Skip to main content

research: Genetic resources

“CIMMYT 50” delegates tackle obstacles to achieving global food security

Neal Gutterson, vice president of research at DuPont Pioneer, delivers a presentation on Crispr-Cas at CIMMYT's 50th anniversary conference. CIMMYT/Alfonso Cortes
Neal Gutterson, vice president of research at DuPont Pioneer, delivers a presentation on Crispr-Cas at CIMMYT’s 50th anniversary conference. CIMMYT/Sam Storr

MEXICO CITY (CIMMYT) — From the field to the laboratory, new technology plays a major part in the international effort to develop seeds and cropping systems that will help achieve food security, but scientific innovations should be advanced in tandem with nutritional goals, training and public opinion, said delegates attending a 50th anniversary conference in Mexico City hosted by the International Maize and Wheat Improvement Center (CIMMYT).

The challenges are enormous. Already at least 900 million people do not get enough food to eat, global population is expected to increase by 2 billion by 2050 and scientists are battling the threat of climate change, which causes erratic weather patterns and global warming, projecting that for each 1 degree Celsius increase in global mean temperature, wheat yields may decline by 6 percent.

Even brief periods of high temperature stress could negatively affect healthy seed development and ultimately cereal yields, said CIMMYT wheat physiologist Matthew Reynolds, speaking on the sidelines of the conference.

“Some models estimate that by the end of the 21st Century, a current 1-in-20 year hottest day will become a 1-in-10 year event, or even occur annually or biannually in many regions,” said Reynolds whose work involves exploring wheat genetic resources for new sources of heat and drought tolerance. “Cereal production is increasing worldwide but current rates of yield growth are not sufficient to satisfy future demand, even without climate change factored in, so we have to expect the worst to avoid the risk of widespread famine.”

Reynolds is working with wheat physiologist Gemma Molero to develop high yield potential, heat and drought resistant plant ideotypes. Molero has designed a tool to assess wheat spike photosynthesis and its impact on grain filling, until now an overlooked aspect of how yields can be increased. She is working with Bayer Crop Science to identify new possibilities for wheat breeding.

Global demand for cereals is expected to reach 3 billion tons by 2050, an increase of 940 million tons from yields produced between 2005 and 2007, with the greatest demand coming from developing countries. The demand shift will lead to significant price increases of more than 50 percent for maize and 25 to 50 percent for other crops even without climate change. If climate change is factored into the equation prices could increase 60 to 97 percent by 2050.

Although controversial, genetically modified (GM) crops constitute one option for increasing yields and have not been proven to be dangerous to eat, said Matin Qaim, professor of international food economics and rural development at the University of Gottingen in Germany, during a presentation. In the developing world, they help farmers to gain yields 20 percent higher than conventionally bred crops and earn almost 70 percent more income, according to Qaim.

“Farmers in developing countries benefit more from genetically modified crops than farmers elsewhere because they suffer more from pests and diseases,” Qaim said. “They also benefit more because most GM technologies are not patented, which means the seeds are cheaper than in developed countries.”

Neal Gutterson, vice president of research and development at DuPont Pioneer and a member of CIMMYT’s board of trustees, described the aims of a new collaboration the company has agreed with CIMMYT to develop crops capable of fighting devastating Maize Lethal Necrosis disease in Africa using CRISPR-Cas, an approach that allows precise “editing” of genes.

“CRISPR-Cas advanced plant breeding technology is a more efficient and targeted plant-breeding technology,” Gutterson said. “It enables the development of customized agriculture solutions to the real challenges farmers around the world face in growing healthy plants.”

Jose Falck-Zepeda, senior research fellow at the International Food Policy Research Institute, said that while innovative technology is vital, success will be attained by tackling development initiatives from a broad “whole systems” approach. Currently, science in the food system is built around narrow principles and objectives, he said. Focusing on gender and other equity issues are the starting point for technological change.

CIMMYT’s Water Efficient Maize for Africa (WEMA) project serves as an example of the whole systems approach, said Denis Kyetere, executive director of the African Agricultural Technology Foundation. Through WEMA, maize varieties are being developed using conventional breeding and biotechnology by CIMMYT, Monsanto and national research programs in Africa.

Seed from the program will ultimately be marketed royalty-free to smallholder farmers in sub-Saharan Africa through African seed companies, making the benefits of the technology available to everyone, Kyetere said, adding that public-private partnerships are key. A new, knowledge-based global food system focused on ensuring equity is a must, he said.

“The use of the public-private-partnership model in technology development and deployment along the entire product value chain is a game-changer in enhancing food security and for poverty reduction in Africa,” Kyetere said, adding that partners must share both responsibilities and risks to achieve a common goal.

Julie Miller Jones, professor emeritus of nutrition at St. Catherine University in St. Paul, Minnesota, criticized authors and media personalities advocating wheat-free diets for the majority of population who do not suffer from celiac disease or wheat allergies. She also emphasized the essential role of grains in a healthy diet, and the health benefits of whole grain in particular.

“We have to stop picking on diets, the problem is us. We are eating too many calories,” she urged delegates.

Going “gluten-free” has become a big money maker for the food industry. Sales have soared 63 percent since 2012, with almost 4,600 “gluten-free” products introduced in 2014, according to the January 2015 issue of Consumer Reports magazine.

Catherine Bertini, 2003 World Food Prize laureate and former head of the U.N. World Food Programme, strongly advocated that nutrition should be given a leading role in the breeding process. “Let food be medicine,” said Bertini, who is currently a professor at Syracuse University.

Farmer Andrés H. Vinicio Montiel Ibarra, leader of a farmers association who works Mexico’s Sustainable Modernization of Traditional Agriculture (MasAgro) project, received the Cargill-CIMMYT Food Security and Sustainability Award on behalf of the association.

“Agricultural producers have to be change-makers,” Montiel Ibarra said. “We need to break with resistance to change.”

Achieving change requires effective communication, including coverage of complex scientific concepts, but fact-based arguments are seldom enough, said Tamar Haspel, a food columnist for the Washington Post newspaper.

“We seek sources of information that share our values and confirm our views,” Haspel said. “We find innovative ways to reject ‘facts’ we disagree with — if facts are not persuasive, how do we communicate about science?”

Reporting by Bianca Beks, Jennifer Johnson, Mike Listman, Katie Lutz, Matthew O’Leary, Katelyn Roett and Sam Storr.

Gene bank crowdfunding campaign gains traction with commercial seed industry

cimmyt-saveaseedEL BATAN, Mexico (CIMMYT) – A pledge of $10,000 by international plant breeding company KWS has given a big boost to an online crowdfunding initiative aiming to help maintain the world’s largest maize and wheat germplasm bank.

The campaign was launched by the International Maize and Wheat Improvement Center (CIMMYT), which is celebrating its 50th anniversary this week,  to help meet its $2.3 million annual running cost.

The Save a Seed campaign, hosted on a caused-based crowdfunding platform, is attracting new donations to fill a reduction in funds from traditional donors, said Kevin Pixley, director for genetic resources at CIMMYT where the bank is located.

“The germplasm bank is a global public treasure that belongs to all of us; everyone should have the opportunity to help care for it,” he said. “A small donation now makes a big difference to meet today’s and tomorrow’s challenges.”

Germany-based KWS is joining African and Latin American seed producers and members of the general public who have donated to the bank. Contributions keep collections stocked, curated and freely available to researchers who study the genetic diversity to identify traits to improve maize and wheat.

“I hope that many others will follow us to support the CIMMYT Save a Seed crowdfunding initiative generously,” said Léon Broers, executive board member of KWS. “Conserving and extending the world’s most important seed bank for maize and wheat is crucial especially for developing countries in times of accelerating climate change and a growing world population.”

As severe weather and evolving crop diseases threaten our most important staple foods, the bank’s ability to offer scientists novel DNA tools and data management tools to unearth high-value traits from vast maize and wheat seed collections for use in breeding climate-resilient varieties is greater than ever, said Pixley.

CIMMYT’s germplasm is a genetic treasure chest with over 175,000 maize and wheat seed collections, any of which could prove to be the crucial ingredient that breeders need to combat these challenges, he said. In 2015, the bank sent more than 700,000 seed shipments free of charge to researchers in over 80 countries who work to fight disease and improve crops.

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to one-quarter of the world’s daily energy intake and contributing 27 percent of the total calories in the diets of people living in developing countries, according to FAO. The two crops are essential to agricultural scientists who are looking for ways to increase food production by 70%, the projected need to feed a global population exceeding 9 billion by 2050.

ABOUT CIMMYT

Headquartered in Mexico, International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded research for development for wheat and maize and for wheat- and maize-based farming systems. CIMMYT works throughout the developing world with hundreds of partners, belongs to the 15-member CGIAR System, and leads the CGIAR Research Programs on Wheat and Maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.staging.cimmyt.org

ABOUT KWS

KWS is one of the world’s leading plant breeding companies. In fiscal 2014/15, 4,700 employees in 70 countries generated net sales of 986 million euros and earnings before interest and taxes (EBIT) of  113 million euros. A company with a tradition of family ownership, KWS has operated independently for some 160 years. It focuses on plant breeding and the production and sale of seed for corn, sugarbeet, cereals, rapeseed and sunflowers. KWS uses leading-edge plant breeding methods to continuously improve yield and resistance to diseases, pests and abiotic stress. To that end, the company invested  174 million euros last fiscal year in research and development, 17.7 percent of its net sales. For more information: www.kws.com. Follow us on Twitter® at https://twitter.com/KWS_Group.

