Skip to main content

research: Genetic resources

Big Bang from World Wheat Breeding Bucks

CIMMYT E-News, vol 3 no. 5, May 2006

may01Global, collaborative wheat research brings enormous gains for developing country farmers, particularly in more marginal environments, according to an article in the Centenary Review of the Journal of Agricultural Science.

Forty years of worldwide, publicly-funded collaborative research to improve the yield potential and stress tolerance of wheat, along with efforts to extend the outputs of this science in developing countries, has lowered food costs for the poor, allowed food supplies to meet the demands of rising populations, brought harvest surpluses worth US$ 3-6 billion each year to farmers, and saved 1.8 billion hectares of natural ecosystems from conversion to farmland, to name a few results.

These and other findings appear in a recent review article by CIMMYT wheat physiologist Matthew Reynolds and 1970 Nobel Peace Laureate Norman E. Borlaug—one of a series of papers to celebrate 100 years of publishing by the Journal of Agricultural Science. The review traces how international wheat breeding over the last five decades has evolved into “
a global agricultural strategic and trouble-shooting network that plays a central role in providing food security in the developing world.” Led initially by CIMMYT and later with the partnership of the International Centre for Agricultural Research in the Dry Areas (ICARDA), the network for wheat and related crops provides a forum “
whereby institutional linkages are fostered and maintained globally, not only through exchange of germplasm, but also through knowledge sharing, training programmes, international visits and development of extended partnerships
” According to the article, centers like CIMMYT and ICARDA have also played a key role in collecting and conserving the landraces and other genetic resources that improved varieties have replaced, making those resources available worldwide and, more recently, ensuring that useful diversity is rechanneled into improved cultivars.

“Given its importance and accomplishments, it’s somewhat surprising that global wheat breeding struggles to find investors,” says Reynolds. Also noted by Reynolds and Borlaug was the fact that most of the increased area of adoption of improved wheat varieties since 1977 has occurred in more marginal, rainfed areas, rather than favored irrigated farmlands, and that yield increases from these varieties during 1979-95 were greater in semi-arid and heat-stressed environments (2-3% per year) than in irrigated areas (just over 1% per year).

“Considering the issue of food security and its positive influence on the livelihoods of poor people, it’s clear that publicly-funded international centers provide a continuity in agricultural development that would otherwise be lacking for many countries where economic, political, and social instability are commonplace,” the authors say.

A companion Centenary Review by Reynolds and Borlaug discusses the future of collaborative wheat improvement, in which, according to Reynolds, researchers will apply technology-assisted methodologies and powerful information tools to identify and breed value-added traits into wheat varieties. “At the same time, however, we’ll continue to seek farmer input to increase the amount of useful genetic diversity in the field and the local adaptation of varieties, as well as in testing and promoting conservation agriculture practices.”

Regarding the future, the authors say: “Policy-makers need to balance the appeal of high-risk investments in the latest technologies with the realities of resource-poor farmers, for whom tried and tested technologies offer immediate and reliable solutions.”

To access abstracts or full-text versions of the articles:

Impacts of breeding on international collaborative wheat research

Applying innovations and new technologies for international collaborative wheat improvement

For more information contact Mathew Reynolds (m.reynolds@cgiar.org).

Maintaining the Genetic Integrity of CIMMYT Seed Collections: New Maize and Wheat Gene Bank Operations Manual

October, 2004

In 2004, CIMMYT restructured its research programs into six new global and ecoregional programs. One of these, the Genetic Resources Program, is now home to CIMMYT’s maize and wheat germplasm banks. This new organizational structure indicates the high importance and visibility that CIMMYT places on our role as custodians of maize, wheat, and related species genetic resources.

One of the first priorities of the program was to update the operations manual for the germplasm banks. The result of this effort is this publication, the Wellhausen-Anderson Genetic Resources Center Operations Manual. The policies and procedures outlined in the manual represent those currently being used in the introduction, evaluation, maintenance, regeneration, and distribution of genetic resources at CIMMYT. By following these procedures, CIMMYT ensures that the genetic resources entrusted to it in its germplasm banks are available to the world and that they maintain their genetic integrity while under CIMMYT’s custodianship.

Click here to see the manual.

Click here to see CIMMYT’s guiding principles for developing and deploying genetically engineered maize and wheat varieties.

Click here to see CGIAR draft guidelines for GMO detection in gene banks.

Safe in the Bank?

CIMMYT E-News, vol 3 no. 5, May 2006

may04Keepers of worldwide maize germplasm collections meet at CIMMYT to see how they can work together to protect and conserve these resources.

Farmers know you protect and save your seed corn (maize) to ensure the next harvest. It’s a lesson the world apparently has not learned as gene banks, which could host tomorrow’s harvest of research breakthroughs and unique traits, find themselves nearly as endangered as the maize varieties and wild relatives they seek to conserve.

The meeting of the Maize Germplasm Network, sponsored by the Global Crop Diversity Trust, the World Bank, and CIMMYT, was called to initiate a global response to this growing crisis. Experts from around the world met at CIMMYT in Mexico in early May to begin hammering out a strategy for the long-term conservation of maize genetic diversity. Neither national nor international maize collections have fared well of late, as investments in public sector agricultural research have steadily declined and fierce competition for dwindling resources in the agricultural sciences has risen.

“People recognize that these collections have unique materials and are valuable,” says meeting co-organizer Major Goodman of North Carolina State University, “but donors simply do not like to get involved with a commitment that lasts forever, and that is what we are talking about with crop genetic resources collections.”

Ironically, the reluctance to invest in these operations comes at a time when molecular genetics opens new opportunities daily to exploit genetic resources carrying resistance to plant diseases, insect pests, and threats such as drought, soil salinity, and heat stress. Collecting and preserving the basic sources of resistance traits takes on added importance.

may05

Meeting participants found “remarkable agreement” on top priorities, says Suketoshi Taba, head of the CIMMYT maize gene bank and co-organizer of the meeting. At the top of the list, he says, is rescuing landraces and adapted germplasm identified as being endangered—both of maize and its wild relative, teosinte. Also urgent is the need to create proper documentation for all collections, both from the Americas (considered “primary” diversity, being from the crop’s center of origin) and from other continents (known as “secondary” diversity). The ultimate aim is to facilitate use of the collections while reducing redundancies and their costs. Once proper documentation is achieved, it was proposed that partners would work to establish a “meta-database” of existing maize genetic databases. The essential but perpetually under-funded activities of seed regeneration and recollection must also be considered. Finally, participants agreed that CIMMYT should serve as the coordinating institution for advancing the identified priorities forward on the international scientific agenda.

