Skip to main content

research: Genetic resources

Breaking Ground: Carolina Sansaloni explores and unlocks genetic potential from wheat genebanks

twitterbg3

Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Carolina Sansaloni’s passion for genetics began when she was at Universidad de Misiones in Posadas, Misiones, Argentina, an interest that grew as she moved on to receive her master’s and doctoral degrees in molecular biology at Universidad de Brasilia in Brazil.

While completing her doctorate degree, Sansaloni travelled to Canberra, Australia to research the genomic structure of the eucalyptus tree at Diversity Arrays Technology (DArT), learning the ins and outs of sequencing technology.

In 2012, the International Maize and Wheat Improvement Center (CIMMYT) wanted to introduce the DArT genotyping technologies to Mexico to serve the needs of the Mexican maize and wheat research communities, and once Sansaloni finished her doctoral degree, she was an obvious choice to lead this initiative.

Working under the MasAgro Biodiversidad project in partnership with DArT, INIFAP and CIMMYT, Sansaloni helped to build the Genetic Analysis Service for Agriculture (SAGA in Spanish) from the ground up.

The service, managed by the CIMMYT-based Seeds of Discovery (SeeD) initiative, brings cutting edge genotyping capacity and genetic analysis capability to Mexico. The facility provides unique insights into the genetic variation of wheat and maize at a “sequence level.” Use of the vast quantities of data generated help understand genetic control of characteristics evaluated at a plant or crop level for example, height variations among wheat varieties.

SAGA’s services are available for all CIMMYT scientists, universities, national agriculture research programs and private companies. Worldwide, few other platforms produce this kind of data and most are inaccessible to scientists working at publicly funded institutions because their economic or logistics difficulties.

“When it comes to genotyping technology, it doesn’t matter what type of organism you are working with. It could be wheat, eucalyptus or chicken –  the machine will work the same way,” explained Sansaloni.

Sansaloni has also been focusing her time on the wheat Global Diversity Analysis, which characterizes and analyzes seeds in genebanks at both CIMMYT and the International Center for Agricultural Research in Dry Areas (ICARDA). Her team has characterized approximately 100,000 wheat accessions including 40 percent of the CIMMYT genebank and almost 100 percent of the ICARDA genebank wheat collection. This is an incredible and unique resource for wheat scientists providing a genetic framework to facilitate selection of the most relevant accessions for breeding.

“Currently only five to eight percent of materials in the genebank are being used in the breeding programs,” Sansaloni said. “The Global Diversity Analysis could have huge impacts on the future of wheat yields. It is like discovering the pieces of a puzzle, and then beginning to understand how these pieces can fit together to build excellent varieties of wheat.”

Sansaloni’s goal is to combine information from CIMMYT and ICARDA, making the information accessible to the entire wheat community and eventually enhancing breeding programs across the globe.

“Working at CIMMYT has been an invaluable experience,” Sansaloni said. “I’ve had the opportunity to work and collaborate with so many different people, and it’s brought me from the laboratory into the wheat fields, which really brings me closer to my work.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Breaking Ground: Scientist Deepmala Sehgal on the trail of novel wheat diversity

Breaking Ground is a regular series featuring staff at CIMMYT

Deepmala Sehgal, wheat geneticist and molecular breeder at CIMMYT. Photo: M. Listman/CIMMYT
Deepmala Sehgal, wheat geneticist and molecular breeder at CIMMYT. Photo: M. Listman/CIMMYT

EL BATAN, Mexico (CIMMYT) — Molecular analysis research by Deepmala Sehgal, a wheat geneticist and molecular breeder who joined the International Maize and Wheat Improvement Center (CIMMYT) as an associate scientist in 2013, has led to the discovery of novel genes for yield, disease resistance and climate resilience in previously little-used wheat genetic resources.

But getting to the point of applying cutting-edge DNA marker technology to support CIMMYT wheat breeding has involved a few dramatic moves for the New Delhi native, who studied botany throughout middle school and university. “I loved science and chose plant science, because I enjoyed the field trips and didn’t like dissecting animals,” Sehgal said, explaining her choice of profession.

It wasn’t until she was studying for her Ph.D. at Delhi University in 2008 that she first used molecular markers, which are DNA segments near genes for traits of interest, like drought tolerance, and which can help breeders to develop improved crop varieties that feature those traits.

“For my thesis, I used molecular markers in a very basic way to analyze the diversity of safflower species that the U.S. Department of Agriculture had in its gene bank but didn’t know how to classify. I found a place for some and, for several, had to establish completely new subspecies,” Sehgal said.

Later, as a post-doctoral fellow at the University of Aberystwyth in Britain, Sehgal used an approach known as fine mapping of quantitative trait loci (QTL), for drought tolerance in pearl millet. “The aim of fine mapping is to get shorter QTL markers that are nearer to the actual gene involved,” she explained, adding that this makes it easier to use the markers for breeding.

As it turned out, Sehgal’s growing proficiency in molecular marker research for crops made her suited to work as a wheat geneticist at CIMMYT.

“By 2013, CIMMYT had generated a huge volume of new data through genotyping-by-sequencing research, but those data needed to be analyzed using an approach called “association mapping,” to identify markers that breeders could use to select for specific traits. My experience handling such data and working with drought stress gave me an in with CIMMYT.”

Based at CIMMYT’s Mexico headquarters, Sehgal currently devotes 70 percent of her time to work for the CIMMYT global wheat program and the remainder for Seeds of Discovery, a CIMMYT-led project supported by Mexico’s Ministry of Agriculture, Livestock, Fisheries and Food (SAGARPA), which aims to unlock new wheat genetic diversity able to address climate change challenges.

Over the last two years, she has served as lead author for two published studies and co-author for four others. One used genotyping-by-sequencing loci and gene-based markers to examine the diversity of more than 1,400 spring bread wheat seed collections from key wheat environments. Another applied genome-wide association analysis on a selection of landrace collections from Turkey.

“In the first, we discovered not only thousands of new DNA marker variations in landraces adapted to drought and heat, but a new allele for the vernalization gene, which influences the timing of wheat flowering, and new alleles for genes controlling grain quality, all in landraces from near wheat’s center of origin in Asia and the Middle East.”

Sehgal acknowledges the as-yet limited impact of molecular markers in wheat breeding. “Individual markers generally have small effects on genetically complex traits like yield or drought tolerance; moreover, many studies fail to account for “epistasis,” the mutual influence genes have on one another, within a genome.”

To address this, she and colleagues have carried out the first study to identify genomic regions with stable expression for grain yield and yield stability, as well as accounting for their individual epistatic interactions, in a large sample of elite wheat lines under multiple environments via genome wide association mapping. A paper on this work has been accepted for publication in Nature Scientific Reports.

Sehgal has found her experience at CIMMYT enriching. “I feel free here to pursue the work I truly enjoy and that can make a difference, helping our center’s wheat breeders to create improved varieties with which farmers can feed a larger, more prosperous global population in the face of climate change and new, deadly crop diseases.”

Breaking Ground: Jiafa Chen on improving maize and building partnerships

Breaking Ground is a regular series featuring staff at CIMMYT

chen
Jiafa Chen, a statistical and molecular geneticist at CIMMYT. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – Maize has always been an integral part of Jiafa Chen’s life.