*All figures exclude the joint ventures AGRELIANT GENETICS LLC., AGRELIANT GENETICS INC. and KENFENG – KWS SEEDS CO.

FURTHER INFORMATION

Genevieve Renard

Email: g.renard@cgiar.org

Telephone: +52 1 595 114 9880

Twitter: @genevrenard

A Chat With: DuPont Pioneer president points to technology to boost yields

New innovations will improve farming productivity said DuPont Pioneer President Schickler. Photo: CIMMYT/ Peter Lowe
New innovations will improve farming productivity said DuPont Pioneer President Paul Schickler. Photo: CIMMYT/ Peter Lowe

EL BATAN, Mexico (CIMMYT) – Data and predictive analytics can help seeds reach their full yield by providing farmers with information and management advice, said DuPont Pioneer President Paul Schickler.

Although seed varieties possess greater genetic potential than ever before, farmers are failing to achieve maximum yield because they lack the knowledge to farm certain varieties of maize and wheat in certain locations, said Schickler who will speak at a conference to mark the 50th anniversary of the International Maize and Wheat Improvement Center (CIMMYT) next week.

To help farmers bridge this gap, Schickler said DuPont Pioneer has abandoned learning best practices from field trials and now uses data modelling. Simulating combinations of seeds and  unique farming practices enables smoother delivery of better information and management advice, he said.

Targeted genome editing using engineered nucleases innovations, such as Clustered, Regularly Interspaced, Short Palindromic Repeat (CRISPR) technology, are also driving DuPont Pioneer’s seed development to improve the productivity of climate- and disease-resistant crops, said Schickler.

He will deliver a talk during a session titled, “The critical role of innovation in agriculture” on Sept. 28 at the CIMMYT 50th anniversary conference which will be held from Sept. 27 to 29, 2016 in Mexico City.

He shared some views on agricultural innovation in the following interview.

Q: What is significant about CIMMYT?

There’s no denying it – we have all benefitted from CIMMYT’s scientific research and heart for innovation. Since its beginnings, CIMMYT has played a revolutionary role in global agriculture — fostering maize and wheat productivity while improving rural livelihoods and boosting farmer productivity. And, they have excelled at bringing a collaborative focus to agriculture.

As I reflect on the past 50 years of CIMMYT, I also think of one of the world’s great humanitarians and innovators – former Global Wheat Program director and Nobel laureate Noman Borlaug. Through science, he has been credited with saving 1 billion people from starvation.

At DuPont Pioneer, we have a strong appreciation for the contributions of Borlaug and CIMMYT. We have collaborated throughout its 50-year history and we look forward to 50 more.

Q: How does your area of specialization address challenges facing agriculture?

At DuPont Pioneer, we develop and supply advanced plant genetics and services to farmers to increase agricultural production and feed a growing world population. We collaborate with farmers and organizations, including CIMMYT, in more than 90 countries to apply the best of global science to develop uniquely local solutions. One thing has become abundantly clear – we can only help farmers be successful when we recognize their right to choose the best seeds, agronomic practices and tools for their operations. The “right” practices for farmers differ by geography, environment, market situation and more.

As president of DuPont Pioneer, I am immersed in issues pertaining to farmer and agricultural productivity, food and nutrition security, scientific research, product innovation and sustainability. Together with organizations like CIMMYT, we are making advancements in these areas while promoting community development and national security. Efforts to increase global food security may also support a decrease in civil unrest.

Q: What innovation do you see improving agriculture?

Innovation will continue to be critical on a global scale as we consider increasing yields and food production under the constraints of limited arable land, shrinking natural resources, and a growing population. To make sure enough healthy food is available, farmers need seeds that can thrive and are safe for people and the environment.

Every year, seed companies develop products with greater and greater genetic potential. But most customers fail to achieve the maximum yield potential of the seeds they plant. We need to help farmers bridge the gap between a product’s potential yield and its “real-world,” harvestable yield.

A Chat With: U.S. nutritionist Julie Miller Jones speaks out about GE crops

  • Any views expressed in this article are those of the author and not of CIMMYT.

EL BATAN, Mexico (CIMMYT) – Leading nutritionist Julie Miller Jones aims to bust myths about biotechnology

U.S. nutritionist Julie Miller Jones
U.S. nutritionist Julie Miller Jones

by educating the general population on the benefits she believes genetically engineered (GE) crops can play in ending extreme hunger and malnutrition.

A shift away from the perception that GE crops are unsafe for the environment and human health is needed if they are to live up to their potential to increase food production and improve nutrition to meet the needs of growing global population, said Miller Jones who will speak at a conference to mark the 50th anniversary of the International Maize and Wheat Improvement Center (CIMMYT) in September.

Hunger and malnutrition are barriers to sustainable development, because they lead to lowered productivity, diminished health and limit the ability to improve livelihoods, she said. There are nearly 800 million people who suffer from hunger worldwide, the majority in developing countries, according to the United Nations.

A recent report released by the U.S. National Academies of Sciences, Engineering and Medicine said there is no substantiated evidence that foods from GE crops are less safe than foods from non-GE crops. Miller Jones said the general public must be educated about how biotechnology can safely improve food crops and contribute to nourishing a global population projected to grow by more than 2 billion by 2050 to more than 9.7 billion.

GE technologies enable the insertion from one species to another of genetic material (DNA) responsible, for example, for the production of vitamin precursors, such as pro-vitamin A carotenoids. Specific genes from maize, daffodil or carrot, placed in a staple grain, can help address vitamin A shortages in many regions, said the nutritionist. Conventional breeding does not have this ability to insert desirable genes from one species to another, and GE technologies can therefore enhance the contribution of plant breeding in addressing significant public health problems, she said.

Miller Jones has followed wheat-breeding developments over the years. She is a big fan of Norman Borlaug, the late CIMMYT wheat breeder and 1970 Nobel Peace Prize laureate known as the Father of the Green Revolution for the high-yielding wheat varieties he produced, which are credited with saving more than a billion lives in the developing world.

Miller Jones is outspoken about the negative consequences of gluten-free diets and has written several research papers that dispel myths generated by claims that the protein found in wheat is unhealthy.

She is a certified nutrition specialist who is also a distinguished scholar and professor emeritus of nutrition of nutrition at St. Catherine University in St. Paul, Minnesota. Interested in all aspects of nutrition science, she is actively involved in educating consumers against myths about nutrition and food safety. Currently, she is a scientific advisor to a number of groups such as the Healthy Grains Institute and the Grains Food Foundation that promote healthy diets and educates consumers on the benefits the right balance of grain-based foods.

Jones, who will speak during Session Five on “Future Landscapes” at the CIMMYT 50th anniversary conference on Sept. 29, 2016, shared some insights on the future of agriculture in the following interview.

Q: What is significant about CIMMYT: What role has CIMMYT played in your area of work?

CIMMYT and Norman Borlaug have always been inspirations to me ever since I began my graduate work at the University of Minnesota nearly 50 years ago. I’m interested in nutrition and feeding the world, I taught students about the Green Revolution and the achievements of Borlaug and CIMMYT in the world food supply section of my class on current issues throughout my entire academic career.

Q: What are the key challenges the world faces?

Producing enough food and communicating about the risks and benefits of anything we do. Communicating that there are risks to using GE crops, but these are assessed on a case-by-case basis.. What hasn’t been communicated effectively, so that the average person can understand and not fear the technology, is the risk of not using GE and other agricultural advancements. It’s ironic to me that those claiming to be interested in the environment often reject technologies that enable the use of fewer inputs and scarce resources and they do it in the name of the environment. All must communicate this in a non-defensive, clear way.

Q: How does your area of specialization address these challenges?

As a nutritionist and communicator, I want to work with breeders to ensure that nutrients are one of the aspects that are included in breeding programs. Further, I want to work with others to develop effective strategies to explain advancements in agriculture and plant breeding to reduce consumers’ fears and ease their acceptance and adoption.

CIMMYT and partners set the pace in maize and wheat research in Africa

NAIROBI, Kenya (CIMMYT) – The recent inauguration of a new seed storage cold room at the Kenya Agricultural and Livestock Research Organization (KALRO) research center at Kiboko in Makueni County, about 155 kilometers from the capital, adds to the top notch research establishments managed by the national partners in Africa together with the International Maize and Wheat Improvement Center (CIMMYT). This  successful partnership  continues to help farmers overcome crippling challenges in farming and to realize the yield potential of improved varieties.

Since its establishment in Africa, over 40 years ago, CIMMYT has prioritized high quality research work in state-of-the-art research facilities developed through long-standing partnerships with national research organizations, such as KALRO.

“If CIMMYT were to be established today, it would be headquartered in Africa because this is where smallholder farmers face the biggest challenges.  At the same time, this is the place where outstanding work is being done to help the farmers rise above the challenges, and with great success,” said Martin Kropff, CIMMYT Director General during his recent visit to Kenya.

The cold room jointly inaugurated by Kropff, and KALRO Director General, Eliud Kireger will help store high value maize seeds with an array of traits including resilience to diseases, insect-pests and climatic stresses as drought and heat, for up to 10 years, without the need for seed regeneration every year, thereby avoiding risk of contamination and use of scarce resources.  It will also help make seed readily available for distribution to national partners and seed companies to reach the farmers much faster.