The meeting co-organizers expressed the consensus of the group in stating that the challenges they face are beyond the capacity of any single institution or nation—thus the need for a broad-based solution. They also observed that clearly there are roles, such as the costly long-term maintenance of collections and distribution of seed for research, that are better assumed by large gene banks, such as those at CIMMYT or the USDA maize collection at Ames, Iowa. These banks, however, find it difficult to regenerate varieties that originated in tropical or highland areas, a role better played by national gene banks. Furthermore, the national banks, when properly resourced, can more efficiently collect new seed and distribute seed from collections to local plant breeders and biologists. But those wishing to implement such a division of tasks must first overcome barriers of plant ownership rights, nationalism, phytosanitary regulations, and a tower of database babble that hampers effective documentation and use of collections.

“I am sure that there is a role for the Trust in this work, particularly in securing unique materials, securing landraces, and helping with the backlog of materials that urgently need regeneration,” says Brigitte LalibertĂ© of the Global Crop Diversity Trust. “But it is critical to the Trust that a global system and strategy is established whereby there are roles for international organizations and good links with national programs. This meeting was a constructive first step.”

For more information contact Suketoshi Taba (s.taba@cgiar.org)

Ravi Singh receives prestigious prize

The University of Minnesota recently announced CIMMYT distinguished scientist Ravi Singh as the recipient of its 2010 E.C. Stakman Award.  Established in 1955 by plant pathologist E.C. Stakman, a pioneer in combating wheat diseases, the award is given to individuals for outstanding achievements in plant pathology. Stakman was also a former professor of Norman Borlaug.

“I feel extremely honored and humbled to receive this highly prestigious award,” Singh said. “Dr. Stakman was a mentor to Dr. Borlaug and is largely responsible for sending him to Mexico in 1944. You wonder whether Dr. Stakman knew or even guessed that this decision was going to change history and save millions of lives.”

Singh, who has been with CIMMYT for over 25 years, is world-renowned for his efforts to control wheat rusts and has trained over 400 young scientists. With this award he joins a long list of notable scientists, including I. A. Watson, who was dean of Sydney University’s College of Agriculture and a former pupil of Stakman himself, and 2007’s recipient, the late Bent Skovmand, former head of wheat genetic resources at CIMMYT, director of the Nordic Gene Bank, and key player in the development of Svalbard International Seed Bank.

Congratulations, Ravi!

AMBIONET: A Model for Strengthening National Agricultural Research Systems

CIMMYT E-News, vol 3 no. 6, June 2006

june03A USAID-funded study by Rutgers economist Carl Pray concludes that present and future impacts of the Asian Maize Biotechnology Network (AMBIONET)—a forum that during 1998-2005 fostered the use of biotechnology to boost maize yields in Asia’s developing countries—should produce benefits that far exceed its cost.

Organized by CIMMYT and funded chiefly by the Asian Development Bank (ADB), AMBIONET included public maize research institutions in China, India, Indonesia, the Philippines, Thailand, and Vietnam. “Despite the small investment—about US$ 2.4 million from ADB and US$ 1.3 million from CIMMYT—the network was successful in increasing research capacity, increasing research output, and initiating the development of technology that should benefit small farmers and consumers,” Pray says.

Benefits already seen in the field, with more to come

Pray estimates that farmers in Thailand and Southern China are already gaining nearly US$ 200,000 a year by sowing downy-mildew-resistant hybrids from the project. Pray’s future projections are much more dramatic. An example is drought tolerant maize: if such varieties are adopted on just a third of Asia’s maize area and reduce crop losses by one-third, farmers stand to gain US$ 100 million a year. Furthermore, in India AMBIONET has improved knowledge, capacity, and partnerships with private companies; a 1% increase in yield growth from this improvement would provide US$ 10 million per year, according to Pray.

Emphasis on applied work pays off

AMBIONET’s applied approach stressed formal training and attracted Asian researchers to work on maize germplasm enhancement and breeding. This included graduate students, scientists who switched from an academic to an applied-research focus, and advanced-degree scientists with experience in DNA markers and mapping for maize. Many noted that the partnering of molecular geneticists with breeders strengthened their interactions and the exchange of expertise. The project also boosted funding for maize breeding research. Several AMBIONET labs used project money to leverage significant institutional and government grants. Major research programs emerged from AMBIONET in India and China.

In a 2003 interview, Shihuang Zhang, leader of a project team at the Chinese Academy of Agricultural Sciences’ (CAAS) Institute of Plant Breeding, said: “AMBIONET came along at the ideal time for us. We were able have some of our young people trained and start our lab. Then in 1998 and 1999, China changed the way research was funded. We
were able to get big projects for molecular breeding.” The CAAS group used the initial money, equipment, training, and advice from AMBIONET to start the fingerprinting, mapping, and a markers lab, as well as to hire leading national maize breeding and molecular genetics experts. According to Pray, this eventually converted the group into China’s major maize molecular breeding and enhancement program.

Region-wide sharing

Benefits were not confined just to individual labs, as groups shared knowledge and resources across borders. The Indonesian team, for example, sent two young scientists for extended training in the laboratory of B.M. Prasanna, at the Indian Agricultural Research Institute in New Delhi. Veteran Indonesian maize breeder Firdaus Kasim reported this to be extremely useful: “Prasanna showed our scientists how to do downy mildew and genetic diversity research. He was a very good teacher. After they came back they made a lot of progress.” Prasanna also provided lines that the Indonesian trainees fingerprinted in diversity studies and 400 primers (markers) for downy mildew resistance.

Lines, data, and markers from AMBIONET are in use region-wide. For example, sugarcane mosaic virus was identified as a serious constraint in several countries, and partners are using resistant lines developed under AMBIONET. Based on information from diversity studies conducted under the project, Vietnamese researchers are developing hybrids that resist lodging and are drought tolerant.

A regional program that worked

Research projects provided the focal point for AMBIONET, with training activities, annually meetings, and the technical backstopping contributing to the programs’ success. “The combination of collaboration, cooperation, and competition
was impressive,” says Pray, in the study’s closing statement. “This is the way good, collaborative research is supposed to work.”

For more information contact Jonathan Crouch (j.crouch@cgiar.org)

Improving wheat for world food security

cimmyt-wheatIn order to contribute to world food security, the International Research Initiative for Wheat Improvement (IRIWI), supported by research organisations and funding agencies from about ten countries, has been adopted by the Ministers of Agriculture of the G20. INRA, with the Biotechnology and Biological Sciences Research Council (UK) and the International Maize and Wheat Improvement Center (CIMMYT, Mexico), will contribute to the coordination activities of the IRIWI during the first four years of the project.