Chen, a statistical and molecular geneticist at the International Maize and Wheat Improvement Center (CIMMYT), has helped identify new genetic resources that have the potential to be used to breed new maize varieties that withstand a variety of environmental and biological stresses. He has also played a significant role in the development of a recent partnership between CIMMYT and Henan Agricultural University (HAU) in China.

Born in Henan – a province in the fertile Yellow River Valley known for its maize and wheat production – Chen’s family grew maize, which was a major source of income and led to his interest in breeding the crop as a means to help small farmers in China. He went on to study agriculture at HAU, where he focused on maize at a molecular level throughout undergraduate and graduate school, then came to CIMMYT as a postdoctoral researcher in 2013.

“Coming to CIMMYT was natural for me,” Chen said. “CIMMYT’s genebank – which holds over 28,000 maize accessions – offered a wide array of genetic resources that could help to breed varieties resistant to disease and abiotic stress which are large challenges in my country.”

Over Chen’s four years at CIMMYT headquarters near Mexico City, he has helped characterize CIMMYT’s entire maize genebank using DArTseq, a genetic fingerprinting method that can be used to help identify new genes related to traits like tolerance to heat under climate change, or resistance to disease.  This research is being used to develop maize germplasm with new genetic variation for drought tolerance and resistance to tar spot complex disease.

“Conserving and utilizing biodiversity is crucial to ensure food security for future generations,” Chen said. “For example, all modern maize varieties currently grown have narrow genetic diversity compared to CIMMYT’s genebank, which holds some genetic diversity valuable to breed new varieties that suit future environments under climate change. CIMMYT and other genebanks, which contain numerous crop varieties, are our only resource that can offer the native diversity we need to achieve food security in the future.”

Chen moved back to China this month to begin research at HAU as an assistant professor, where he will continue to focus on discovering new genes associated with resistance to different stresses. Chen was the first student from HAU to come to CIMMYT, and has served as a bridge between the institutions that officially launched a new joint Maize and Wheat Research Center during a signing ceremony last week.

The new center will focus on research and training, and will host four international senior scientists with expertise in genomics, informatics, physiology and crop management. It will be fully integrated into CIMMYT’s global activities and CIMMYT’s current collaboration in China with the Chinese Agricultural Academy of Sciences.

“I think through the new center, CIMMYT will offer HAU the opportunity to enhance agricultural systems in China, and will have a stronger impact at the farm level than ever before,” Chen said. “I also think HAU will have more of an opportunity to be involved with more global agricultural research initiatives, and become a world-class university.”

receive newsletter

Harnessing medical technology and global partnerships to drive gains in food crop productivity

Ulrich Schurr (left), of Germany’s Forschungszentrum Jülich research center and chair of the International Plant Phenotyping Network (IPPN), and Matthew Reynolds, wheat physiologist of the International Maize and Wheat Improvement Center (CIMMYT), are promoting global partnerships in phenotyping to improve critical food crops, through events like the recent International Crop Phenotyping Symposium. Photo: M.Listman/CIMMYT
Ulrich Schurr (L), of Germany’s Forschungszentrum Jülich research center and chair of the International Plant Phenotyping Network, and Matthew Reynolds, wheat physiologist with the International Maize and Wheat Improvement Center, are promoting global partnerships in phenotyping to improve critical food crops, through events like the recent International Crop Phenotyping Symposium. Photo: CIMMYT/Mike Listman

EL BATÁN, Mexico (CIMMYT) — Global research networks must overcome nationalist and protectionist tendencies to provide technology advances the world urgently needs, said a leading German scientist at a recent gathering in Mexico of 200 agricultural experts from more than 20 countries.

“Agriculture’s critical challenges of providing food security and better nutrition in the face of climate change can only be met through global communities that share knowledge and outputs; looking inward will not lead to results,” said Ulrich Schurr, director of the Institute of Bio- and Geosciences of the Forschungszentrum Jülich research center, speaking at the 4th International Plant Phenotyping Symposium

One such community is the International Plant Phenotyping Network (IPPN), chaired by Schurr and co-host of the symposium in December, with the Mexico-based International Maize and Wheat Improvement Center, known by its Spanish acronym, CIMMYT.

Adapting medical sensors helps crop breeders see plants as never before

“Phenotyping” is the high-throughput application of new technology — including satellite images, airborne cameras, and multi-spectral sensors mounted on robotic carts — to the age-old art of measuring the traits and performance of breeding lines of maize, wheat and other crops, Schurr said.

“Farmers domesticated major food crops over millennia by selecting and using seed of individual plants that possessed desirable traits, like larger and better quality grain,” he explained. “Science has helped modern crop breeders to ‘fast forward’ the process, but breeders still spend endless hours in the field visually inspecting experimental plants. Phenotyping technologies can expand their powers of observation and the number of lines they process each year.”

Adapting scanning devices and protocols pioneered for human medicine or engineering, phenotyping was initially confined to labs and other controlled settings, according to Schurr.

“The push for the field started about five years ago, with the availability of new high-throughput, non-invasive devices and the demand for field data to elucidate the genetics of complex traits like yield or drought and heat tolerance,” he added.

Less than 10 years ago, Schurr could count on the fingers of one hand the number of institutions working on phenotyping. “Now, IPPN has 25 formal members and works globally with 50 institutions and initiatives.”

Cameras and other sensors mounted on flying devices like this blimp [remote-control quadcopter] provide crop researchers with important visual and numerical information about crop growth, plant architecture and photosynthetic traits, among other characteristics. Photo: Emma Quilligan/CIMMYT
Cameras and other sensors mounted on flying devices like this blimp provide crop researchers with important visual and numerical information about crop growth, plant architecture and photosynthetic traits, among other characteristics. Photo: E. Quilligan/CIMMYT
Many ways to see plants and how they grow

So-called “deep” phenotyping uses technologies such as magnetic resonance imaging, positron emission and computer tomography to identify, measure and understand “invisible” plant parts, systems and processes, including roots and water capture and apportionment.

In controlled environments such as labs and greenhouses, researchers use automated systems and environmental simulation to select sources of valuable traits and to gain insight on underlying plant physiology that is typically masked by the variation found in fields, according to Schurr.

“Several specialists in our symposium described automated lab setups to view and analyze roots and greenhouse systems to assess crop shoot geometry, biomass accumulation and photosynthesis,” he explained. “These are then linked to crop simulation models and DNA markers for genes of important traits.”

Schurr said that support for breeding and precision agriculture includes the use of cameras or other sensors that take readings from above plant stands and crop rows in the field.

“These may take the form of handheld devices or be mounted on autonomous, robotic carts,” he said, adding that the plants can be observed using normal light and infrared or other types of radiation reflected from the plant and soil.

“The sensors can also be mounted on flying devices including drones, blimps, helicopters or airplanes. This allows rapid coverage of a larger area and many more plants than are possible through visual observation alone by breeders walking through a field.”

In the near future, mini-satellites equipped with high-resolution visible light sensors to capture and share aerial images of breeding plots will be deployed to gather data in the field, according to symposium participants.

Bringing high-flying technologies to earth

As is typical with new technologies and approaches to research, phenotyping for crop breeding and research holds great promise but must overcome several challenges, including converting images to numeric information, managing massive and diverse data, interfacing effectively with genomic analysis and bringing skeptical breeders on board.