Kireger conveyed his appreciation for the cold room and other research facilities established on KALRO sites, terming these achievements as “rewarding not just to KALRO and to the seed companies, but to many smallholders in Africa, who continue to be the inspiration behind every effort put into maize research and development work by KALRO and partners like CIMMYT.”

In addition to the seed storage cold room, Africa hosts the maize lethal necrosis (MLN) disease screening facility in sub-Saharan Africa. The MLN screening facility was established in 2013 at KALRO Naivasha Center in Kenya in response to the outbreak of the devastating MLN disease in eastern Africa. The facility since then has supported both the private and public institutions to screen maize germplasm for MLN under artificial inoculation and in identifying MLN tolerant/resistant lines and hybrids.

Did you know? •Over 60,000 entries have been tested at the MLN screening site in Naivasha, Kenya since 2013. • 16 private and public institutions including seed companies and national research organizations have screened their germplasm for MLN.
Combating MLN:                                                                                                                                            
• Over 60,000 entries have been tested at the MLN screening site in Naivasha, Kenya since 2013.
• 16 private and public institutions including seed companies and national research organizations have screened their germplasm for MLN. Photo: K. Kaimenyi/CIMMYT

“The MLN screening facility (also a quarantine site) has been supporting the national partners in sub-Saharan Africa, key multinational, local and regional seed companies and CGIAR centers.  This facility has become a major resource in the fight against MLN regionally,” added B.M. Prasanna, Director of CIMMYT’s Global Maize Program as well as the CGIAR Research Program MAIZE. “Tremendous progress has been made through this facility in the last three years. Several promising maize lines with tolerance and resistance to MLN have been identified, and used in breeding programs to develop improved maize hybrids. Already five MLN-tolerant hybrids have been released and now being scaled-up by seed companies for reaching the MLN-affected farmers in Kenya, Uganda and Tanzania. As many as 22 MLN-tolerant and resistant hybrids are presently undergoing national performance trials in east Africa,” remarked Prasanna.

Another major focus of CIMMYT and partners in the region is to prevent the spread of MLN from the endemic to non-endemic countries in Africa.  “This is a strong message to convey that we not only work hard to develop MLN resistant maize varieties for the farmers, but we are also very keen to control the spread of the disease” remarked Kropff during a visit to the site.

In Zimbabwe, an MLN quarantine facility has been established in 2016, in collaboration with the government. This facility is key for safe transfer of research materials, including those with MLN resistance into the currently MLN non-endemic countries in southern Africa, before they get to the partners.

In order to keep up with the emerging stresses and to accelerate development of improved maize varieties, the maize Doubled-Haploid (DH) facility was established in 2013 by CIMMYT and KALRO at the KALRO research center in Kiboko. This facility helps the breeders to significantly shorten the process of developing maize parental lines from 7–8 seasons (using conventional breeding) to just 2–3 seasons.

Over 92,000 Doubled-Haploid (DH) maize lines have been developed from CIMMYT bi-parental crosses. Photo: B. Wawa/CIMMYT
Over 92,000 Doubled-Haploid (DH) maize lines have been developed from CIMMYT bi-parental crosses. Photo: B. Wawa/CIMMYT

“Through the facility at Kiboko, we have been able to develop over 60,000 DH lines in 2015 from diverse genetic backgrounds. The DH facility also supports the national agricultural research organisations and small and medium enterprise partners in sub-Saharan Africa to fast-track their breeding work through DH lines,” said Prasanna.

For wheat research-for-development work in Africa, the largest stem rust phenotyping platform in the world sits at KALRO research center in Njoro, Kenya. The facility screens at least 50,000 wheat accessions annually from 20-25 countries. Following the emergence of the Ug99 wheat rust disease pathogen strain in Uganda, the disease spread to 13 countries in Africa. Close to 65 wheat varieties that are resistant to Ug99 stem rust disease have been released globally as a result of the shuttle breeding that includes selection from the screening site at KALRO Njoro.

“CIMMYT’s yearly investment of USD 37 million in Africa through various projects has translated into a success story because of the strong collaboration with our partners across Africa,” said Stephen Mugo, CIMMYT’s Regional Representative for Africa. He further added that “research work in Africa is not yet done. No institution, including CIMMYT, cannot do this important work alone.  We need to, and will, keep on working together with partners to improve the livelihoods of the African smallholders.”

CIMMYT DG Martin Kropff studying an MLN affected plant. Photo: K. Kaimenyi/CIMMYT
CIMMYT DG Martin Kropff studying an MLN affected plant. Photo: K. Kaimenyi/CIMMYT

 

Key funders of CIMMYT work in Africa include, the USAID, Bill & Melinda Gates Foundation, the Sygenta Foundation for Sustainable Agriculture, Australian Centre for International Research, CGIAR Research Program on Maize, Foreign Affairs Trade and Development Canada.

receive newsletter

Ancient maize varieties provide modern solution to tar spot complex

Felix Corzo Jimenez , a farmer in Chiapas, Mexico, examines one of his maize plants infected with tar spot complex.
Felix Corzo Jimenez , a farmer in Chiapas, Mexico, examines one of his maize plants infected with tar spot complex. Photo: J. Johnson/CIMMYT.

CHIAPAS, Mexico — In southern Mexico and Central America a fungal maize disease known as tar spot complex (TSC) is decimating yields, threatening local food security and livelihoods. In El Portillo, Chiapas, Mexico, local farmer Felix Corzo Jimenez sadly surveys his maize field.

“It’s been a terrible year. We’ll be lucky if we harvest even 50 percent of our usual yields,” he said, examining a dried up maize leaf covered in tiny black dots, and pulling the husk off of an ear to show the shriveled kernels, poorly filled-in. “Tar spot is ruining our crops.”

Named for the black spots that cover infected plants, TSC causes leaves to die prematurely, weakening the plant and preventing the ears from developing fully, cutting yields by up to 50 percent or more in extreme cases. Caused by a combination of three fungal infections, the disease occurs most often in cool and humid areas across southern Mexico, Central America and South America. The disease is beginning to spread – possibly due to climate change, evolving pathogens and susceptible maize varieties – and was reported in important maize producing regions of central Mexico and the northern United States for the first time last fall. To develop TSC resistant maize varieties that farmers need, the Seeds of Discovery (SeeD) initiative is working to “mine” the International Maize and Wheat Improvement Center’s (CIMMYT) genebank for native maize varieties that may hold genes for resistance against the disease.

The first stage of fungal maize disease TSC, with tiny, black “tar spots” covering the leaf. The spots will soon turn into lesions that kill the leaf, preventing photosynthesis from occurring.
The first stage of fungal maize disease TSC, with tiny, black “tar spots” covering the leaf. The spots will soon turn into lesions that kill the leaf, preventing photosynthesis from occurring. Photo: J. Johnson/CIMMYT.

The majority of maize varieties planted in Mexico today are susceptible to TSC, meaning that farmers would have to spray expensive fungicides several times each year to protect their crops against the disease, a huge financial burden that few can afford. Creating varieties with natural resistance to tar spot is an economical and environmentally friendly option that will protect the livelihoods of the region’s smallholder maize farmers.

“This project targets the many farmers in the region with limited resources, and the small local seed companies that sell to farmers at affordable prices,” says Terry Molnar, SeeD maize breeder.

The key to developing maize varieties with resistance to TSC lies in the genetic diversity of the crop. For thousands of years, farmers have planted local maize varieties known as landraces, or descendants from ancient maize varieties that have adapted to their environment. Over centuries of selection by farmers these landraces accumulated specific forms of genes, or alleles, which helped them to resist local stresses such as drought, heat, pests or disease.

These novel genetic traits found in landrace maize can help breeders develop improved maize varieties with resistance to devastating diseases such as TSC. However, it is quite challenging for breeders to incorporate “exotic” landrace materials into breeding programs, as despite their resistance to stresses found in their native environment, they often carry unfavorable alleles for other important traits.

A maize ear with shriveled kernels that are poorly filled, a major side effect of TSC that reduces farmer’s tields.
A maize ear with shriveled kernels that are poorly filled, a major side effect of TSC that reduces farmer’s yields. Photo: J. Johnson/CIMMYT.

To help breeders incorporate this valuable genetic diversity into breeding programs, SeeD works to develop “bridging germplasm” maize varieties, which are created by transferring useful genetic variation from landraces held in the CIMMYT genebank into plant types or lines that breeders can readily use to develop the improved varieties farmers need. These varieties are created by crossing landrace materials with CIMMYT elite lines, and selecting the progeny with the genetic resistance found in a landrace without unfavorable traits breeders, farmers and consumers do not want.

“The CIMMYT maize genebank has over 28,000 maize samples from 88 countries, many of which are landraces that may have favorable alleles for disease resistance,” Molnar says. “We all know that there is good material in the bank, but it’s scarcely being used. We want to demonstrate that there are valuable alleles in the bank that can have great impact in farmers’ fields.”

A susceptible maize variety infected with TSC (left) compared to a healthy maize plant , a resistant variety immune to the disease (right).
A susceptible maize variety infected with TSC (left) compared to a healthy maize plant , a resistant variety immune to the disease (right). Photo: J. Johnson/CIMMYT.

SeeD scientists began by identifying landrace varieties with genetic resistance to TSC. Trials conducted in 2011, 2012 and 2014 evaluated a “core set” – a genetically diverse subset of the maize germplasm bank – in search of resistant varieties.  Of the 918 landrace varieties planted in 2011 and 2012, only two landraces—Oaxaca 280 and Guatemala 153—were outstanding for tolerance to the disease.  Genotypic data would later confirm the presence of unique resistant alleles not currently present in maize breeding programs that could be deployed into SeeD’s bridging germplasm. This bridging germplasm will be available to breeders for use in developing elite lines and varieties for farmers.