The historic agreement between the Ministers of Agriculture of the G20 on 23 June 2011 in Paris underlines the importance of increasing world agricultural production, in particular that of wheat, to resolve the urgent challenges of hunger and food price volatility. Already very active on this issue, INRA, together with other national and international research and funding organisations from about ten countries, will launch the International Research Initiative for Wheat Improvement (IRIWI) in 2011. This initiative aims at reinforcing synergies between bread and durum wheat national and international research programmes to increase food security, nutritional value and safety while taking into account societal demands for sustainable and resilient agricultural production systems.

Wheat is one of the main staple crops in the world but the present production levels do not satisfy demand. With a world population of 9 billion in 2050, wheat demand is expected to increase by 70%. Annual wheat yield increases must jump from the current level of below 1% to at least 1.7%.

Repeated weather hazards in a context of global change, the constant rise in oil prices, speculation on agricultural markets are some of the factors reinforcing volatility of wheat prices and aggravating food insecurity in numerous countries.

Strengthening coordination of world wheat research

IRIWI will coordinate worldwide research efforts in the fields of wheat genetics, genomics and agronomy. Both Northern and Southern countries share the need to improve wheat yield, tolerance to stress, pathogens and pests, as well as wheat resource use efficiency. Improved agronomic practices and development of innovative cropping systems are also a priority. Several large national research programmes on wheat have been launched recently in Northern countries. CIMMYT and ICARDA have presented a new CGIAR research programme called WHEAT for the developing world.

As part of its activities, IRIWI will provide a forum to facilitate communication between research groups, identify potential synergies and encourage collaborations among major existing or emerging nationally, regionally and internationally (public and private) funded wheat research programmes. It will also support the development of publicly available integrated databases and platforms and establish and periodically update priorities for wheat research of global relevance.

Sharing resources, methods and expertise to improve and stabilise yields

The on-going efforts to decipher the wheat genome sequence, as well as the development of high throughput genotyping and phenotyping tools, will provide new ways to exploit more efficiently the available genetic diversity and create new wheat varieties by public and private breeders. Development and adoption of precise and site-specific management techniques will lead to the improvement of production systems. The IRIWI will facilitate and ensure the rapid exchange of information and know-how between researchers, and will organize knowledge transfer to breeders and farmers.

These actions will allow the creation of improved wheat varieties and the dissemination of better agronomic practices worldwide in the next 15 years. These new wheat varieties and agronomic practises will allow farmers to stably produce more and better wheat in different environments.

Presentation of the International Research Initiative for Wheat Improvement (pdf)

IRIWI reinforces INRA’s long-term involvement in research in wheat improvement. Recently, the BREEDWHEAT project was selected by the French Stimulus Initative. BREEDWHEAT is carried out in coordination with or contributes to other international initiatives, such as the WHEAT-Global Alliance project for food security in Southern countries, conducted by the CIMMYT and the International Wheat Sequencing Programme coordinated by the IWGSC.

wheat-food-security

CIMMYT researchers say participatory research supports their achievements

CIMMYT E-News, vol 3 no. 9, September 2006

sep01Farmers participate in a significant portion of CIMMYT research and technology testing, according to center researchers, and the scientists believe this makes their efforts more effective.

The combined budgets of 19 CIMMYT projects cited by their principal investigators in a 2004 survey as including participatory research components exceeded US$9 million—roughly a quarter of the center’s total budget at the time. “Not all that money was spent on participatory activities, but the figure bespeaks a significant investment,” says Nina Lilja, Agricultural Economist in the on Participatory Research and CGIAR Systemwide Program Gender Analysis for Technology Development and Institutional Innovation (PRGA Program).

This conclusion was one outcome of a study on participatory research at CIMMYT by Lilja and Mauricio Bellon, Director, Diversity for Livelihoods Program, International Plant Genetic Resources Institute (IPGRI), and former Human Ecologist at CIMMYT. “Nearly all respondents felt that the use of participatory approaches had been worthwhile and most believed participatory methods had added value to the research,” says Lilja. “In support of this, many respondents provided evidence of project achievements through use of participatory approaches.”

Participatory research—particularly where farmers help evaluate and promote new crop varieties or farming practices—have been used increasingly in CIMMYT research in recent years. This study represents the first-ever analysis of participatory approaches, from the perspective of center researchers. Through the 2004 survey, the scientists reported on projects they considered as having a participatory component. The range of the study was broad: there was great variation in the types and characteristics of participatory research for which researchers provided information. The survey allowed characterization of the projects, but not further critical analysis of the quality or the appropriateness of the methods applied nor an objective assessment of impacts. Information was received for 19 projects from 18 scientists—15 male, 3 female; 5 social scientists, 13 biophysical scientists. Sixteen of the projects involved farmer-participatory research; three targeted national-program scientists and seed agronomists. Most of the projects covered work in sub-Saharan Africa and Asia; only two had activities in Latin America. About a third of the projects involved participatory testing of crop varieties or production practices; the remainder involved focus group activities or stakeholder meetings.

The issues most frequently addressed via participatory methods related to increasing productivity and understanding farmers’ needs and constraints. “Participatory research at CIMMYT was largely of the functional type—that is, aimed at improving the efficiency and relevance of the research, rather than specifically to empower farmers,” says Bellon. “Also, there was an overall lack of awareness of multiple beneficiaries or of differential effects owing to gender. None of the respondents had been trained previously in participatory methods.”

Two major recommendations of this report for adding value to CIMMYT’s participatory research efforts are to (1) create a more conducive environment within the center for scientists to share experiences and learn from each other, and (2) better document outcomes and impacts of the center’s participatory research.

To view or download a copy of the study, click here.

For further information, contact John Dixon (j.dixon@cgiar.org)

Willkommen, Herr BundesprÀsident!

alemania-300x227The long-standing and fruitful relationship between Germany and CIMMYT received a boost on 01 May 2011 when, as part of an official tour of Latin America, the President of the Federal Republic of Germany, Christian Wulff, visited CIMMYT headquarters to learn more of the center’s work and discuss strengthened partnerships. President Wulff was accompanied by his wife, Bettina, and nearly 60 distinguished guests including German vice ministers and members of parliament, embassy personnel, and business and media representatives. Greeting the guests were CIMMYT Director General Tom Lumpkin and several of the center’s German and German-speaking staff.