“The demands of crop breeding are diverse — identifying novel traits, studies of genetic resources and getting useful diversity into usable lines, choosing the best parents for crosses and selecting outstanding varieties in the field, to name a few,” Schurr explained. “From the breeders’ side, there’s an opportunity to help develop novel methods and statistics needed to harness the potential of phenotyping technology.”

A crucial linkage being pursued is that with genomic analyses. “Studies often identify genome regions tied to important traits like photosynthesis as ‘absolute,’ without taking into account that different genes might come into play depending on, say, the time of day of measurement,” Schurr said. “Phenotyping can shed light on such genetic phenomena, describing the same thing from varied angles.”

Speaking at the symposium, Greg Rebetzke, a research geneticist since 1995 at Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO), said that the effective delivery in commercial breeding of “phenomics” — a term used by some to describe the high-throughput application of phenotyping in the field — is more a question of what and when, not how.

“It’s of particular interest in breeding for genetically complex traits like drought tolerance,” Rebetzke said. “Phenomics can allow breeders to screen many more plants in early generations of selection, helping to bring in more potentially useful genetic diversity. This genetic enrichment with key alleles early on can significantly increase the likelihood of identifying superior lines in the later, more expensive stages of selecting, which is typically done across many different environments.”

Moreover, where conventional breeding generally uses “snaphot” observations of plants at different growth stages, phenotyping technology can provide detailed time-series data for selected physiological traits and how they are responding to their surroundings—say, well-watered versus dry conditions—and for a much greater diversity and area of plots and fields.

Phenotyping is already being translated from academic research to commercial sector development and use, according to Christoph Bauer, leader of phenotyping technologies at KWS, a German company that breeds for and markets seed of assorted food crops.

“It takes six-to-eight years of pre-breeding and breeding to get our products to market,” Bauer said in his symposium presentation. “In that process, phenotyping can be critical to sort the ‘stars’ from the ‘superstars’.”

Commercial technology providers for phenotyping are also emerging, according to Schurr, helping to ensure robustness, the use of best practices and alignment with the needs of academic and agricultural industry customers.

“The partnership triad of academia, commercial providers and private seed companies offers a powerful avenue for things like joint analysis of genotypic variation in the pre-competitive domain or testing of cutting-edge technology,” he added.

On the final morning of the symposium, participants broke off into groups to discuss special topics, including the cost effectiveness of high-throughput phenotyping and its use to analyze crop genetic resources, measuring roots, diagnostics of reproductive growth, sensor technology needs, integrating phenotypic data into crop models, and public-private collaboration.

Schurr said organizations like CIMMYT play a crucial role.

“CIMMYT does relevant breeding for millions of maize and wheat farmers — many of them smallholders — who live in areas often of little interest for large-scale companies, providing support to the national research programs and local or regional seed producers that serve such farmers,” Schurr said. “The center also operates phenotyping platforms worldwide for traits like heat tolerance and disease resistance and freely spreads knowledge and technology.”

CGIAR congratulates the Convention on Biological Diversity at COP13

CGIAR congratulates the Convention on Biological Diversity on the occasion of the 13th Conference of the Parties, and is committed to significantly contribute to the actions mentioned in the Cancun Declaration on Mainstreaming the Conservation and Sustainable Use of Biodiversity for Well-Being together with all its partners.

Biodiversity is vitally important to agriculture, food and nutrition security as well as to the integrity of the natural resources upon which agriculture depends. Biological diversity at the genetic, species, farm, and landscape levels is essential to increasing food security, improving health and nutrition, and enhancing resilience and adaptation to climate change, as well as to sustainably manage agricultural and forest landscapes.

Examples include:

  • The sustainable use of agricultural ecosystems as reservoirs of agricultural biodiversity, enhancing diversification and fostering an integrated use of landscape.
  • The conservation and promotion of the cultivation of native varieties, as well as the preservation of their wild relatives.
  • The use of measures to enhance agricultural biodiversity, particularly for small producers;
  • The reduction of agricultural pollution, and the efficient use of agrochemicals, fertilizers and other agricultural inputs.
  • Other topics include reduction of waste and loss of food; conservation of pollinators, sustainable fisheries and sustainable aquaculture, an integrated landscape approach in forestry management schemes; the promotion of the importance of forest ecosystems as reservoirs of biodiversity and providers of environmental goods and services.

As the world’s leading global agricultural research partnership, CGIAR conducts research in sustainable agriculture, livestock, fisheries and forestry, climate adaptation, nutrition, policies, and markets as well as the sustainable management of land, water and ecosystems, with three strategic objectives: to reduce poverty; improve food and nutrition security; and improve natural resources and ecosystem services.

CGIAR research is carried out by 15 CGIAR centers with 10,000 staff in 70, mainly developing, countries in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector to enhance food and nutrition security and preserve natural resources. A true example of science with impact on the livelihoods of hundreds of millions of people and the conservation of natural resources.

CGIAR research also contributes to enhancing genetic diversity of agricultural and associated landscapes; increasing conservation and use of genetic resources; enriching plant and animal biodiversity for multiple goods and services; increasing the availability of diverse nutrient-rich foods and diversifying and intensifying agricultural systems in ways that protect soils and water (through e.g., conservation agriculture, agroforestry, and precision agriculture) and wild biodiversity.

As an important part of its mandate, CGIAR is committed to the conservation and sustainable use of genetic diversity through its networks of 11 global germplasm banks, covering 34 crops. CGIAR germplasm banks manage many of the largest and most important collections of crop diversity in the world, including landraces and crop wild relatives of cereals, roots and tubers, forages and trees. CGIAR centers – both their germplasm banks and breeding programs – transfer approximately millions of packages with around 100,000 different samples annually under the auspices of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA). This represents over 90 percent of the materials that are transferred globally under the Plant Treaty system. Of those materials, over 85 percent goes to recipients in developing countries, almost entirely to public sector research and development organizations.

Other examples of the work of CGIAR Centers in support of mainstreaming biological diversity include:

  • Repatriating lost crop diversity to small holder farming communities and countries that have lost such diversity.
  • Promoting diversity in production systems by including pulses that enhance nutrition and improve soil fertility; improving livestock systems.
  • Breeding to improve the nutrition, resilience, adaptation and productivity of the world’s major food crops, and building capacity for breeding within developing countries using the wide genetic diversity.
  • Promoting equitable access to genetic resources by keeping germplasm, information about germplasm, and tools to facilitate the use of germplasm in the public domain.
  • Developing an ‘Agrobiodiversity Index’ to help decision-makers, including governments, investors and companies, ensure that their decisions enhance the sustainable use and conservation of agricultural biodiversity.

In the course of their work, the CGIAR centers and their partners in developing and developed countries will also need to collect and use plant and animal materials that fall under the Nagoya Protocol. Mainstreaming biodiversity into food and agricultural systems depends on the mutually supportive implementation of the Nagoya Protocol and the Plant Treaty. Indeed, the CGIAR is partnering with the secretariats of the CBD, the Plant Treaty and a number of national programs to identify options for such mutually supportive implementation, and looks forward to continuing its work with the Convention on Biological Diversity in support of the implementation of the Cancun Declaration.