“As a breeder, I’m excited to work with SeeD’s bridging germplasm as soon as it is available,” said Felix San Vicente, CIMMYT maize breeder working with the CGIAR Research Program on Maize and the Sustainable Modernization of Traditional Agriculture (MasAgro) project.

Terry Molnar, maize breeder with SeeD, and Enrique Rodriguez, field research technician with SeeD, evaluate bridging germplasm for resistance to TSC.
Terry Molnar, maize breeder with SeeD, and Enrique Rodriguez, field research technician with SeeD, evaluate bridging germplasm for resistance to TSC. Photo: J. Johnson/CIMMYT.

Up to this point, most breeders have only used elite lines to develop hybrids, because landraces are extremely difficult to use. This practice, however, greatly limits the genetic diversity breeders employ. Using novel alleles from maize landraces allows breeders to develop improved hybrids while broadening the genetic variation of their elite germplasm. This novel genetic diversity is very important to protect crops from evolving pathogens, as it means the varieties will have several resistant alleles, including alleles that have never been used in commercial germplasm before.

“The more alleles the better,” said San Vicente, “as it protects the line longer. It provides a form of insurance to smallholder farmers as these varieties will have more genes for resistance, which reduces their risk of losing their crop.”

To ensure that farmers can access this improved seed, CIMMYT works with small local seed companies. “The price of seed will be very affordable,” according to San Vicente. “As CIMMYT is a non-profit, we provide our improved materials to seed companies at no cost.”

The TSC resistant bridging germplasm developed by SeeD has been tested in on-farm trials in TSC-prone sites in Chiapas and Guatemala, with promising results, and will be publicly available to breeders in 2017. In the meantime, local farmers look forward to seeing the results of this research in their own fields. “A variety with the disease resistance of a landrace and the yield and performance of a hybrid is exactly what we need,” says Corzo Jimenez.

Corzo Jimenez in his maize field infected with TSC. Varieties made from SeeD bridging germplasm would allow him to protect his crop without applying expensive fungicides.
Corzo Jimenez in his maize field infected with TSC. Varieties made from SeeD bridging germplasm would allow him to protect his crop without applying expensive fungicides. CIMMYT/Jennifer Johnson.

SeeD is a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). To learn more about the Seeds of Discovery project, please go to http://seedsofdiscovery.org/.

receive newsletter

HarvestPlus World Food Prize laureates benefit more than 10 million people

HarvestPlus director Howarth Bouis is one of four winners of the 2016 World Food Prize. Graphic design: Bose Zhou
HarvestPlus director Howarth Bouis is one of four 2016 World Food Prize laureates. Graphic design: Bose Zhou

EL BATAN, Mexico (CIMMYT) — HarvestPlus director Howarth Bouis is one of four winners of the 2016  World Food Prize, honored for international research leading to a substantial increase in the availability of nutritious biofortified crops for millions of poor people.

Bouis was recognized specifically for pioneering work that established a multi-institutional approach to biofortification as a global plant breeding strategy, World Food Prize organizers said in a statement on Tuesday. The interdisciplinary, collaborative HarvestPlus program was launched in 2003 and is now part of the Agriculture for Nutrition and Health program managed by the CGIAR consortium of agricultural researchers.

Bouis, who works with the CGIAR International Food Policy Research Institute (IFPRI), has directed initiatives that have led to the release or testing of such crops as iron- and zinc-fortified beans, rice, wheat and pearl millet, along with vitamin A-enriched cassava, maize and the orange-fleshed sweet potato in more than 40 countries.

The three other laureates, Maria Andrade, Robert Mwanga and Jan Low of the CGIAR International Potato Center (CIP) are being recognized for work leading to the development of the biofortified orange-fleshed sweet potato. Andrade and Mwanga, plant scientists in Mozambique and Uganda, bred the Vitamin A-enriched potato using genetic material from CIP and other sources, while Low structured the nutrition studies and programs that convinced almost two million households in 10 separate African countries to plant, purchase and consume the nutritionally fortified food, the statement said.

Although orange-colored sweet potatoes are common in some parts of the world, in parts of Africa white sweet potatoes have historically been more typical. Breeding potatoes so they can synthesize more vitamin A means they can be grown in poor areas to benefit consumers and smallholder farmers who cannot afford to buy or grow food high in micronutrients.

Due to the combined efforts of the four World Food Prize laureates, more than 10 million people are now gaining nutritional benefits from biofortified crops, and the potential exists to benefit several hundred million more people in the coming decades, the statement said.

“The impact of the work of all four winners will be felt around the globe, but particularly in sub-Saharan Africa,” said Kenneth Quinn, president of the World Food Prize. “It is particularly poignant that among our 2016 recipients are two African scientists who are working on solutions to tackle malnutrition in Africa, for Africa.”

Some 2 billion people around the world suffer from micronutrient deficiency, which occurs when food does not provide enough vitamins and minerals, according to the World Health Organization. South Asia and sub-Saharan Africa are most affected by hidden hunger.

Andrade, Mwanga, Low and Bouis will receive the World Food Prize at a ceremony in Des Moines, Iowa, on October 13, the main event during the annual Borlaug Dialogue symposium. The late Nobel Peace Prize laureate, Norman Borlaug, a wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT), established the World Food Prize 30 years ago.

CIMMYT scientists have won the prestigious award twice.  Evangelina Villegas and Surinder Vasal received it in 2000 for their work developing quality protein maize with an adequate balance of amino acids using biofortification techniques. They provided nutritional options for people with diets dominated by maize and with no adequate alternative source of protein.

Wheat breeder Sanjaya Rajaram, who worked with both CIMMYT and the CGIAR International Center for Agricultural Research in the Dry Areas (ICARDA), won in 2014 for producing a remarkable 480 wheat varieties, which produce yields that are estimated to feed more than 1 billion people a year.

HARVESTPLUS MAIZE AND WHEAT

While the orange sweet potato is a highlight, biofortified wheat and maize are part of the overall HarvestPlus success story, benefiting thousands of resource-poor farmers and consumers.

“This news shows that it is vital to keep up the fight and serves as encouragement for partners, collaborators and donors to pursue biofortification more vigorously to achieve greater global impact on food and nutritional security,” said CIMMYT wheat breeder Velu Govindan.

CIMMYT maize and wheat scientists tackle micronutrient deficiency, or “hidden hunger,” through HarvestPlus to help improve nutrition in poor communities where nutritional options are unavailable, limited or unaffordable. Micronutrient deficiency is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The wheat component of the HarvestPlus program involves developing and distributing wheat varieties with high zinc levels.

“Breeding these varieties involves the use of diverse genetic resources, including wheat landraces, ancestors and wild relatives, with high genetic potential to accumulate zinc in the grain, which are combined with adapted wheat to obtain high-yielding varieties with high zinc grain concentration,” said Carlos Guzman, head of the Wheat Chemistry and Quality Laboratory at CIMMYT, adding that such varieties have been shown to have higher iron values in grain than conventional varieties.

A project to develop superior wheat lines combining higher yield and high zinc concentrations in collaboration with national agriculture program partners in South Asia has led to new biofortified varieties 20 to 40 percent superior in grain zinc concentration, which are already available for farmers in India and Pakistan. Other national partners, such as Bolivia, are also close to releasing biofortified wheat varieties developed through collaboration with CIMMYT.

Additionally, a recent HarvestPlus study revealed that modern genomic tools such as genomic selection hold great potential for biofortification breeding to enhance zinc concentrations in wheat.

Scientists working with HarvestPlus have developed vitamin A-enriched “orange” maize. Orange maize is conventionally bred to provide higher levels of pro-vitamin A carotenoids, a natural plant pigment found in such orange foods as mangoes, carrots, pumpkins, sweet potatoes, dark leafy greens and meat, converted into vitamin A by the body.

Vitamin A is essential for good eyesight, growth and boosting immunity. Almost 200 million children under the age of 5 and 19 million pregnant women are vitamin A deficient, and increasing levels through maize kernels is an effective means of boosting it in the diet.

Maize breeders are currently working on developing varieties with 50 percent more pro-vitamin A than the first commercialized varieties released. In Zambia, Zimbawe and Malawi, 12 varieties, which are agronomically competititve and have about 8ppm provitamin A, have been released.

Provitamin A from maize is efficiently absorbed and converted into vitamin A in the body.  Stores of Vitamin A in 5 to 7 year old children improved when they ate orange maize, according to HarvestPlus research. The study also shows preliminary data demonstrating that children who ate orange maize for six months experienced an improved capacity of the eye to adjust to dim light. The findings indicate an improvement in night vision.

Researchers are also developing maize varieties high in zinc. Scientists expect the first high zinc hybrids and varieties will be released in 2017. Further efforts are starting in such countries as Zambia, Zimbabwe and Ethiopia. Results from the first nutrition studies in young rural Zambian children indicate that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for the vulnerable population.

CIMMYT’s knowledge sharing efforts contribute to improved seed production in Africa

Photo: Lewis Machida
Photo: Lewis Machida

NAIROBI, Kenya (CIMMYT) – A staggering 80% of the 67 million inhabitants of central Africa’s Democratic Republic of Congo (DRC) rely on maize for food, despite the country’s underdeveloped national maize breeding and seed production program. The ravages of war may have limited development efforts, but renewed interest in the DRC by regional and global development partners will provide much needed infrastructure and knowledge sharing support.