After touring the main exhibition hall showcasing Dr. Norman Borlaug’s achievements and contributions to agricultural development, including his Nobel Prize of 1970 and the Aztec Eagle of the same year from Mexico, the entourage attended a presentation by Hans-Joachim Braun, Director of CIMMYT’s Global Wheat Program. The talk addressed food security and related constraints—climate change, the rising demand for grains, the increasing scarcity of resources like land, water, and fertilizer—as well as CIMMYT’s work in the developing world and its relationship with Germany, a long-term and significant supporter of the center. To name just a few examples, German contributions have funded work on stress tolerant maize for Africa, a regional wheat network for Central Asia, and wheat pathology research for South Asia. German staff at CIMMYT and our partnerships with German universities and institutes have been of enormous value in getting improved technology to farmers.

The whirlwind tour then moved to the seed bank, with exhibitions of maize and wheat genetic resources outside and a visit inside to the upper seed storage chamber. In an impromptu closing statement, President Wulff thanked CIMMYT and described his positive impression of the visit and Braun’s presentation, which he called one of the clearest and most fact-based he had ever heard. Reports on the visit in the German media have referred to CIMMYT as a “highly-regarded research center.”

In addition to Lumpkin and Braun, CIMMYT staff interacting with the guests included Marianne BĂ€nziger, deputy director general, research and partnerships; Scott Ferguson, deputy director general, corporate services; Peter Wenzl, head of the crops research informatics lab; Susanne Dreisigacker, molecular biologist and head of marker applications in wheat; GIS expert Kai Sonder; agricultural economist Tina Beuchelt; Marc Rojas, coordinator of the International Strategy for Maize Improvement; and Petr Kosina, assisting with the event management.

Click here to view/hear


Winning in the long run

CIMMYT E-News, vol 3 no. 12, December 2006

Three decades of research into drought tolerant maize by CIMMYT and a very strong set of partnerships has made a difference in the lives of African farmers. That achievement has been recognized by the awarding to CIMMYT of the 2006 CGIAR King Baudouin Award.

It began with a small experiment to try to improve the lowland tropical maize population called Tuxpeno for drought tolerance in Mexico in the1970s. The United Nations Development Program (UNDP) started to invest in more significant research around drought tolerant maize in 1986. In the mid-1990s, the focus of the work moved to Africa—to the most challenging maize growing environments world-wide: southern and eastern Africa, where maize is a source of food and livelihoods for some 250 million people.

Today, sufficient seed has been produced to plant over 2.5 million hectares of land in eastern and southern Africa with new varieties that produce more maize both when dry spells occur and under good conditions. The road in-between involved the building of a large partnership with donors, national agricultural research programs, extension programs, small-scale seed producers, community seed producers and individual farmers; developing new ways of screening germplasm in real world conditions; and enhancing farmer-participatory methods to select the best and disseminate the best.

CIMMYT and its partners employed novel methodologies in breeding that were pro-poor according to Marianne BĂ€nziger, the director of CIMMYT’s Global Maize Program.

“Traditional varieties have been developed with fertilizer applied under good rainfall conditions. CIMMYT took a completely different route,” she says. “We took the varieties; we exposed thousands of them to very severe stress conditions—drought, low soil fertility. We selected the best. We brought them to farmers and farmers told us which ones they liked.”

The projects invested in over 25 fully-equipped managed-stress screening sites and more than 120 testing sites owned and operated by national programs. A network was established involving CIMMYT, public National Agricultural Research Systems (NARSs), and the private sector to systematically test new varieties and hybrids from all providers for the constraints most relevant to smallholder farmers in eastern and southern Africa. This network recently provided proof that the stress breeding approach works. In a simple comparison between all maize hybrids from CIMMYT’s stress breeding approach and a similar number of hybrids developed by reputable private companies using the traditional approaches—using 83 hybrids, 65 randomly-stressed locations across eastern and southern Africa, and 3 years of evaluation—the results demonstrated that, under production circumstances most similar to those of resource-poor farmers in Africa (that is, at yield levels of 1–5 tons per hectare), the CIMMYT varieties yielded on average 20% more in the most difficult conditions and 5% more under favorable conditions. Among these the best stress-tolerant hybrids increased yields as much as 100% under drought, showing the great potential contained in maize genetic resources.

The final selection was done through a participatory methodology called the “mother-baby” trial system, in which farmers managed some “baby” plots in their own fields while NGOs, researchers and extension staff conducted a “mother trial” in the center of their community. This way farmers could see how potential varieties actually performed under local conditions.

As a result, more than 50 open-pollinated and hybrid varieties have been disseminated to public and private partners, NARSs, NGOs and seed companies, for seed production and dissemination to farmers. “None of this success would have been possible without the collaboration of many dedicated researchers, NGO and extension staff from the public and private sector.” says BĂ€nziger. “They were the ones evaluating varieties under diverse conditions with farmers. They also started to adopt the new breeding methods in their own programs, developing their own varieties, engaging in seed production and tackling the challenge of getting seed to farmers.”

The story is not finished. CIMMYT researchers are sure the genetic diversity in maize is sufficient to push the drought tolerance in new maize varieties significantly further. “Yield gains are such that with every year of research we can add another 100 kg of grain under drought,” says BĂ€nziger. The greatest challenge is to incorporate these gains into adapted varieties and get the seed to the farmers who need it most—a tremendous task and opportunity given the looming threats of climate change.

For more information, Marianne BĂ€nziger (m.banziger@cgiar.org)

USD 170 million research program to help maize farmers worldwide

cimmyt-maize-farmersBold Initiative Tackles Hunger in Developing World

Washington, July 6, 2011 – The Consultative Group on International Agricultural Research (CGIAR)—the world’s largest international agriculture research coalition—today announced a USD 170 million global alliance and program to expand and accelerate research into maize, the preferred staple food source for more than 900 million people in 94 developing countries, including one third of the world’s malnourished children.

“This program aims to double the productivity of maize farms, while also making those farms more resilient to climate change and reducing the amount of land used for growing the crop,” said Carlos Perez del Castillo, CGIAR Consortium Board Chair.  “As a result, farmers’ incomes are expected to rise and their livelihood opportunities to increase, contributing to rural poverty reduction in developing countries.”

cimmyt-maize-plantingThe CGIAR applies cutting-edge science to foster sustainable agricultural growth that benefits the poor. The new crop varieties, knowledge and other products resulting from the CGIAR’s collaborative research are made widely available, at no cost, to individuals and organizations working for sustainable agricultural development throughout the world.

Under the research program, 40 million smallholder farm family members are expected to see direct benefits by 2020 and 175 million by 2030.  The program is expected to provide enough maize to meet the annual food demands of an additional 135 million consumers by 2020 and 600 million by 2030.

The program will be implemented by the International Maize and Wheat Improvement Center (CIMMYT), and the International Institute of Tropic Agriculture (IITA).