Cutting-edge tools promote conservation, use of biodiversity

The CIMMYT maize germplasm bank holds 28,000 samples of unique maize genetic diversity that could hold the key to develop new varieties farmers need. Photo: Xochiquetzal Fonseca/CIMMYT.

EL BATAN, Mexico (CIMMYT) – Biodiversity is the building block of health for all species and ecosystems, and the foundation of our food system. A lack of genetic diversity within any given species can increase its susceptibility to stress factors such as diseases, pests, heat or drought for lack of the genetic variation to respond. This can lead to devastating consequences that include crop failures and extinction of species and plant varieties. Conserving and utilizing biodiversity is crucial to ensure the food security, health and livelihoods of future generations.

The 13th meeting of the Conference of the Parties (COP 13) to the Convention on Biological Diversity will be held in Cancún, Mexico, from December 5 to 17, 2016. Established in 1993 due to global concerns over threats to biodiversity and species extinctions, the Convention on Biological Diversity is an international, legally-binding treaty with three main objectives: the conservation of biological diversity; the sustainable use of the components of biological diversity; and the fair and equitable sharing of the benefits arising out of the utilization of genetic resources.

Mexico’s Secretariat of Agriculture (SAGARPA) has invited scientists from the International Maize and Wheat Improvement Center (CIMMYT) working with the MasAgro Biodiversidad (known in English as Seeds of Discovery, or SeeD) initiative to present at COP 13 on their work to facilitate the use of maize genetic diversity, particularly through a collection of tools and resources known as the “Maize Molecular Atlas.” The presentations will focus on how resources that have been developed can aid in the understanding of germplasm stored in genebanks and collections to enable better use.

As the region of origin and as a center of diversity for maize, Mexico and Mesoamerica are home to much of the crop’s genetic variation. Thousands of samples of maize from this and other important regions are preserved in the CIMMYT germplasm bank, in trust, for the benefit of humanity. The bank’s 28,000 maize seed samples hold diversity to develop new varieties for farmers to respond to challenges such as heat, disease and drought stress. However, information on the genetic makeup and physical traits of these varieties is often limited, making the identification of the most relevant samples difficult.

Native maize varieties, known as landraces, contain a broad amount of genetic diversity that could protect food security for future generations.
Native maize varieties, known as landraces, contain a broad amount of genetic diversity that could protect food security for future generations.

SeeD works to better characterize and utilize novel genetic diversity in germplasm banks to accelerate the development of new maize and wheat varieties for the benefit of farmers. The initiative has generated massive amounts of information on the genetic diversity of maize and wheat, as well as cutting-edge software tools to aid in its use and visualization. This information and tools are freely available as global public goods for breeders, researchers, germplasm bank managers, extension agents and others, but are even more powerful when they are integrated with different types and sets of data.

Developed by the SeeD initiative, the maize molecular atlas represents an unparalleled resource for those interested in maize genetic diversity.

“You can think of the maize molecular atlas like a satellite navigation system in your car,” said Sarah Hearne, a CIMMYT scientist who leads the project’s maize component. “Information that used to be housed separately, such as maps, traffic or the locations of police officers, gas stations, restaurants and hotels, are now brought together. It’s the same with the atlas. Having access to all of these data at once in an interlinked manner allows people to make better decisions, faster,” she said.

SeeD’s maize molecular atlas includes three main types of resources: data, such as maize landrace passport data (where it came from, when it was collected, etc.), geographic information system (GIS) -derived data (what the environment was like where maize was collected; rainfall, soils, etc.), genotypic data (genetic fingerprints of maize varieties) and available phenotypic data (information on how plants grow in different conditions); knowledge, (derived from data-marker trait associations; what bits of the genome do what); and tools, including data collection software (KDSmart), data storage and query tools (Germinate) and visualization tools (CurlyWhirly).

All of these resources are available through the SeeD website, where, when used together, they can increase the effective and efficient identification and utilization of maize genetic resources.

Interestingly, one of the first benefits of this initiative was for Mexican farmers. The efforts to better characterize the collection led to the identification of landraces that were resistant to Tar Spot, a disease that is devastating many farmers’ fields in Mexico and Central America. These landraces were immediately shared with farming communities while also being utilized in breeding programs. Smallholders in particular grow crops in diverse environmental conditions. They need diverse varieties. The understanding and use of biodiversity by researchers, breeders and farmers will be crucial to ensure the use of more and genetically diverse crops.

“With the atlas we now have the ability, with fewer resources, to interlink and query across different data types in one searchable resource,” Hearne said. This will allow breeders and researchers world-wide to hone in on the genetic and physical plant traits they are looking for, to more quickly identify and use novel genetic diversity to create improved varieties adapted to their specific needs. So far about 250 researchers and students from Mexico have participated in workshops and activities to begin using the new tools. With Mexico being a very important center of diversity for many species, agricultural and beyond, the same tools could be used for other species, here and abroad.

Hearne is looking forward to sharing information about MasAgro Biodiversidad and CIMMYT’s progress at COP 13, and is hopeful about the impacts the maize molecular atlas will have on biodiversity conservation.

“Conservation isn’t just preservation, it’s use. The molecular maize atlas enables us to better utilize the genetic resources we have, but also to better understand what diversity we may still need for our collection,” she said. “If you don’t know what you have, you don’t know what you need to preserve or look for. The work of the maize molecular atlas helps to address the underlying causes of biodiversity loss by raising awareness of the importance of these resources for sustainable food production while enabling researchers world-wide to use the information for assessing their own collections and generate more diverse varieties.”

SeeD is a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). Learn more about the Seeds of Discovery project here

Agricultural biodiversity key to future crop improvement

The CGIAR is one of the biggest suppliers and conservers of crop genetic diversity. CIMMYT's genebank contains around 28,000 unique samples of maize seed—including more than 24,000 landraces; traditional, locally-adapted varieties that are rich in diversity—and 150,000 of wheat, including related species for both crops. Photo: X. Fonseca/CIMMYT.
The CGIAR is one of the biggest suppliers and conservers of crop genetic diversity. CIMMYT’s genebank contains around 28,000 unique samples of maize seed—including more than 24,000 landraces; traditional, locally-adapted varieties that are rich in diversity—and 150,000 of wheat, including related species for both crops. Photo: X. Fonseca/CIMMYT.

NEW DELHI — Conserving and using agricultural biodiversity to create better crops can help meet several sustainable development goals and stave off further species extinctions, according to scientists at the first International Agrobiodiversity Congress.

About 75 percent of plant genetic diversity worldwide has been lost since the beginning of the 20th century and 30 percent of livestock breeds are at risk of extinction, according to the Food and Agriculture Organization.  Meanwhile, humans only consume about 1.5 percent of edible plants and only three of these – rice, maize and wheat – contribute nearly 60 percent of calories and proteins obtained by humans from plants. This huge loss in biodiversity due to environmental degradation caused by humans – what many scientists refer to as earth’s “sixth extinction”– is detrimental to global food security and the environment.