Even with abundant resources such as water, labor and fertile land, availability of and access to quality seed remains a major hindrance to a thriving agricultural sector in the DRC. According to the state-run agricultural organization, Institut National pour l’Etude et la Recherche Agronomiques (INERA), North and South Kivu provinces in particular still import food from neighboring Rwanda, Uganda and Tanzania, with maize taking up the lion’s share of purchases.

Strategic public-private sector partnerships in agricultural research and development, such as the one between INERA, the International Maize and Wheat Improvement Center (CIMMYT) office in Kenya, and the Alliance for Green Revolution in Africa (AGRA), are an invaluable investment towards growth and sustainability of maize production in the region. AGRA funds multiple agricultural research projects in the DRC, while CIMMYT is renowned for its excellence in maize research globally. It is against this backdrop that breeders, agronomists, technicians and students gathered at the drought-tolerant (DT) maize site in Kiboko, Kenya, for a ten-day training course dubbed ‘Pollinations, Nursery and Trials Management’. The training, held from June 13 – 23, 2016, and jointly supported by CIMMYT and AGRA, and hosted by CIMMYT, emphasized hand pollination in maize variety development and seed multiplication.

Remarks by Stephen Mugo, CIMMYT Regional Representative for Africa, and Maize Breeder, highlighted training as one of the ways CIMMYT supports capacity building and development in the region.

He said, “It is my hope that knowledge and skills imparted during this course will be shared with other professionals at INERA, to improve maize breeding and production capabilities in the DRC.”

The course, organized by CIMMYT Maize Breeder, Lewis Machida, featured a mix of detailed lectures and practical exercises, expertly delivered by various CIMMYT scientists. Presentations covered topics such as basic seed production (hybrids and open pollinated varieties) and maintenance, breeding methods, and maize pollinations including hand pollination.

Photo: Lewis Machida
Photo: Lewis Machida

Hand pollination

Pollination, the process responsible for reproduction and continuity of plant life, is also a breeder’s playground, enabling shuffling of genes, plant adaptation and evolution. In maize breeding, this means development of seeds with tolerance to stresses such as drought, heat, pests and diseases.

Hand pollination, the general term for human intervention in this delicate process, can be further classified into self pollination, and cross pollination. As the name suggests, hand pollination is done by hand, calling for extreme care to minimize contamination and damage of plants.

“Successful production and maintenance of varieties depends largely on hand pollination. Without this process, it would be difficult to produce genetically pure seeds,” says Mugo, adding, “For this reason, hand pollination is considered the core of variety development in maize breeding.”

For the practical sessions of the course, participants deftly carried out the steps in hand pollination, including shoot bagging, pollen collection & placement, and detasseling.

Elois Cinyabuguma, Manager of INERA’s Cereal Unit, shared that the training offered much needed technical skills to scale up seed production in his country, saying, “With CIMMYT germplasm, and sound technical knowledge on multiplication, storage and pest & disease management, DRC is well on its way to setting up a well-rounded maize development program.”

Beyond building the DRC’s capacity for maize breeding and production in general, lessons from the training will be implemented first in North and South Kivu provinces, in hopes of reducing or eliminating maize imports. The event was also a unique opportunity to enhance collaboration among INERA, CIMMYT and AGRA, in anticipation of future shared projects pertaining to maize research, production and distribution.

All participants were issued with a certificate on successful completion of the course.

Presentations from the course are available here.

New Publications: Advances in breeding for future climates

Farmer-surrounded-by-wheat
Photo: Ranak Martin/CIMMYT

CIMMYT scientists have made progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia according to a recently published study. Maintaining wheat productivity under increasing temperatures and decreasing water availability in South Asia is a challenge. Warmer temperatures have already been determined to be one of the major factors in slowing the wheat productivity growth in South Asia, with estimated grain yield losses at 6 to 10% per ◦C rise in temperature.

In response, CIMMYT researchers focused on developing early maturing wheat lines as an adaptive mechanism in regions suffering from terminal heat stress and those areas that require wheat adapted to shorter cycles under continual high temperature stress. Each year from 2009 to 2014, 28 newly developed early-maturing high-yielding CIMMYT wheat lines were evaluated across locations in South Asia. A positive trend was observed while estimating the breeding progress across five years for high-yielding early-maturing heat tolerant wheat compared to the local checks in South Asia, suggesting early maturity has the potential to improve adaptation and maintenance of genetic gains in South Asia. Read the full study “Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia” here.

Another recently released study on physiological breeding reveal opportunities for more precise breeding strategies and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Among other findings, the study concludes that new crop designs capitalize on over half a century of physiological research, remote sensing allows evaluation of genetic resources for complex trait expression, and genetic and physiological dissection of complex traits enables better crosses. Read the full study “Physiological breeding” here.

From A to Z: Developing nutritious maize and wheat at CIMMYT for 50 years

This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.

EL BATAN, Mexico (CIMMYT) – Maize and wheat biofortification can help reduce malnutrition in regions where nutritional options are unavailable, limited or unaffordable, but must be combined with education to be most effective, particularly as climate change jeopardizes food security, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).

Climate change could kill more than half a million adults in 2050 due to changes in diets and bodyweight from reduced crop productivity, a new report from the University of Oxford states. Projected improvement in food availability for a growing population could be cut by about a third, leading to average per-person reductions in food availability of 3.2 percent, reductions in fruit and vegetable intake of 4 percent and red meat consumption of .07 percent, according to the report.

Over the past 50 years since CIMMYT was founded in 1966, various research activities have been undertaken to boost protein quality and micronutrient levels in maize and wheat to help improve nutrition in poor communities, which the Oxford report estimates will be hardest hit by climate change. As one measure of CIMMYT’s success, scientists Evangelina Villegas and Surinder Vasal were recognized with the prestigious World Food Prize in 2000 for their work developing quality protein maize (QPM).

“We’ve got a lot of balls in the air to tackle the ongoing food security crisis and anticipate future needs as the population grows and the climate changes unpredictably,” said Natalia Palacios, head of maize quality, adding that a key component of current research is the strategic use of genetic resources held in the CIMMYT gene bank.

“CIMMYT’s contribution to boosting the nutritional value of maize and wheat is hugely significant for people who have access to these grains, but very little dietary diversity otherwise. Undernourishment is epidemic in parts of the world and it’s vital that we tackle the problem by biofortifying crops and including nutrition in sustainable intensification interventions.”

Undernourishment affects some 795 million people worldwide – meaning that more than one out of every nine people do not get enough food to lead a healthy, active lifestyle, according to the U.N. Food and Agriculture Organization (FAO).  By 2050, reduced fruit and vegetable intake could cause twice as many deaths as under-nutrition, according to the Oxford report, which was produced by the university’s Future of Food Programme.

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to one-quarter of the world’s daily energy intake, and contributing 27 percent of the total calories in the diets of people living in developing countries, according to FAO.

“Nutrition is very complex and in addition to deploying scientific methods such as biofortification to develop nutritious crops, we try and serve an educational role, helping people understand how best to prepare certain foods to gain the most value,” Palacios said.  “Sometimes communities have access to nutritious food but they don’t know how to prepare it without killing the nutrients.”

The value of biofortified crops is high in rural areas where people have vegetables for a few months, but must rely solely on maize for the rest of the year, she added, explaining that fortified flour and food may be more easily accessed in urban areas where there are more dietary options.

Some of the thousands of samples that make up the maize collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT's global headquarters in Texcoco, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
Some of the thousands of samples that make up the maize collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)

PROMOTING PROTEIN QUALITY

Conventional maize varieties cannot provide an adequate balance of amino acids for people with diets dominated by the grain and with no adequate alternative source of protein. Since the breakthrough findings of Villegas and Vasal, in some areas scientists now develop QPM, which offers an inexpensive alternative for smallholder farmers.

CIMMYT scientists also develop QPM and other nutritious conventionally bred maize varieties for the Nutritious Maize for Ethiopia (NuME) project funded by the government of Canada. NuME, which also helps farmers improve agricultural techniques by encouraging the deployment of improved agronomic practices, builds on a former seven-year collaborative QPM effort with partners in Ethiopia, Kenya, Tanzania and Uganda.

In Ethiopia, where average life expectancy is 56 years of age, the food security situation is critical due in part to drought caused by a recent El Nino climate system, according to the U.N. World Food Programme. More than 8 million people out of a population of 90 million people are in need of food assistance.  Almost 30 percent of the population lives below the national poverty line, 40 percent of children under the age of 5 are stunted, 9 percent are acutely malnourished and 25 percent are underweight, according to the 2014 Ethiopia Mini Demographic and Health Survey. The NuMe project is helping to shore up sustainable food supplies and boost nutrition in the country, where the vast majority of people live in rural areas and are engaged in rain-fed subsistence agriculture.

INCREASING MICRONUTRIENTS

CIMMYT maize and wheat scientists tackle micronutrient deficiency, or “hidden hunger,” through the interdisciplinary, collaborative program HarvestPlus, which was launched in 2003 and is now part of the Agriculture for Nutrition and Health program managed by the CGIAR consortium of agricultural researchers.