The announcement came as the CGIAR celebrated its 40th anniversary at a ceremony in Washington attended by the President of the World Bank Group, as well as the heads of several of the 15 research centers that make up the CGIAR Consortium of International Agriculture Centers.

Inger Andersen, Vice President of Sustainable Development at the World Bank, and Chair of the CGIAR Fund Council, said the first target group to benefit from the enhanced maize research program would be smallholder farmers who live in environments prone to stress and who have poor access to markets.

“Small holder farmers are among the most vulnerable people in developing countries.” she said. “They should be among the first we seek to help. Enabling these people to produce more and better maize quickly and reliably will help to ensure their well being, as well as that of their communities.”

Studies carried out by CIMMYT show that the demand for maize in the developing world is expected to double between now and 2050.

“This is a highly ambitious project to address world hunger,” said Thomas Lumpkin, Director General of the International Maize and Wheat Improvement Center (CIMMYT). “It will take an enormous amount of work and cooperation between public and private sector institutions to meet the goals. The global challenges facing mankind are immediate and chronic; the time to act is now. Millions of lives depend on our ability to develop sustainable solutions to feed more people with fewer resources than ever before.”

The global alliance that will carry out the research program includes 130 national agricultural research institutes, 18 regional and international organizations, 21 advanced agricultural research institutes, 75 universities worldwide, 46 private sector organizations, 42 non-governmental organizations and farmer associations, and 11 country governments that will host offices dedicated to the program.

The Consultative Group on International Agricultural Research (CGIAR) is a global partnership that unites organizations engaged in research for sustainable development with the funders of this work. The funders include developing and industrialized country governments, foundations, and international and regional organizations. The work they support is carried out by 15 members of the Consortium of International Agricultural Research Centers, in close collaboration with hundreds of partner organizations, including national and regional research institutes, civil society organizations, academia, and the private sector. www.cgiar.orgwww.consortium.cgiar.org

The International Maize and Wheat Improvement Center, known by its Spanish acronym, CIMMYTÂź (staging.cimmyt.org), is a not-for-profit research and training organization with partners in over 100 countries. The center works to sustainably increase the productivity of maize and wheat systems and thus ensure global food security and reduce poverty. The center’s outputs and services include improved maize and wheat varieties and cropping systems, the conservation of maize and wheat genetic resources, and capacity building. CIMMYT belongs to and is funded by the Consultative Group on International Agricultural Research (CGIAR) (www.cgiar.org) and also receives support from national governments, foundations, development banks, and other public and private agencies.

See also:
Maize Global Alliance for Improving Food Security and the Livelihoods of the Resource-poor in the Developing World

Executive summary | Full document

The Quick Guide to the “New” CIMMYT

Click here to see pdf version, 190KB
CIMMYT has developed a strategy for building on its core strengths to address the challenges of international agricultural research in the years to come: the need to bring about a real improvement in the livelihoods of the poor; the emerging biophysical, socioeconomic, and political constraints to agriculture in developing countries; the growing range of partners involved in research, extension, and development; and the changing financial landscape for public-sector research.The new strategy requires CIMMYT to change in important ways. The prospect of a “new CIMMYT” has generated much interest but also many questions, which this fact sheet attempts to answer.

1. Foundations of the new CIMMYT

CIMMYT’s recognized strength in maize and wheat improvement for developing countries, its experience in research on maize and wheat systems, and its broad network of partners, ranging from farmers to government ministers, are the foundations of the new CIMMYT. CIMMYT firmly believes that seed with characteristics valued by farmers—for example, drought tolerance or disease resistance—provides a safety net for poor farm households, enabling them to survive bad years, profit from good ones, and pursue more diverse livelihood strategies. But how that seed is developed, how it is integrated with resource conserving technologies, and how farmers’ options are influenced by policies, are fundamental issues that CIMMYT is addressing in the changes that are underway.

2. A mission that puts people first

CIMMYT’s mission continues to emphasize improved food security, the productivity and profitability of farming systems, and the protection of natural resources. However, the new mission statement highlights CIMMYT’s commitment to the poor and acknowledges the central role of CIMMYT’s partners in sharing knowledge, catalyzing innovation, and making an impact: CIMMYT acts as a catalyst and leader in a global maize and wheat innovation network that serves the poor in developing countries. Drawing on strong science and effective partnerships, we create, share, and use knowledge and technology to increase food security, improve the productivity and profitability of farming systems, and sustain natural resources.

3. A new approach to partnering

As indicated in the mission statement, CIMMYT will engage in more strategic partnering and networking to catalyze and effect change within rural communities. Some of CIMMYT’s activities will be outsourced to partners in the public and private sectors. CIMMYT will engage in more collaborative priority setting and implementation of research with its partners, including other CGIAR Centers.

4. A new approach to research

To better clarify and respond to local needs, the contributions of cropping systems researchers, social scientists, plant breeders, molecular biologists, and many other disciplines must be joined together. CIMMYT’s new research programs—Genetic Resources, African Livelihoods, Rainfed Wheat Systems, Tropical Ecosystems, Intensive Agroecosystems, and Global and Strategic Research—rely on multidisciplinary teams to work on research priorities identified with CIMMYT’s partners.

5. How the programs fit together

The new programs are part of a continuum that extends from the characterization and use of genetic resources, to the development of maize and wheat varieties for specific ecologies and regions, to the use of these varieties in systems research to address local needs, and finally to the resulting global information that enables CIMMYT to learn from its experience and improve its effectiveness.

The global program on Genetic Resources develops information and inputs—primarily specialized breeding materials and methods—that enable the ecoregional programs to do their work more rapidly and effectively. The program works on genetic traits that are identified as priorities by the eco-regional programs (for example, drought tolerance).

The eco-regional programs—African Livelihoods, Rainfed Wheat Systems, Tropical Ecosystems, and Intensive Agro-ecosystems—emphasize maize and wheat systems research to improve the livelihoods of the poor in their respective regions and ecologies, where the challenges and opportunities for making an impact are more likely to be similar. These programs are designed to ensure that the research agenda is driven by local needs.

The program on Global and Strategic Research synthesizes and communicates what is learned across all of CIMMYT’s research programs. It assembles, manages, and provides strategic knowledge and information for research (for example, data from the molecular to the field level), supports capacity building, provides information for setting research priorities, and assesses the impact of research.

6. Working globally

CIMMYT’s research leadership and management have been decentralized to permit the Center to work from a global rather than a central base. The research and management teams now comprise staff in Asia, Africa, and Latin America.

