate change adaptation and mitigation work include the introduction of drought-tolerant maize in Zimbabwe, which yielded more than 0.6 t/ha more than previous varieties. This equates to $240 USD more income per hectare, which provides nine months’ worth of additional food security at no extra cost.

In Malawi, drought-tolerant maize varieties planted under conservation agriculture yielded 66% more than non-tolerant varieties planted under conventional tillage. Farmers harvested more maize while spending on average 35-45 fewer days working in the field.

There is also an increase in popularity for stress-tolerant wheat varieties in Ethiopia, such as Danda’a, Kakaba, Kingbird and Pavon 76.

Scientists have also combined tropical fall armyworm (FAW)-resistant maize germplasm, from Mexico, with elite stress resilient germplasm developed in sub-Saharan Africa to successfully breed three FAW-tolerant elite maize hybrids. This is addressing the serious threat of FAW to maize production in eastern and southern Africa.

Transformation through partnership working

Following an Integrated Agrifood Systems Approach (IASA) has given CIMMYT significant edge by building effective partnerships with the public and private sector. Collaboration on responsible sourcing with Kellogg’s and Grupo Bimbo, as well as a new three-year partnership with Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and Grupo Modelo to encourage water-conserving farming practices, will contribute to a one-system approach.

More than 18 million farmers worldwide benefit through CIMMYT’s improved maize and wheat system farming practices. With so much at stake for the entire world, CIMMYT has no plans to stop now.

Is food security possible without peace?

The intersection between agriculture and peace has been brought to the forefront of the news agenda this year due to the Ukraine crisis, which has caused widespread disruption to wheat supply chains – disruptions that are contributing to food insecurity for millions of people worldwide.

Agriculture was therefore a compulsory topic for the International Week of Science and Peace, and formed the main theme for an online fireside chat between Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), and the Hon. Sharon Burke on November 8.

Burke was the director of New America’s Resource Security program and a senior advisor to New America’s Future of War project in the Department of Defense. She served in the administrations of Barack Obama, George W. Bush, and Bill Clinton.

Futureproofing security and food

“[Food] is a foundational element of all security,” explained Burke, when asked about the connection between the two. “We are facing global pressures. Everything that’s made us successful has also made us vulnerable – with biodiversity loss, with climate change. The challenge of having that foundational element of food security has never been harder than it is right now.”

This is a central vision of CIMMYT as a Wallace center, which Burke referenced to highlight how conflict and food insecurity drive one another: “It’s this terrible knot where things are connected. But when we add in climate change, biodiversity loss and pollution and other elements of our modern life, it’s more important than ever to understand how these elements fit together.”

“Peace, prosperity, and equity… are more relevant than ever in the environment we are working in,” agreed Govaerts.

Govaerts then invited Burke to offer recommendations for the development of CIMMYT’s new strategy. She suggested three points to consider:

  • How is climate change going to shift what agricultural production and productivity means – 10 years from now, 20 years from now, 30 years from now?
  • In that world, how does that reflect through your research and development priorities?
  • How do you continue to have that dialogue with farmers, so that you affect them, and they affect you, and what are the ways to make sure that you deepen that and the equity that’s inherent in that conversation?

Govaerts reflected on recent examples from history where conflict destabilized the global food system, such as the Arab Spring as provoked by consecutive droughts that heavily impacted wheat crops. Burke agreed that it was essential to build peace and secure food supplies simultaneously, always having peace as the end goal before any conflict even begins, and the importance of showing the systems effect to donors to encourage future investment.

“One of the reasons that I really love what CIMMYT does, is that you’re talking about not just food security as some abstract concept but as the people and the places where it’s created,” shared Burke.

CIMMYT’s role in peacebuilding

Burke highlighted the commitment from the United States Government to invest money in food security and food assistance, not just for necessary emergency aid but also for improving food production, farming, and last mile technology.

“How can we leverage this investment that is being made now in an emergency to be one that also builds resilience for this longer-term emergency that we are all facing?” she asked, encouraging research and development organizations to always evidence the impact of their work.

In her closing words, Burke expressed high levels of admiration for our scientists. “You get to actually touch the problem and deliver the solution and work in that two-way dialogue with farmers and that you get to bring that all together – how we think about a problem, how we come up with novel science and technology for solving the problem, and then you get to actually carry it to the field and make it work.”

“You’re not just thinking about peace or researching about peace – you’re delivering it!”