“Just a 7-10 percent loss of any major food crop would result in prices quadrupling,” says Howarth Bouis, founder of HarvestPlus and 2016 World Food Prize winner. “Non-staple food prices in India have [already] risen by 50 percent over the past 30 years.” A lack of agricultural diversity puts the world’s entire food chain at risk if a shock – such as increased instances of drought or crop diseases due to rising temperatures from climate change – were to destroy a particular type of crop.

As part of a global response to these challenges, researchers in collaboration with farmers are gathering seed to conserve and protect in genebanks across the world for future generations. These banks are the foundation of agriculture, food security and dietary diversity.

“We don’t know what scientists will need in 30 years,” says Marie Haga, executive director of the Crop Trust. “We need to conserve the entire spectrum [of seeds]. If it’s not being used right now, that does not mean it won’t be critically important in the future.”

New advancements in DNA-sequencing and phenotyping technologies have also created an opportunity to actively use the genetic information of these seeds that did not exist just a few years ago. Crop breeders can now more rapidly and effectively identify seeds that have traits like enhanced nutritional qualities, drought or heat tolerance, or disease resistances to create better crops that withstand challenges related to malnutrition, climate change, disease and more.

For example, in 2012 approximately 23 percent of Kenya’s maize production was lost due to an outbreak of the disease Maize Lethal Necrosis (MLN). Thanks to the efforts of the International Maize and Wheat Improvement Center (CIMMYT) and other partners, there are now 13 hybrid varieties with tolerance to MLN – created in just four years.

Delegates to the congress also tackled issues regarding the effective and efficient management of genebanks, biosafety and biosecurity, intellectual property rights, access to germplasm, benefit sharing from use of germplasm, and farmers’ role in conservation of genetic resources and other related themes.

The Congress culminated with the adoption of “The Delhi Declaration on Agrobiodiversity Management” that recommended harmonizing multiple legal systems across countries to facilitate the safe transfer of genetic resources, developing and implementing an Agrobiodiversity Index to help monitor the conservation and use of agrobiodiversity in breeding programs, promoting conservation strategies for crop wild relatives and other strategies to strengthen agricultural biodiversity’s role in agricultural development.

Improved genetic analysis offers faster, more precise results to crop breeders

CIMMYT representatives at IAC (L-R) Prashant Vikram, Ravi Singh, Cynthia O.R, Laura Bouvet, Sukhwinder-Singh, Martin Kroff, Kevin Pixley and Gilberto Salinas. Photo: CIMMYT
CIMMYT representatives at IAC (L-R) Prashant Vikram, Ravi Singh, Cynthia O.R, Laura Bouvet, Sukhwinder-Singh, Martin Kropff, Kevin Pixley and Gilberto Salinas. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – Researchers gathered last week at the International Agrobiodiversity Conference in New Delhi to improve global collaboration on harnessing genes in breeding that can help wheat withstand the effects of climate change.

Wheat is the most widely cultivated staple food in the world, providing 20 percent of the protein and calories consumed worldwide and up to 50 percent in developing countries. It is also particularly vulnerable to climate change, since the crop thrives in cooler conditions. Research has shown wheat yields drop 6 percent for each 1 degree Celsius rise in temperature, and that warming is already holding back yield gains in wheat-growing mega-regions like South Asia.

The International Maize and Wheat Improvement Center’s (CIMMYT) genebank serves as a vital source of genetic information and biodiversity. Breeders use this information to accelerate the development of wheat resilient to climate change by identifying varieties that display valuable traits like drought and heat-stress tolerance, which allow them to flourish despite stressful conditions.

However, all this genetic information is incredibly dense and requires filtering before breeders can efficiently use that information, according to Sukhwinder Singh, head of the wheat pre-breeding team at CIMMYT’s Seeds of Discovery (SeeD) initiative.

“Using new genes to improve wheat, or any crop, is incredibly difficult because often along with the desired traits, come numerous undesirable traits,” said Singh. “That’s where pre-breeding comes in – we essentially purify this huge pool of good and bad traits by identifying useful genes, like heat tolerance, then make these traits available in a form that’s easier for wheat breeders to access and use.”

Pre-breeding is done through cutting-edge, cost-effective technologies that characterize the genetic information of CIMMYT’s wheat genebank. Using these tools, nearly 40 percent of the 150,000 seed samples of wheat in the bank have undergone high-throughput genetic characterization, a process that allows pre-breeders to rapidly identify desirable traits in the varieties.

A recent successful example of pre-breeding was highlighted in a report that genetically characterized a collection of 8,400 centuries-old Mexican wheat landraces adapted to varied and sometimes extreme conditions, offering a treasure trove of potential genes to combat wheat’s climate-vulnerability.

“Pre-breeding helps us better understand and gather more information on what genetic traits are available in CIMMYT’s wheat genebank, so researchers can have more access to a wider variety of information than ever before,” said Prashant Vikram, wheat researcher who is also working with the pre-breeding team at CIMMYT.

However, as new genomics tools continue to develop, capacity building for researchers is necessary to ensure the potential impacts of the genebank’s biodiversity is fully realized and equitably accessible, said Kevin Pixley, SeeD project leader and program director of CIMMYT’s Genetic Resources Program.

During the IAC partners, scientists, students, and stakeholders from across the globe provided feedback on SeeD and pre-breeding initiatives, while CIMMYT led discussions on how to build genebank biodiversity for future food security and sustainable development. Increasing partnerships and multidisciplinary projects for stronger impact were identified as key needs for future initiatives.

New online learning platform offers capacity development for all

Trainees work with KDSmart phenotyping technology, one of the subjects taught in the new SeeD distance learning modules. Photo: G. Salinas/CIMMYT
Trainees work with KDSmart phenotyping technology, one of the subjects taught in the new SeeD distance learning modules. Photo: G. Salinas/CIMMYT

EL BATAN, Mexico (CIMMYT) — An online learning platform created in partnership with the Seeds of Discovery (SeeD) initiative will revolutionize the project’s capacity development efforts, allowing SeeD to reach more users than ever before.

Distance learning modules consisting of practical and theory modules about how to enhance the use of genetic diversity in wheat and maize, will allow anyone in the world to benefit from SeeD’s collection of knowledge and tools regardless of location or income. These new distance learning modules are free and will be available online to the public in the future.

SeeD works to unlock and utilize novel genetic diversity held in genebanks to accelerate the development of improved maize and wheat varieties.  The initiative has generated massive amounts of invaluable information on the genetic diversity of maize and wheat, as well as cutting edge software tools to aid in its use and visualization.

“This information and tools have been made publicly available so that breeders and researchers around the world can develop improved crop varieties,” said Gilberto Salinas, head of capacity development at the SeeD initiative. “However, if people don’t know how to effectively utilize these datasets and software, the information is useless,” he said.

SeeD offers workshops on genetic diversity analysis, pre-breeding, and software tools will be offered free of charge several times a year, but space is limited, meaning that only a few researchers can be trained on SeeD’s data and technology each year.

“These modules will ensure that anyone can access and learn to effectively utilize our products, thus enabling the next generation of breeders and agricultural researchers in the tools that they will need to improve food security around the world,” Salinas said.

SeeD and CIMMYT’s first distance-learning module, which is hosted on the Moodle online learning platform, was developed by Laura Bouvet, a Ph.D. candidate in the department of plant science at Britain’s University of Cambridge, working with the National Institute of Agricultural Botany (NIAB). Bouvet, who participated in a three-month internship with SeeD said she is very excited about the number of people the modules will reach.