7. Contact points

If you are accustomed to contacting a particular researcher with whom you have worked over the years, please continue to do so. If that researcher is no longer working on your particular area of interest, he or she will connect you with someone who is.

For global and eco-regional programs:

For information on a particular commodity or discipline:

To obtain seed:

Seed health and quarantine information:

Information on capacity building:

  • Contact the CIMMYT office in your region to learn about current and planned capacity building opportunities throughout the world.

Nutrition Better but Maize Diversity Down in Chiapas

March, 2005

noticias1Farmer Juan Castillejos Castro of the village Dolores, Jaltenango, state of Chiapas, in southeastern Mexico, leaned forward in the humid, mid-morning heat and pondered the question: had household nutrition improved in the last 10 years? “From the mid-1970s to the mid-1980s, even I was malnourished to the point I couldn’t work,” he says. “Now things have gotten better, and the credits have helped a lot.”

Like many farmers in the “La Frailesca” region of Chiapas, Castillejos has been growing improved, hybrid maize, through a state-sponsored program that offers seed plus other inputs (fertilizer, pesticides, among them) and services (technical advice, crop loss insurance, to name two) on credit, to be repaid at harvest. For the last decade, government policy has also discouraged the burning of crop residues. Burning helped farmers control weeds and pests, but bared often steep, hillside plots to eroding winds and rain and deprived soils of organic matter. Castillejos and most peers now practice a more resource-conserving style of agriculture, sowing with a stick directly into the last year’s crop residues, without plowing or burning.

Folk Varieties Fading in La Frailesca

Unlike many farmers adopting the hybrids, Castillejos still grows small plots of the local maize varieties developed through selection by millennia of predecessors. The local varieties feature a better grain type for tortillas and other preferred foods. Their weaknesses include tallness and a tendency to topple easily. This and their relatively low yields have put them on the road to extinction, according to Dagoberto Flores, research assistant in CIMMYT’s Impacts Assessment and Targeting Program.

noticias3

“We still need a systematic study on this,” says Flores, “but I would guess that half the local varieties have disappeared, and only 30% of farmers are growing any local materials.” Flores and an associate, Alejandro Ramírez López, just spent a month surveying 120 farm households in 4 communities in the region. With funding from the United Nations Food and Agriculture Organization (FAO), they are comparing the costs to farmers of obtaining seed through formal versus informal supply systems and evaluating farmers’ risks, from village to village.

The village of Dolores Jaltenango lies in the mountainous countryside that bred the Zapatista uprising and is a gateway for undocumented immigrants from Central America. Nine-tenths of maize is relegated to steep hillsides—cattle raising and plantation agriculture claim the choice lowlands. “Dolores is one of the poorer communities in the area,” says Flores. “Dwellings are adobe with dirt floors. There’s normally one large sleeping quarters for an average 10 people, including parents, children, and married children’s spouses.”

Flores and Ramírez are concerned about La Frailesca’s farmers. The prices of the seed technology packages are rising steadily, and subsidies are being reduced. They fear that if farmers lose their native seed, they may have no fallback position. “Farmers look at their neighbor’s yields or the size of the ears, but most haven’t done the math on all the costs and benefits of the new technology,” Ramírez says. He cites the results of last year’s serious drought as an example: “Many farmers had poor crops. But some didn’t qualify for crop loss insurance benefits. Now they’re having trouble paying back their credit debts.”

CIMMYT’s Role: Conserving and Replenishing Diversity

According to Flores, CIMMYT staff have collected and preserved important samples of the Frailesca’s farmer varieties in the center’s germplasm bank. The bank contains seed collections for an estimated 80% of all Latin American maize diversity, including many varieties no longer sown by farmers. The seed is kept in trust for humanity, under a 1994 agreement with FAO. Working with partners in 13 countries in the Americas, center staff have coordinated the rescue, regeneration, and back-up storage of more than 10,000 seed samples of unique maize varieties from this hemisphere. CIMMYT and partners from the Mexican National Institute of Agriculture, Forestry, and Livestock Research (INIFAP) recently restored seed of local varieties to farmers in Oaxaca, Mexico, and could do the same for Chiapas farmers, should this become necessary, Flores says.

Fitting into FAO Research Efforts

Environmental economist Leslie Lipper at FAO will draw on the survey and its results in an emerging, multi-country study on how market access to crop genetic resources affects farmers’ welfare and on-farm crop biological diversity, according to Kostas Stamoulis, Chief of the FAO Agricultural Sector in Economic Development Service (ESAE). “CIMMYT’s work will provide unique data on farmer seed sourcing choices,” says Stamoulis. “Among other things, we’ll get a better read on how those choices are affected by the transaction costs of market participation and farmer’s perceptions of risk.” The study is one of three major ESAE efforts to understand the role of markets in rural livelihoods and environmental sustainability.

Earliest Mexican wheats supply latest useful traits

CIMMYT E-News, vol 5 no. 6, June 2008

jun05Centuries ago, Spanish monks brought wheat to Mexico to use in Roman Catholic religious ceremonies. The genetic heritage of some of these “sacramental wheats” lives on in farmers’ fields. CIMMYT researchers have led the way in collecting and characterizing these first wheats, preserving their biodiversity and using them as sources of traits like disease resistance and drought tolerance.

“I’d say to Bent: ‘Let’s look for the cemetery,’ ” recalls Julio Huerta, CIMMYT wheat pathologist, of his trips to villages in Mexico with his late colleague Bent Skovmand, CIMMYT wheat genetic resource expert. “And the sacramental wheats would be there, sometimes hundreds of types.”

The first wheat was brought to Mexico in 1523 around the area now occupied by Mexico City. The crop soon spread outside the central plateau with the help of Catholic monks: it traveled to the state of Michoacán in the 1530s with the Franciscans, while the Dominicans took wheat to the state of Oaxaca in 1540 and gave grains to the native inhabitants to produce flour for unleavened bread used during Roman Catholic religious ceremonies. “Still today, many church ornaments in Michoacán have wheat straw in them,” says Huerta.

Huerta and Skovmand went on sacramental wheat-gathering expeditions in 19 Mexican states. “Many people thought we were just collecting trash,” he says. “But we wanted to collect sacramental wheats before they disappeared. I’m not that surprised that some have very valuable attributes for breeding programs.”

Farmers in Mexico and elsewhere face water shortages and rising temperatures due to climate change. CIMMYT scientists are looking to sacramental wheats as one source of drought-tolerance. Field trials at the center’s Cuidad Obregón wheat research facility show some sacramental wheats have better early ground cover, quickly covering the soil and safeguarding moisture from evaporating. Others have enhanced levels of soluble stem carbohydrates which help fill the wheat grain even under drought, while some show better water uptake in deep soils thanks to their deep roots.