Some 2 billion people around the world suffer from micronutrient deficiency, according to the World Health Organization (WHO). Micronutrient deficiency occurs when food does not provide enough vitamins and minerals. South Asia and sub-Saharan Africa are most affected by hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

Work at CIMMYT to combat micronutrient deficiency is aligned with the U.N. Sustainable Development Goals (SDGs) — in particular Goal 2, which aims to end all forms of malnutrition by 2030. The SDG also aims to meet internationally agreed targets on stunting and wasting in children under 5 years of age, and to address the nutritional needs of adolescent girls, older people, pregnant and lactating women by 2025.

WHOLESOME WHEAT

The wheat component of the HarvestPlus program involves developing and distributing wheat varieties with high zinc levels by introducing genetic diversity from wild species and landraces into adapted wheat.

Zinc deficiency affects about one-third of the world’s population, causing lower respiratory tract infections, malaria, diarrheal disease, hypogonadism, impaired immune function, skin disorders, cognitive dysfunction, and anorexia, according to the WHO, which attributes about 800,000 deaths worldwide each year to zinc deficiency. Additionally, worldwide, approximately 165 million children under five years of age are stunted due to zinc deficiency.

A project to develop superior wheat lines combining higher yield and high zinc concentrations in collaboration with national agriculture program partners in South Asia has led to new biofortified varieties 20 to 40 percent superior in grain zinc concentration.

“We’re playing a vital role in this area,” said CIMMYT wheat breeder Velu Govindan. “Our research has led to new varieties agronomically equal to, or superior to, other popular wheat cultivars with grain yield potential at par or — in some cases – even superior to popular wheat varieties adopted by smallholder farmers in South Asia where we’ve been focused.”

Scientists are studying the potential impact of climate-change related warmer temperatures and erratic rainfall on the nutritional value of wheat. An evaluation of the effect of water and heat stress with a particular focus on grain protein content, zinc and iron concentrations revealed that protein and zinc concentrations increased in water and heat-stressed environments, while zinc and iron yield was higher in non-stressed conditions.

“The results of our study suggest that genetic gains in yield potential of modern wheat varieties have tended to reduce grain zinc levels,” Govindan said. “In some instances, environmental variability might influence the extent to which this effect manifests itself, a key finding as we work toward finding solutions to the potential impact of climate change on food and nutrition security.”

Additionally, a recent HarvestPlus study revealed that modern genomic tools such as genomic selection hold great potential for biofortification breeding to enhance zinc concentrations in wheat.

IMPROVING MAIZE

Scientists working with HarvestPlus have developed vitamin A-enriched “orange” maize. Orange maize is conventionally bred to provide higher levels of pro-vitamin A carotenoids, a natural plant pigment found in such orange foods as mangoes, carrots, pumpkins, sweet potatoes, dark leafy greens and meat, converted into vitamin A by the body.

Vitamin A is essential for good eyesight, growth and boosting immunity. Almost 200 million children under the age of 5 and 19 million pregnant women are vitamin A deficient, and increasing levels through maize kernels is an effective means of boosting it in the diet.

Maize breeders, who are currently working on developing varieties with 50 percent more pro-vitamin A than the first commercialized varieties released, identified germplasm with the highest amounts of carotenoids to develop the varieties. In Zambia, Zimbawe and Malawi, 12 varieties, which are agronomically competititve and have about 8ppm provitamin A, have been released.

Provitamin A from maize is efficiently absorbed and converted into vitamin A in the body.  Stores of Vitamin A in 5 to 7 year old children improved when they ate orange maize, according to HarvestPlus research. The study also shows preliminary data demonstrating that children who ate orange maize for six months experienced an improved capacity of the eye to adjust to dim light. The findings indicate an improvement in night vision, a function dependent on adequate levels of vitamin A in the body.

Researchers are also developing maize varieties high in zinc.

Efforts on this front have been a major focus in Latin America, especially in Nicaragua, Guatemala and Colombia. Scientists expect the first wave of high zinc hybrids and varieties will be released in 2017. Further efforts are starting in such countries as Zambia, Zimbabwe and Ethiopia. Results from the first nutrition studies in young rural Zambian children indicate that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for the vulnerable population.

Genetically engineered crops safe to grow and eat, U.S. National Academy of Sciences concludes

A Kenyan man holds a harvest of a genetically engineered (GE) maize at the Kari research station in Kiboko, Makueni County. Photo: Nation Media Group Kenya
A Kenyan man holds a harvest of a genetically engineered (GE) maize at the Kari research station in Kiboko, Makueni County. Photo: Nation Media Group Kenya

EL BATAN, MEXICO (CIMMYT) — Genetically engineered (GE) crops are as safe to eat as conventionally bred crops and have benefited the environment and ecosystem diversity by reducing pesticide use, according to a study released by the U.S. National Academy of Sciences (NAS) earlier this month.

Conducted by a committee of 20 scientists chosen by the NAS to represent diverse disciplines relevant to the topic, the study brought together ample and broad-ranging evidence from the last 20 years, the period since the first commercial release of GE crops, regarding their impacts on yields, the abundance and diversity of insects, insecticide and herbicide use, the development of resistance to agrochemicals in weeds and pests, human and animal health and various other aspects of concern to society.

The committee collectively read 900 studies and publications, listened to 80 speakers at public meetings and webinars and reviewed over 700 comments and documents submitted by the public on GE crops past, present and future.

“Consumers and stakeholders have made diverse claims about GE crops, ranging from ‘they cause cancer’ to ‘we cannot feed the world without them,’” said Kevin Pixley, director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT) and member of the committee authoring the report. “The report is both retrospective and forward-looking; it openly considers all credible views and evidence, and provides findings and recommendations on a wide range of issues pertinent to GE and future novel crops.”

Regarding health concerns, the committee found no conclusive evidence that GE crops have contributed to obesity, diabetes, kidney disease, autism, celiac disease or food allergies. The report also states that there is “no conclusive evidence of cause-and-effect relationships between GE crops and environmental problems.”

The committee raised a red flag regarding weed and insect species developing resistance to commonly used herbicides and pesticides where farmers had grown GE crops without following proper practices to avoid this development. The authors noted that these issues are not unique to GE crops and said they deserved special attention and research.

brenda photo
Anne Maritim, 52 year old widow from Labotiet village in Bomet County in Kenya in her field planted with Drought Tego variety, a conventional drought tolerant variety that is high-yielding and early maturing. Photo: Brenda Wawa/CIMMYT

“The report contains a wealth of information about GE crops that enables readers to delve into the issues and topics of greatest interest or concern,” said Pixley. “Sweeping conclusions about GE crops are few, because the issues are multidimensional and often viewed differently by each individual.”

For the last 20 years some publics have waged a war on GE crops and urged they be banned from production. As one result, virtually no GE crops have been grown in most of Europe and calls for stricter labeling on GE products have also been made in countries including the United States and Canada.

The report states that regulators should not focus on genetic engineering or the process by which new crops are bred, but rather perform safety testing on individual products, based on their novelty and potential for adverse health or environmental effects.

Along the same lines, the study observed that a variety of new technologies, including gene-editing techniques, such as CRISPR/Cas9, which allow researchers quickly and efficiently to edit, cut out, and replace genes, are blurring the distinction between genetic engineering and conventional plant breeding.

“This is similar to the blurring of the differences between what we have been able do with our cell phones and computers over the last 20 years,” explained Pixley.

Included in the report is a list of traits, including those which can enhance nutritional value, food safety, forage quality and post-harvest storage, that are being or will likely be bred into future varieties using an expanding toolbox that includes genetic engineering, gene editing, genomic selection and others.

“This report provides a fresh perspective and proposes a conceptual framework for managing potential health or environmental risks of novel crop traits, regardless of which process or technology is used to breed them into our crops,” said Pixley “Genetic engineering and other emerging technologies offer options for plant breeders to meet the crop production and food security challenges of this and future generations.”

 

receive newsletter

Maize: From Mexico to the world

Scientists agree maize originated in Mexico thousands of years ago. CIMMYT/ Peter Lowe
Scientists agree maize originated in Mexico thousands of years ago. CIMMYT/ Peter Lowe

EL BATAN, Mexico (CIMMYT) – For Mexicans, the “children of corn,” maize is entwined in life, history and tradition. It is not just a crop; it is central to their identity.

Even today, despite political and economic policies that have led Mexico to import one-third of its maize, maize farming continues to be deeply woven into the traditions and culture of rural communities. Furthermore, maize production and pricing are important to both food security and political stability in Mexico.

One of humanity’s greatest agronomic achievements, maize is the most widely produced crop in the world. According to the head of CIMMYT’s maize germplasm bank, senior scientist Denise Costich, there is broad scientific consensus that maize originated in Mexico, which is home to a rich diversity of varieties that has evolved over thousands of years of domestication.

The miracle of maize’s birth is widely debated in science. However, it is agreed that teosinte (a type of grass) is one of its genetic ancestors. What is unique is that maize’s evolution advanced at the hands of farmers. Ancient Mesoamerican farmers realized this genetic mutation of teosinte resembled food and saved seeds from their best cobs to plant the next crop. Through generations of selective breeding based on the varying preferences of farmers and influenced by different climates and geography, maize evolved into a plant species full of diversity.

The term “maize” is derived from the ancient word mahiz from the Taino language (a now extinct Arawakan language) of the indigenous people of pre-Columbian America. Archeological evidence indicates Mexico’s ancient Mayan, Aztec and Olmec civilizations depended on maize as the basis of their diet and was their most revered crop.