“So much information has been generated through the Seeds of Discovery project in terms of data and tools, and it’s very important that people can access and utilize this information for the greater good,” she said.  “These modules will complement SeeD workshops and will allow for higher impact of everything that has been generated through SeeD.”

KDSmart, one of the subjects taught in the new SeeD distance learning modules.
KDSmart, one of the subjects taught in the new SeeD distance learning modules.

The first module focuses on theory, introducing genotypic data, its importance for genetic diversity, how it is used, as well as the technologies that are used to generate and analyze the data.

The second module focuses on practice, guiding users through the process of using KDSmart, an Android based application to record phenotypic data, information on the physical traits of maize and wheat varieties. This module is being developed with the participation of several researchers from SeeD and the Genetic Resources Program led by Gilberto Salinas.

The modules also include two videos created by Bouvet in partnership with SeeD and CIMMYT, one to explain the Seeds of Discovery project, and another to introduce the platform to show how the modules can help prospective users solve problems they may face in their research.

The modules are directed at postgraduate students, crop breeders, university faculty members, and researchers. Currently, the modules and videos are available only in Spanish language, but English versions will be developed in the near future to reach even more people interested in genetic diversity.

“These distance learning modules are for everyone who wants to learn about genetic diversity, which is crucial to increase crop yields and is one of several important solutions to tackle climate change,” Bouvet said. “With distance learning modules, SeeD will be able to reach many more people, so that those without the time or financial means to physically come to CIMMYT can still benefit from their workshops and learn to utilize genetic diversity.”

SeeD is a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). Learn more about the Seeds of Discovery project here

receive newsletter

Combating spread of MLN in Africa poses unique but surmountable challenges, seed health specialist says

Anne Wangui, a seed health technician at CIMMYT demonstrate DAS–ELISA method used for detecting MLN-causing viruses. B.Wawa/CIMMYT
Anne Wangui, a seed health technician at CIMMYT demonstrate DAS–ELISA method used for detecting MLN-causing viruses. B.Wawa/CIMMYT

NAIROBI, Kenya (CIMMYT) – The maize lethal necrosis (MLN) disease poses a major concern to researchers, seed companies and farmers in sub-Saharan Africa. The impact of MLN is massive in the affected countries, especially at the household level for smallholder farmers who can experience up to 100 percent yield loss.

Concerted regional efforts through a project funded by the U.S. Agency for International Development (USAID) over the past year have helped in prioritizing and targeting efforts to stop the spread of the disease  from the endemic to the non-endemic countries in sub-Saharan Africa. The project target countries are Ethiopia, Kenya, Rwanda, Tanzania and Uganda (currently MLN endemic), while Malawi, Zambia and Zimbabwe are MLN non-endemic but important commercial maize seed producing countries where the project implemented extensive MLN surveillance efforts.

Determining exactly how the MLN causing viruses, which include maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus, are transmitted in the field through insect-vectors, infected plants and seed lots, has made diagnosis a key element in the efforts to halt the spread of the disease.  If the viruses, in particular MCMV, the major causative agent, are introduced into a new area through contaminated seed and infected plants and not diagnosed and destroyed immediately, MLN can spread rapidly. Insect vectors in the field can play a significant role in transmitting viruses to the neighboring healthy maize fields.

In order to manage MLN at a regional level, partners in the project are developing harmonized diagnostic protocols to test, detect and prevent its spread through available mitigation measures. These were highlighted during the MLN Diagnostics and Management Project Review and Planning Meeting held in October, 2016 in Nairobi.

Monica Mezzalama, head of the CIMMYT Seed Health Laboratory  in  Mexico and a plant pathologist, shared her views on MLN testing and diagnostic methods that can be adopted to test maize plants and seed lots in the following interview.

Q: What is the role of diagnostics in managing MLN in Africa?

A: The role of sensitive, reliable, reproducible, affordable and standardized diagnostic tools is fundamental to the management of MLN in Africa. Only with an appropriate diagnosis tool, we can effectively detect and prevent further dispersal of the disease to the non-endemic areas through seed.

Q: What is the progress for detecting MLN in seed lots?

A: At the moment, detection in seed lots is still a weak link in the MLN management chain, although detection methods are available, such as ELISA and several versions of PCR, which are serological and molecular based, respectively, for the detection of MLN viruses. Extracting the pathogen from seed is more difficult than extracting it from leaf tissue, making it more time consuming to obtain clear and reliable results. Additionally, scientists are on the verge of resolving the significant issue of “sampling intensity,” which refers to the proportion of the seed sampled from the presented seed lots.

Q: What are some of the practices CIMMYT has adopted to ensure MLN-free seed production across regional centers in Africa?

A: Since 2013, CIMMYT has implemented several effective measures to ensure healthy MLN-free seed production and exchange. An aggressive strategy against the disease has been adopted at the main maize breeding station at Kenya Agricultural Livestock and Research Organization in Kiboko, by introducing a maize-free period of two months annually on the station as well as in the surrounding areas in close interaction with the farming communities in the neighboring villages. All this was possible thanks to the great collaboration between KALRO staff, CIMMYT colleagues, and the local farmers. This action taken for two consecutive years reduced drastically the incidence of MLN infected plants. In addition, a very thoughtful sensitization campaign was carried out, explaining how to effectively apply insecticide to control vectors, how to avoid the spread of the pathogen from one field to another by advising workers to change their clothes and shoes after working in an infected field. Also, management of planting dates has been implemented to avoid peaks of vectors populations or physically avoiding the arrival of the insects by planting according to the wind stream direction. In Zimbabwe, CIMMYT has also invested significant resources by establishing an MLN Quarantine Facility at Mazowe, near Harare to enable safe exchange of MLN virus-free breeding materials in southern Africa.

Q: Based on your experience with various diagnostic tools, what options would work for Africa’s seed companies and regulatory agencies to help detect MLN-causing viruses?

A: For detection of MLN viruses in green leaf tissue, I think immunostrips, ELISA and PCR techniques work very well and they can be adopted according to the level of specialization of the operator, infrastructure and financial resources available. As far as detection in dry seed is concerned, I think that at the moment the ELISA technique is the most reliable and affordable. PCR methods are available, but still some improvement needs to be done in the extraction of the viral RNA from the seed matrix.

Q: What factors do the relevant actors need to consider in the process of harmonizing diagnostic protocols across MLN-endemic and non-endemic countries?

A: Harmonization of protocols and procedures are needed not only for MLN, but also for effective design and implementation of phytosanitary aspects related to the exchange of commercial seed and vegetative material across borders. Unfortunately, it is not an easy task because of the number of actors involved, including national plant protection organizations, seed companies, seed traders, farmers, and policy makers. Nevertheless, the most important factors that, in my opinion, should be taken into consideration for consensus on harmonized protocols and where the efforts should focus on are: avoid the spread of the disease from country to country, and from the endemic to non-endemic areas within the same country; implement a well-coordinated and integrated package of practices for effective management of MLN in the endemic countries; reduce as much as possible economic losses due to the restriction on seed exchange; implement serious and effective seed testing and field inspections of the seed multiplication plots to prevent the incidence of MLN and for timely detection and elimination of infected plants.