As farmers gain access to improved varieties or migrate to cities, sacramental wheats are disappearing from fields. With the hope of conserving these rare and valuable varieties, Huerta and Skovmand started collecting them in 1992, collaborating with the Mexican National Institute for Forestry, Agriculture, and Livestock Research (INIFAP) and supported by the Mexican Organization for the Study of Biodiversity (CONABIO). Their efforts were not in vain—10,000 samples from 249 sites in Mexico were added to the CIMMYT germplasm bank, and duplicate samples deposited in the INIFAP germplasm bank.

Only the strongest survive

The deep volcanic soils of Los Altos de Mixteca, Oaxaca, and the dry conditions in some parts of Mexico were not ideal for growing wheat. “If the wheats didn’t have deep roots and it didn’t rain, they were dead,” says CIMMYT wheat physiologist, Matthew Reynolds. The wheat genotypes that survived for centuries were perhaps the ones with drought-tolerance traits for which farmers selected. “Say the farmer had a mixture of sacramental wheats that looked reasonably similar—similar enough that he could manage them but diverse enough to adapt to local conditions,” explains Reynolds. “One year certain lines would do better than others and the farmer might harvest just the best-looking plants to sow the next year.”

jun01

Sacramental wheats often grew in isolated rural areas, meaning that some never crossed with other varieties, leaving their genetic heritage intact. They are often tall and closely adapted to local conditions, according to Huerta, and farmers who still grow them say they taste better than modern varieties.

Reynolds is combining the old and the new—crossing improved modern cultivars with sacramental wheats to obtain their drought-tolerance attributes. “We now have several lines that are candidates for international nurseries,” he says. “They’ll go to South Asia and North Africa, and will be especially useful for regions with deep soils and residual moisture.”

Old wheats come back in style

In 2001, a new leaf rust race appeared on Altar 84, the most widely-grown wheat cultivar in Sonora State, Mexico. The CIMMYT wheat genetic resources program immediately looked for sources of resistance in the germplasm bank. The durum collection of sacramental wheats from Oaxaca, Mexico, proved extremely useful: all but one displayed minor gene or major gene resistance to the new leaf rust race, confirming that sacramental wheats are a valuable breeding resource.

CIMMYT researchers are still unlocking the potential of sacramental wheats. “We started to characterize them for resistance to leaf and yellow rust, and the collections from the state of Mexico for wheat head scab and Septoria,” says Huerta. We were surprised to find many, many resistant lines. “But until we finish characterizing all of them, we won’t know what else is there.”

For more information on sacramental wheats: Julio Huerta, wheat pathologist (j.huerta@cgiar.org) or Matthew Reynolds, wheat physiologist, ( m.reynolds@cgiar.org).

Global partnership protects Africa’s maize from parasitic plant

CIMMYT E-News, vol 5 no. 9, September 2008

sep01Looks can deceive. Striga, a deadly parasitic plant, produces a lovely flower but sucks the life and yields out of crops across Africa and Asia. A new strain of improved maize seed is helping farmers reclaim their invaded crop lands.

Striga, which typically attacks cereal crops, launches its takeover from the ground up: its deadly seedlings attach to sprouting maize plants and begin siphoning off water and nutrients before either plant emerges from the soil. The parasite also poisons its host, further stifling crop development.

Worse, Striga seems to seek out the farmers least suited to control it.

“Striga thrives in low-fertility soils, which are typically owned by the poorest farmers,” says Fred Kanampiu, CIMMYT maize agronomist. National experts estimate 14% of the maize area in sub-Saharan Africa is infested with Striga, amounting to 3.64 million hectares.

Big benefits seen for Kenya

Work by a multilateral partnership has resulted in a promising Striga control measure that has recently started moving from the laboratory to farmers’ fields. The practice is based on a type of maize with a natural mutation that allows it to resist the chemical imidazolinone—active ingredient in many herbicides. Seeds of this imidazolinone-resistant (IR) maize are coated with a herbicide and, when sown, the coated seed kills sprouting Striga, allowing the crop to flourish.

“Economic studies estimate that if a third of the Striga-infested area were planted with herbicide-coated seed, benefits to farmers in Kenya would be between USD 51 million and 102 million, after production costs,” says Kanampiu, who coordinates the Striga Management Project. “This would be topped off by a yield effect of similar magnitude, because the herbicide resistance comes in seed of improved, locally-adapted varieties.”

A complex, multilateral effort

The idea of using herbicide-resistant maize to control Striga was first proposed by the Weizmann Institute of Science in Israel in the 1990s. CIMMYT worked with that organization, as well as the Kenyan Agricultural Research Institute (KARI), BASF, the African Agricultural Technology Foundation (AATF), non-governmental organizations, and seed companies including Pioneer to develop, evaluate, and spread the practice, particularly among small-scale farmers for whom other control methods, such as spraying, are expensive or impractical. A key part of the work involved developing high-yielding, locally-adapted maize varieties that were also herbicide tolerant. The coating method was fine-tuned by Weizmann and the company Hi-Cap Formulations.

Support for more recent tests and promotion came from the German Federal Ministry for Economic Cooperation and Development (BMZ), the International Fund for Agricultural Development (IFAD), and the Rockefeller Foundation. By 2006 CIMMYT and KARI scientists had provided almost 300 herbicide-tolerant maize varieties for regional testing. Studies in randomly-selected farmers’ fields showed that with 30 grams (a little more than 1 ounce) of imazapyr herbicide per hectare as a seed coat in heavily infested fields, Striga was reduced by 81% and farmers enjoyed a 63% net return.

sept02

Striga meets its match

“The IR-maize reduces the Striga seed bank in the soil, lessening the need for future Striga control measures,” says Gospel Omanya, a Stewardship Manager from AATF, which is leading region-wide public awareness campaigns, field testing, and risk assessment. In addition, smallholder farmers who have tested the new maize and seed-coating practice on their land have obtained as much as a five-fold increase in grain yield.

Positive results like these led to the release of five IR varieties to farmers in Kenya, and nine other varieties are in performance evaluations for eventual release in Tanzania and Uganda.

More than 50,000 packages of IR-maize seed were distributed to farmers at 140 locations in Kenya for comparison with other Striga control practices. AATF surveyed more than 5,000 farmers and found they overwhelming favored the IR-maize seed. At least 10 seed companies, including Western Seed Company in Kenya and Tanseed International in Tanzania, are using IR maize and 60 tons of certified seed were marketed during 2007-2008.