Maize is entwined in the history and traditions of Mexico. Artwork by Marcelo Ortiz
Maize is entwined in the history and traditions of Mexico. Artwork by Marcelo Ortiz

As Popol Vuh, the Mayan creation story, goes, the creator deities made the first humans from white maize hidden inside a mountain under an immovable rock. To access this maize seed, a rain deity split open the rock using a bolt of lightning in the form of an axe. This burned some of the maize, creating the other three grain colors, yellow, black and red. The creator deities took the grain and ground it into dough and used it to produce humankind.

Many Mesoamerican legends revolve around maize, and its image appears in the region’s crafts, murals and hieroglyphs. Mayas even prayed to maize gods to ensure lush crops: the tonsured maize god’s head symbolizes a maize cob, with a small crest of hair representing the tassel. The foliated maize god represents a still young, tender, green maize ear.

Maize was the staple food in ancient Mesoamerica and fed both nobles and commoners. They even developed a way of processing it to improve quality. Nixtamalization is the Nahuatl word for steeping and cooking maize in water to which ash or slaked lime (calcium hydroxide) has been added. Nixtamalized maize is more easily ground and has greater nutritional value, for the process makes vitamin B3 more bioavailable and reduces mycotoxins. Nixtamalization is still used today and CIMMYT is currently promoting it in Africa to combat nutrient deficiency.

White hybrid maize (produced through cross pollination) in Mexico has been bred for making tortillas with good industrial quality and taste. However, many Mexicans consider tortillas made from landraces (native maize varieties) to be the gold standard of quality.

“Many farmers, even those growing hybrid maize for sale, still grow small patches of the local maize landrace for home consumption,” noted CIMMYT Landrace Improvement Coordinator Martha Willcox. “However, as people migrate away from farms, and the number of hectares of landraces decrease, the biodiversity of maize suffers.”

Women representing four generations from a maize farming family in Chiapas, Mexico. CIMMYT/ Peter Lowe
Women representing four generations from a maize farming family in Chiapas, Mexico. CIMMYT/ Peter Lowe

Diversity at the heart of Mexican maize

The high level of maize diversity in Mexico is due to its varied geography and culture. As farmers selected the best maize for their specific environments and uses, maize diverged into distinct races, according to Costich. At present there are 59 unique Mexican landraces recorded.

Ancient maize farmers noticed not all plants were the same. Some grew larger than others, some kernels tasted better or were easier to grind. By saving and sowing seeds from plants with desirable characteristics, they influenced maize evolution. Landraces are also adapted to different environmental conditions such as different soils, temperature, altitude and water conditions.

“Selection for better taste and texture, ease of preparation, specific colors, and ceremonial uses all played a role in the evolution of different landraces,” said Costich. “Maize’s genetic diversity is unique and must be protected in order to ensure the survival of the species and allow for breeding better varieties to face changing environments across the world.”

“Organisms cannot evolve if there is no genetic, heritable variation for natural selection to work with. Likewise, breeders cannot make any progress in selecting the best crop varieties, if there is no diversity for them to work with,” she said.

Willcox agrees maize diversity needs to be protected. “This goes beyond food; reduced diversity takes away a part of civilization’s identity and traditions. Traditional landraces are the backbone of rural farming in Mexico, and a source of tradition in cooking and ceremonies as well as being an economic driver through tourism. They need to be preserved,” she said.

A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Xochiquetzal Fonseca/CIMMYT) CIMMYT/Xochiquetzal Fonseca
A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Xochiquetzal Fonseca/CIMMYT) CIMMYT/Xochiquetzal Fonseca

Mexican collection preserves maize diversity

CIMMYT’s precursor, the Office of Special Studies funded by the Rockefeller Foundation, aided in the preservation of Mexican landraces in the 1940s, when it began a maize germplasm collection in a project with the Mexican government. By 1947, the collection contained 2,000 accessions. In a bid to organize them, scientists led by Mario Gutiérrez and Efraim Hernández Xolocotzi drew a chalk outline of Mexico and began to lay down ears of maize based on their collection sites. What emerged was a range of patterns between the races of maize. This breakthrough allowed the team of scientists to codify races of maize for the first time.

Today, CIMMYT’s Maize Germplasm Bank contains over 28,000 unique collections of maize seed and related species from 88 countries.

“These collections represent and safeguard the genetic diversity of unique native varieties and wild relatives and are held in long-term storage,” said Costich. “The collections are studied by CIMMYT and used as a source of diversity to breed for traits such as heat and drought tolerance and resistance to diseases and pests, and to improve grain yield and grain quality.”

CIMMYT’s germplasm is freely shared with scientists and research and development institutions to support maize evolution and ensure food security worldwide.

Willcox said  on-farm breeding by Mexican farmers also continues and preserves maize diversity and the culinary and cultural traditions surrounding maize are the reason there is such a wealth of landraces in existence today.

“The diversity preserved in farmers’ fields is complementary to the CIMMYT germplasm bank collection because these populations represent larger population sizes and diversity than can be contained in a germplasm bank and are subjected to continuous selection under changing climatic conditions,” she added.

Examples of some of the 59 native Mexican maize landraces. Photo courtesy of CIMMYT Maize Germplasm Bank
Examples of some of the 59 native Mexican maize landraces. Photo courtesy of CIMMYT Maize Germplasm Bank

 

A woman for wheat: Maricelis Acevedo takes on new role

This story appeared originally on the Borlaug Global Rust Initiative website. Linda McCandless is associate director for communications, International Programs, College of Agricultural and Life Sciences at Cornell University. She also oversees communications for the Delivering Genetic Gain in Wheat project.

“A ship is safe in the harbor, but that’s not what ships are for” is Maricelis Acevedo’s favorite mantra. The newly appointed associate director for science for Cornell University’s Delivering Genetic Gain in Wheat (DGGW) project left her island home of Puerto Rico in 2003 to pursue a career as a pathologist and has been traveling the world ever since.

This past month, Acevedo visited wheat screening nurseries in Kenya and Ethiopia and wheat research centers in India with Ronnie Coffman, director of the DGGW. She feels grateful for the opportunity to lead the scientific component of a project whose goals are to help mitigate the threat of food insecurity in vulnerable regions of the world, especially Ethiopia.

“The job comes with new opportunities and great responsibilities to achieve food security for a growing population,” said Acevedo. “Given the challenges of a changing climate, scarce agricultural resources, and the misinformation about what technology can provide to agriculture in the developing and developed world, I feel privileged to be a voice for farmers, researchers and sponsors in the fight against wheat pathogens.”

Acevedo believes the world can do better in bringing science to smallholder farmers’ fields. Her new journey on behalf of the DGGW began on March 16 when she helped launch the DGGW project in the wheat fields of the International Maize and Wheat Improvement Center (CIMMYT), in Ciudad Obregón in Mexico’s state of Sonora. Over the next year she will be visiting farmers and partner agricultural research facilities, including CIMMYT, around the globe.

“For the past eight years, Maricelis has collaborated with the Cornell team on various aspects of the Durable Rust Resistance in Wheat project,” said Coffman, vice-chair of the Borlaug Global Rust Initiative (BGRI). “Maricelis is an accomplished rust pathologist who also comes from an agricultural background. That is enormously helpful in a project whose success is so closely linked to farmer adoption of new varieties. We welcome her with great enthusiasm.”

The new DGGW grant will use modern tools of comparative genomics and big data to develop and deploy varieties of wheat that incorporate climate resilience and heat tolerance as well as improved disease resistance for smallholder farmers.

SMALL FARM ROOTS

Growing up on a small farm in Puerto Rico, in a family that grew plantains, bananas, edible beans, taro, sweet potato, maize and pigeon peas, Acevedo received an early introduction to the agricultural science behind farming. It was her father, now a retired agronomist from the University of Puerto Rico, who first introduced her to the concept of “pathogens.” She remembers watching him spray their fields to protect their crops from disease dressed in a protective suit and face mask. Mimicking his actions as a 4-year-old, she took a small plastic cup and sucked it tight onto her face breaking the capillaries all around her mouth and nose while “spraying” her Mom’s flowers with a watering can — “my first job as a pathologist,” she laughs.

More seriously, she also remembers her father testing farming practices that were going to be introduced to farmers’ fields in following seasons — “participatory breeding and research at its best.” And his first lessons on phenotypic selection of plantains and beans and his eagerness to try the new varieties coming out of the University of Puerto Rico Agricultural Experiment Research Station breeding and crop improvement programs.

Having experienced the devastation of seasonal crops due to drought, hurricanes, diseases and insects, Acevedo said she also knows the heartaches associated with farming. “I will never forget the emotional stress on my dad’s face in those moments.”

UNDERSTANDING HOST-PATHOGEN INTERACTION

During her undergraduate years at the University of Puerto Rico-Mayaguez, Acevedo studied biology, genetics, botany and biotechnology, courses that helped her decide to pursue a master’s degree in agronomy where she focused on crop improvement and the genetics of edible beans.

Working on host resistance helped her decide to understand the pathogen side of the disease equation so she joined James R. Steadman’s laboratory in the department of plant pathology at the University of Nebraska-Lincoln to pursue her Ph.D. in 2003. Acevedo’s research project, partially funded by the U.S. Agency for International Development, focused on virulence diversity of edible bean rust pathogens in Honduras and the identification of resistance in wild beans and bean landraces. “That is how my passion for international agriculture and rust research began,” said Acevedo.