View Meeting presentations  here

MLN Pathogen Diagnosis, MLN-free Seed Production and Safe Exchange to Non-Endemic Countries Brochure

Visit the MLN website for more information

The CIMMYT-led MLN Diagnostics and Management Project, funded by USAID East Africa Mission is coordinating the above work with objectives to: a) prevent the spread of MLN, especially Maize Chlorotic Mottle Virus (MCMV), from the MLN-endemic countries in eastern Africa to non-endemic countries in sub-Saharan Africa; b) support the commercial seed sector in the MLN-endemic countries in producing MCMV-free commercial seed and promote the use of clean hybrid seed by the farmers; and c) to establish and operate a MLN Phytosanitary Community of Practice in Africa, for sharing of learning, MLN diagnostic and surveillance protocols, and best management practices for MLN control in Africa.

receive newsletter

New Publications: With climate change, pests likely to spread to new agricultural areas

Wheat showing the "white head" condition typically produced by stem-boring insects, in this case caused by wheat stem maggot (Meromyza americana). Photo: CIMMYT
Wheat showing the “white head” condition typically produced by stem-boring insects, in this case caused by wheat stem maggot (Meromyza americana). Photo: CIMMYT

EL BATAN, Mexico – Agriculture faces many threats from climate change – drought, heat, irregular weather among other environmental challenges. However, the spread of insects to new regions as the world’s climate changes is an additional threat to farmers globally, especially in Africa where climate-change effects are projected to be some of the most severe in the world.

Most agricultural pests are expected to respond to climate change. To predict what areas will face the greatest threat of the spread of pests, scientists from The International Maize and Wheat Improvement Center (CIMMYT) modeled the current and future habitat suitability under changing climatic conditions for Tuta absolutaCeratitis cosyra and Bactrocera invadens, three important insect pests that are common across some parts of Africa and responsible for immense agricultural losses.

The scientists found that habitat suitability for the three insect pests is partially increasing across the continent, especially in those areas already overlapping with or close to most suitable sites under current climate conditions. The three pests are likely to have an impact on productive agricultural areas under future climatic conditions.

Read the full study “Future risks of pest species under changing climatic conditions,” and check out the other latest publications from CIMMYT scientists, below.

  • Evaluation of grain yield and quality traits of bread wheat genotypes cultivated in Northwest Turkey. 2016. Bilgin, O.; Guzman, C.; Baser, I.; Crossa, J.; Kayıhan Zahit Korkut; Balkan, A. Crop Science 56 (1): 73-84.
  • Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. 2016. Mondal, S.; Rutkoski, J.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzman, C.; Bhavani, S.; Caixia Lan; Xinyao He; Singh, R.P. Frontiers in Plant Science 7 (991):  1-15.
  • Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. 2016. Guzman, C.; Yonggui Xiao; Crossa, J.; González-Santoyo, H.; Huerta-Espino, J.; Singh, R.P.; Dreisigacker, S. Euphytica 209: 689-692.
  • Unlocking the genetic diversity of Creole wheats. 2016. Vikram, P.; Franco-Barrera, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Sneller, C.; Tattaris, M.; Guzman, C.; Sansaloni, C.P.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Singh, P.K.; Payne, T.S.; Wenzl, P.; Sharma, A.; Bains, N.; Gyanendra Pratap Singh; Crossa, J.; Sukhwinder-Singh. Nature Scientific Reports 6: No. 23092
  • Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. 2016. Guzman, C.; Alvarez, J.B. Theoretical and Applied Genetics 129 (1): 1-16.
  • Climate change impacts and potential benefits of heat-tolerant maize in South Asia. 2016. Kindie Tesfaye Fantaye; Zaidi, P.H.; Gbegbelegbe, S.D.; Bober, C.; Dil Bahadur Rahut; Getaneh, F.; Seetharam, K.; Erenstein, O.; Stirling, C. Theoretical and Applied Climatology. In press.
  • Diversity of phenotypic (plant and grain morphological) and genotypic (glutenin alleles in Glu-1 and Glu-3 loci) traits of wheat landraces (Triticum aestivum) from Andalusia (Southern Spain). 2016. Ayala, M.; Guzman, C.; Peña-Bautista, R.J.; Alvarez, J.B. Genetic Resources and Crop Evolution 63: 465-475.
  • Future risks of pest species under changing climatic conditions. 2016. iber-Freudenberger, L.; Ziemacki, J.; Tonnang, H.; Borgemeister, C. PLoS One 11 (4): e0153237.
  • Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. 2016. Battenfield, S.D.; Guzman, C.; Gaynor, C.; Singh, R.P.; Peña-Bautista, R.J.; Dreisigacker, S.; Fritz, A.K.; Poland, J. The Plant Genome 9 (2): 1-12.
  • Participation in rural land rental markets in Sub-Saharan Africa: who benefits and by how much? evidence from Malawi and Zambia. 2016. Chamberlin, J.; Ricker-Gilbert, J. American Journal of Agricultural Economics 98 (5): 1507-1528.

Public initiatives key to harnessing genetic diversity for food security, says genetic resources expert

Maize collections held at the CIMMYT genebank in Mexico. Photo: CIMMYT
Maize collections held at the CIMMYT genebank in Mexico. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – Public initiatives to facilitate the use of genetic resources must be promoted to demonstrate the value they add to agriculture for development and food security research, says Kevin Pixley, director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

Pixley heads the Seeds of Discovery (SeeD) initiative at CIMMYT through which scientists are working to unlock novel, or new, genetic diversity held in germplasm banks – often popularly known as gene banks – to accelerate the development of maize and wheat varieties that grow better under environmental pressures like erratic weather and water scarcity, as well as provide increased nutritional value. CIMMYT scientists do this by identifying crop varieties that display valuable traits like drought and heat-stress tolerance that allow them to flourish despite these stresses.

Greater accessibility can also increase the breadth of impact due to research results being freely available to all, said Pixley who will speak at the International Agrobiodiversity Congress on Nov. 7, in New Delhi.

“By characterizing the genetic makeup of maize and wheat collections, SeeD has generated ‘fingerprints’ describing the diversity of two of humanity’s major food crops,” Pixley said. “To multiply the impacts of these results, SeeD has created a genetic resources utilization platform for breeders and researchers, made up of publicly available data and software tools.”

Since the project began in 2012, it has detailed the genetic makeup of over 110,000 maize and wheat samples, sharing information with institutions in Africa, Latin America and South Asia to aid in developing disease resistant, drought tolerant germplasm with improved nutritional and quality traits.

Pixley, who will discuss the importance of public initiatives in the conservation and facilitation of genetic resources in, shared some insights on the role of agrobiodiversity in the effort to achieve food security in the following interview.

Q: What do you hope to contribute by your talk?

We’ll present the SeeD initiative as a unique example and model of a public initiative to characterize and facilitate the use of genetic diversity to address agricultural production challenges of today and the future. There is tremendous value in executing such a project in the public domain; for example, 1) the benefits from a one-time investment are shared, thus saving the costs of multiple individual efforts, 2) the knowledge gained is freely available, thus reducing the likelihood that individuals will seek exclusive rights to any discovery, and 3) equitable access to the benefits of genetic diversity is actively promoted by sharing results, tools and methods with individuals and institutions large and small.