“It was years of intense research and collaboration between partners dedicated to a unified objective, in addition to a willingness to invest human and financial resources, that allowed this concept to become a reality,” says Kanampiu. “The practice offers real, life-changing benefits for subsistence farmers like many in western Kenya, who tend 1.5 hectare plots of mostly maize just to feed their families. Their crops are normally so decimated by Striga that they harvest barely enough.”

Meanwhile, CIMMYT is working with the International Institute of Tropical Agriculture (IITA), a leader in the effort to identify and breed maize strains that contain genetic resistance to Striga. The aim is to offer farmers yet another way of controlling this lovely but lethal pest.

For more information, contact Fred Kanampiu (f.kanampiu@cgiar.org).

Improved maize varieties and partnerships welcomed in Bhutan

CIMMYT E-News, vol 5 no. 11, November 2008

nov02Sandwiched between China and India, the Kingdom of Bhutan is a small country that relies on maize in a big way. But maize yields are typically low due to crop diseases, drought, and poor access to seed of improved varieties, among other reasons. CIMMYT is committed to improving Bhutan’s food security by providing high-yielding, pest-resistant maize varieties to farmers and capacity-building for local scientists.

“If there is no maize there is nothing to eat,” says Mr. S. Naitein, who farms maize on half a hectare of land in Bhutan. But it’s not easy to grow, he says, citing challenges such as animals (monkeys and wild boars), insects, poor soil fertility, drought, poor access to improved seed varieties, and crop diseases like gray leaf spot (GLS) and turcicum leaf blight (TLB).

But since planting Yangtsipa—an improved maize variety derived from Suwan-1, a variety introduced from CIMMYT’s former regional maize program in Thailand—Naitein has seen a real improvement in his maize yields. The local maize variety yielded 1,700 kilograms per hectare, whereas Yangtsipa gave him 2,400 kilograms per hectare, a 40% yield increase.

“It’s no wonder that Yangtsipa is by far the most popular improved variety among Bhutanese farmers,” says Guillermo Ortiz-Ferrara, CIMMYT regional cereal breeder posted in Nepal. “Nonetheless, many local varieties of maize still occupy large areas of the country and don’t yield well.”

Maize is a staple food in Bhutan. Many people eat Tengma (pounded maize) as a snack with a cup of tea and Kharang (maize grits) are also popular. “Among the food crops, maize plays a critical role in household food security, especially for the poor,” says Ortiz-Ferrara. About 38% of the rural Bhutanese population lives below the poverty line and some 37,000 households cultivate maize. It’s estimated that 80% of this maize is consumed at the household level, according to Bhutan’s Renewable Natural Resources Research Center (RNRRC).

Leaf us alone: CIMMYT maize varieties help combat foliar diseases

Many farmers in Bhutan have been struggling with crop diseases that cut maize yields. “The recent outbreak of gray leaf spot and turcicum leaf blight affected 4,193 households and destroyed over 1,940 hectares of maize crop,” says Thakur Prasad Tiwari, agronomist with CIMMYT-Nepal. He estimates that maize is grown on 31,160 hectares in the country.

Gray leaf spot is a devastating leaf disease that is spreading fast in the hills of Bhutan and Nepal. To deal with this threat, CIMMYT sent more than 75 maize varieties with possible resistance to GLS and TLB to Bhutan in 2007. Tapping into the resources of its global network of research stations, CIMMYT sent seed from Colombia, Zimbabwe, and Mexico that was planted in GLS and TLB ‘hot spot’ locations in the country.

Ortiz-Ferrara and Tiwari then worked with Tirtha Katwal, national maize coordinator-Bhutan, and his team to evaluate these materials for their resistance.

“Together we identified the top performing lines for gray leaf spot and turcicum leaf blight which will be excellent candidates for Bhutan’s maize breeding program,” says Ortiz-Ferrara. “We are now combining their disease resistance with Yangtsipa, because we know it is high-yielding and well-adapted to Bhutan.”

Kevin Pixley, associate director of CIMMYT’s Global Maize Program, helped to develop a detailed breeding scheme or work plan for Bhutan’s national GLS breeding program. “We want to provide capacity-building for local maize scientists so they themselves can identify and breed varieties that show resistance to crop diseases,” he says.

“We feel more confident in moving forward with the next steps in our breeding program,” said Katwal. He and his team also attended a training course on seed production, de-tasselling, and pollination given by Dr. K.K. Lal, former CIMMYT maize trainee and former chief of the Seed Quality Control Center at the Ministry of Agriculture and Cooperatives (MoAC) in Nepal.

nov03

That’s what friends are for: CIMMYT, Nepal, and Bhutan collaboration

In 2001, Bhutan began collaborating on maize research with CIMMYT-Nepal, the National Maize Research Program (NMRP) of Nepal, and the Hill Maize Research project (HMRP) funded by the Swiss Agency for Development and Cooperation (SDC) in Nepal. The terrain and agro-climatic conditions of Bhutan and the Nepalese highland are similar, meaning that technologies adapted for Nepal will likely work well in neighboring Bhutan.

CIMMYT aims to facilitate regional and national partnerships that benefit farmers. For instance, during the past 7 years CIMMYT-Nepal has worked with NMRP and RNRRP to introduce 12 open-pollinated varieties (OPVs) to Bhutan. These modern varieties yield more than the local varieties whose seed farmers save to sow from year to year. Included in these 12 OPVs were several quality protein maize (QPM) varieties; these have nearly twice as much usable protein as other traditional varieties of maize.

nov04“Our CIMMYT office in Nepal has assisted Bhutan with maize and wheat genetic material, technical backstopping, training, visiting scientist exchange, and in identifying key consultants on research topics such as grey leaf spot and seed production,” says Tiwari.

Simply put, CIMMYT has useful contacts. For example, at the request of Bhutan’s Renewable Natural Resources Research Center (RNRRC), CIMMYT-Nepal put forward Dr. Carlos De Leon, former CIMMYT regional maize pathologist, to conduct a course on identifying and controlling maize diseases in February 2007. In September 2008, CIMMYT and HMRP also recommended two researchers (Dr. K.B. Koirala and Mr. Govinda K.C.) from Nepal’s NMRP to give a course on farmer participatory research that has been successful in the dissemination of new technologies.

“Ultimately, our goal is to improve the food security and livelihood of rural households through increased productivity and sustainability of the maize-based cropping system,” says Thakur Prasad Tiwari.

For information: Guillermo Ortiz-Ferrara, cereal breeder, CIMMYT-Nepal (g.ortiz-ferrara@cgiar.org) or Thakur Prasad Tiwari, agronomist, CIMMYT-Nepal (tptiwari@mos.com.np)