Following her graduation in 2007, Acevedo pursued a postdoc at the U.S. Department of Agriculture – Agricultural Research Service National Small Grain Collection and Potato Research Unit in Aberdeen, Idaho, and then became assistant professor at North Dakota State University (NDSU) from 2010-2016. She said she will miss her friends and colleagues at NDSU, but credits them — along with her family — in helping her achieve her newest position at Cornell University.

Acevedo was in the first class of BGRI Women in Triticum (WIT) Early Career Award Winners in 2010. “The WIT award help me identify and meet an amazing pool of female scientists who have mentored and encouraged me. We have developed collaborations that go beyond our professional lives.”

Acevedo takes seriously her role as mentor to other younger WIT winners who look to her as a role model for their research and academic careers.

SOLUTION ORIENTED

Acevedo believes her role with the DGGW is the perfect opportunity for her to facilitate how great work done by wheat scientists makes it to the field.

“I look forward to being part of the solutions necessary to deliver higher genetic gain wheat and promote better variety adoptions in key regions of Sub-Saharan Africa and Central and South Asia,” said Acevedo. “I also look forward to seeing how we can utilize new technologies such as high through-put phenotyping, genomic selection and early warning systems for pathogen epidemics and implementing them in research and farmers’ fields.

“With the BGRI’s help in capacity building, research and education, we are training the next generation of wheat scientists for their countries and for their regions, increasing wheat production, and helping achieve food security,” Acevedo said. “I am very excited about helping developing countries with high potential for wheat improve their production and yield.”

More on Delivering Genetic Gain in Wheat

YouTube interview with Maricelis Acevedo

Scientists aim to adapt wheat to a warmer climate with less water

MReynoldsEL BATAN, Mexico (CIMMYT) – Scientists battling to increase wheat production by more than 60 percent over the next 35 years to meet projected demand are optimistic that they have begun to unravel the genetic mysteries that will lead to a more productive plant.

A recent study conducted at 26 international sites with a new generation of improved wheat breeding lines crossed and selected for superior physiological traits, resulted in yields that were on average 10 percent higher than other wheat varieties.

In the study, scientists identified many useful traits in the wheat plant suited to heat and drought adaptation, including: cooler canopy temperature indicating the ability of the plant to access subsoil water under drought and root proliferation under hot irrigated conditions.

They also discovered the plants have the ability to store sugars in the stem when conditions are good and the capacity to remobilize them to the grain when needed for seed filling if conditions do not permit enough photosynthesis. Leaf wax also plays a role by reflecting excess radiation and reducing evaporation from the leaf surface, lowering the risk of photo-inhibition and dehydration.

Additionally, scientists discovered that total aboveground biomass, a trait, which indicates overall plant fitness and with the right crossing strategy can be converted to produce higher grain yield.

“What we have revealed is a proof of concept – namely that designing crosses on the basis of wheat’s physiology results in a range of novel genotypes with significant improvements in yield and adaptation,” said Matthew Reynolds, a distinguished scientist and wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“We have a long road ahead, but we hope eventually this work will lead to the discovery of the best combinations of genes suited to specific heat and drought profiles.”

HEAT STRESS

Climate change poses considerable risks to food security and political stability. Wheat is a vital food staple providing 20 percent of the calories and protein consumed by people worldwide.

Projections indicate that it is very likely that rainfall will be more unpredictable and that heat waves will occur more often and last longer throughout the 21st century, according to a report from the Intergovernmental Panel on Climate Change (IPCC). Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the report said.

A recent comprehensive modeling exercise, which incorporated data from international heat stress trials led by CIMMYT’s wheat physiology team in the 1990s, shows that for each degree increase in average temperature, there is a 6 percent reduction in wheat yield, so an increase of 5 degrees would lead to a 30 percent reduction or more.

“A 30 percent yield reduction would be very harmful to food security because we know that wheat production must increase by 60 percent just to keep up with population projections,” Reynolds said. “Combined with predicted climate risks, the challenge increases – if this happens, we’ll need to double the yield capacity of our current varieties.”

While demand for wheat is projected to increase at a rate of 1.7 percent a year until 2015, global productivity increases at only 1.1 percent. Conventional breeding approaches achieve less than 1 percent per year, a yield barrier that scientists aim to break.

“If the relative rate of improvement in yields continues at its current pace, there will be a large gap between the amount of available wheat and the amount we need to feed the global population,” Reynolds said.

LESS THIRSTY PLANT

Research findings will be developed under the International Wheat Yield Partnership (IWYP) and the Heat and Drought Wheat Improvement Consortium (HeDWIC), aiding the development of molecular breeding methodologies which will complement the trait-based approach.

Under IWYP and HeDWIC scientists will be redesigning the wheat plant for adaptive traits relating to temperature extremes, photoperiod, soil depth, and other environmental factors. Other goals will include attempting to drastically increase radiation-use efficiency, and to understand how plants use signaling to coordinate their activities and respond to environmental fluxes.

Such crops as rice and triticale can be used as potential models for wheat redesign. Rice is similar to wheat in terms of its basic metabolism, but tolerates much higher temperatures, Reynolds said. Triticale could also be used as a model, since it almost never lodges – or falls over – and its spikes have a very high grain number, he added.

Scientists also aim to increase their understanding of the role of roots and their potential to boost yield and ability to adapt to stress.

Because roots are hidden and messy to work with their physiology has been largely ignored in comparison to the parts of the plant above ground, but new technologies are helping to overcome these disadvantages, Reynolds said.

Such challenges are now more feasible to tackle due to a new generation of genomics tools and other biotechnologies which become more powerful each year.

“The revolution in phenomics – work that the Wheat Physiology Group helped pioneer – especially remote sensing for temperature and spectral indices, which indicate specific physiological properties of the plant-, means that we can now evaluate a much larger numbers of lines than in the past,” Reynolds said.

“We’ve already screened 70,000 accessions from the World Wheat Collection in the CIMMYT Genebank, and have identified a veritable powerhouse of novel material to support this work related to breeding and gene discovery for decades to come. So although the challenge is enormous, we remain optimistic.”

Follow @WheatPhysiology on Twitter

RELATED RESEARCH

International Wheat Yield Potential Proceedings

Physiological traits for improving heat tolerance in wheat 

Achieving yield gains in wheat

Translational research impacting on crop productivity in drought-prone environments

Scientists unearth genetic treasures from Mexico’s Creole wheats

sukhinder
Sukhwinder Singh at a field of Punjab Agricultural University, India, with Mexican wheat landrace evaluation trial (foreground) and wheat lines derived from the landraces (background). Photo: Mike Listman

FOR IMMEDIATE RELEASE

Findings can help to boost wheat’s climate resilience worldwide

For the first time ever, a research team from China, India, Mexico, Uruguay, and the USA has genetically characterized a collection of 8,400 centuries-old Mexican wheat landraces adapted to varied and sometimes extreme conditions, offering a treasure trove of potential genes to combat wheat’s climate-vulnerability.

Published today in Nature Scientific Reports and led by scientists from the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), the study details critical genetic information about Mexican landraces for use in breeding to boost global wheat productivity.

This is essential, given the well-documented climate effects that imperil key wheat-growing areas, according to Sukhwinder Singh, CIMMYT wheat scientist and co-author of the report.

“The landraces, known as Creole wheats, were brought to Mexico as early as the 16th Century,” said Singh, who also credited the study to MasAgro, a long-term rural development project between Mexico and CIMMYT. “Wheat is not native to Mexico, but this gave the Creoles time to toughen in zones where late-season temperatures can hit highs of 40 degrees Centigrade (104 degrees Fahrenheit).”

Heat can wreak havoc with wheat’s ability to produce plump, well-filled grains. Research has shown that wheat yields plummet 6 percent for each 1-degree-Centigrade rise in temperature, and that warming is already holding back yield gains in wheat-growing mega-regions such as South Asia, home to more than 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.

“Typically, massive seed collections constitute ‘black boxes’ that scientists have long believed to harbor useful diversity but whose treasures have remained frustratingly inaccessible,” Singh explained. “New technology is helping to change that. As part of MasAgro’s ‘Seeds of Discovery Component,’ the team used the latest genotyping-by-sequencing technology and created unique sets of the landrace collections that together capture nearly 90 percent of the rare gene variants, known as ‘alleles.’ ”

According to Kevin Pixley, director of CIMMYT’s genetic resources program and an expert crop breeder, wheat scientists will be able to home in on groups of landraces from regions with conditions similar to those they presently target or will target in coming decades. “The next step is for breeders to identify seed samples and genes for their programs; say, alleles common to a set of landraces from a heat-stressed area, providing a valuable starting point to exploit this newly-revealed diversity.”

A pillar for global food security, wheat provides 20 percent of protein and calories consumed worldwide and up to 50% in developing countries. A 2015 World Bank report showed that, without action, climate change would likely spark higher agricultural prices and threaten food security in the world’s poorer regions.

For more information

Mike Listman, CIMMYT communications, email at m.listman@cgiar.org, mobile at +52 1 595 957 3490. Geneviève Renard, head of CIMMYT communications, email at g.renard@cgiar.org, mobile at +52 1 595 114 9880.

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT), is the global leader in research for development in wheat and maize and wheat- and maize-based farming systems. From its headquarters in Mexico and 14 global offices, CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat systems, thus contributing to better food security and livelihoods. CIMMYT is a member of the 15-member CGIAR Consortium and leads the CGIAR Research Programs on Wheat and Maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.