Q: What is the importance of protecting genetic resources for global food security and health?

Dozens of instances are known in which crop wild relatives or landraces have provided essential genes for disease or pest resistance, abiotic stress tolerance or quality traits in such crops as wheat, rice, tomato, potato, sunflower and maize.  As world climate is changing and resources available for agriculture – such as arable land and water for irrigation – are declining, crops will be challenged by predictable – such as heat and drought – and unpredictable – such as new diseases and pests – stresses. Our future food security will undoubtedly be enhanced by, and may indeed be dependent on the use of genetic diversity conserved and made available through germplasm banks.

Q: What would you like to see come out of the conference?

I’d like to see the advancement of the conversation about the importance of conservation, sustainable and equitable use of genetic resources. There are diverse views about how humanity should share the responsibilities, costs and benefits of conserving and using genetic resources. This is a complex conversation with scientific, social, cultural, economic, and ethical dimensions. This is a conversation that may determine the very survival of future generations, and it is therefore of vital importance to society.

Conference highlights urgent need to harness genetic resources for future food security

Climate change is likely to have a huge impact on cereal farmers in India. CIMMYT/Emma Quilligan
Climate change is likely to have a huge impact on cereal farmers in India. CIMMYT/Emma Quilligan

NEW DELHI (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) will participate in the first International Agrobiodiversity Congress (IAC) from November 6 to 9, 2016 in New Delhi. The IAC aims to provide a common platform for stakeholders, including farmers, scientists, policymakers and industry leaders to share their experiences and knowledge in agrobiodiversity management and genetic resource conservation. The Congress is being hosted by the Indian Society of Plant Genetic Resources and Bioversity International, and co-organized by CIMMYT and the Borlaug Institute for South Asia.

“Multiple challenges in future wheat production – including heat stress, changes in rainfall and a growing threat of increased virulent diseases – will increase the demand for new varieties that can cope with stress and changing environment,” said Arun Joshi, CIMMYT’s regional representative in Asia. “This congress will focus on advances that can be made through increased diversity and targeted use of genetic resources to produce improved varieties.”

Martin Kropff, director general of CIMMYT, will give a keynote address on why effective partnerships and agrobiodiversity are needed to feed nine billion people. He will also chair a plenary session on “Agrobiodiversity for Sustainable Development Goals.” Other key themes for plenaries include agrobiodiversity for adaptation to and mitigation of climate change, intellectual property rights, access and benefit sharing, farmers’ rights, quarantine, biosafety and biosecurity and science-led innovation for agrobiodiversity management and sustainable use.

CIMMYT is also organizing a satellite session titled “Harnessing Biodiversity for Food Security and Sustainable Development.” This session will bring together numerous partners of the SeeD initiative, which seeks to unlock the genetic potential of maize and wheat genetic resources by providing breeders with a toolkit to improve targeted use in the development of high-yielding, climate-ready and resource-efficient cultivars. The session will also cover the importance of enhancing the use of genetic resources for improved agriculture, and how doing so can help meet several of the 17 U.N. Sustainable Development Goals by 2030. SeeD is a pioneering partner in the Diversity Seek initiative, which seeks synergies among projects to harness the diversity of crop species to feed humankind.

In addition to Kropff, CIMMYT speakers at the conference include Ravi Singh, distinguished scientist and head of bread wheat improvement and Kevin Pixley, director of CIMMYT’s genetic resources program. Other researchers working to improve the genetic potential of maize and wheat will also participate. CIMMYT will also host an evening reception on Nov. 7 to mark CIMMYT’s achievements over the last 50 years.

Check out the IAC program here and list of keynote speakers here.   

New Publications: How to better breed maize for future climates in Latin America

A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center. CIMMYT/Xochiquetzal Fonseca
A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center.
CIMMYT/Xochiquetzal Fonseca

EL BATAN, Mexico (CIMMYT) — A new study from The International Maize and Wheat Improvement Center (CIMMYT) evaluates how elite lines of maize in tropical conditions throughout Latin America perform under abiotic stresses like drought, nitrogen (N) deficiency and combined heat and drought stress.

By 2050, demand for maize is predicted to double in the developing world, and cereal production will need to greatly rise to meet this demand. However, drought and N deficiency are common detrimental factors towards achieving this goal throughout the developing world. The development of new maize germplasm able to tolerate these stresses is crucial if productivity in maize-based farming systems is to be sustained or increased in tropical lowlands in Latin America and elsewhere.

The authors found that only a few lines were tolerant across these conditions, which re-emphasizes the need to separately screen germplasm under each abiotic stress to improve tolerance. Based on high best linear unbiased predicted general combining ability, they found it will be possible to develop hybrids tolerant to multiple abiotic stresses without incurring any yield penalty under non-stressed conditions using these inbred lines. These elite lines can immediately be used in tropical breeding programs in Mexico, Central and South America, and sub-Saharan Africa to improve tolerance to abiotic stress to ensure food security in a changing climate.

Read more about the study “Identification of Tropical Maize Germplasm with Tolerance to Drought, Nitrogen Deficiency, and Combined Heat and Drought Stresses” here and check out other new publications from CIMMYT staff below.

  1. AlphaSim : software for breeding program simulation. 2016. Faux, A.M.; Gorjanc, G.; Gaynor, C.; Battagin, M.; Edwards, S.M.; Wilson, D.L.; Hearne, S.; Gonen, S.; Hickey, J.M. The Plant Genome 9 (3) : 1-14.
  2. Conservation agriculture-based wheat production better copes with extreme climate events than conventional tillage-based systems: a case of untimely excess rainfall in Haryana, India. 2016. Aryal, J.P.; Sapkota, T.B.; Stirling, C.; Jat, M.L.; Jat, H.S.; Munmun Rai; Mittal, S.; Jhabar Mal Sutaliya. Agriculture, Ecosystems and Environment  233 : 325-335.
  3. Grain yield performance and flowering synchrony of CIMMYT’s tropical maize (Zea mays L.) parental inbred lines and single crosses. 2016. Worku, M.; Makumbi, D.; Beyene, Y.; Das, B;. Mugo, S.N.; Pixley, K.V.; Banziger, M.; Owino, F.; Olsen, M.; Asea, G.; Prasanna, B.M. Euphytica 211 (3) : 395-409.
  4. Growing the service economy for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: lessons from custom hiring services for zero-tillage. 2016.  Keil, A.; D’souza, A.; McDonald, A. Food Security 8 (5) : 1011-1028.
  5. Wheat landraces currently grown in Turkey : distribution, diversity, and use. 2016. Morgounov, A.I.; Keser, M.; Kan, M.; Kucukcongar, M.; Ozdemir, F.; Gummadov, N.; Muminjanov, H.; Zuev, E.; Qualset, C. Crop Science 56 (6) : 3112-3124.
  6. First report of sugar beet nematode, Heterodera schachtii Schmidt, 1871 (Nemata: Heteroderidae) in sugar beet growing areas of Sanliurfa, Turkey. 2016. Jiang-Kuan Cui; Erginbas-Orakci, G.; Huan Peng; Wen-Kun Huang; Shiming Liu; Fen Qiao; Elekcioglu, I.H.; Imren, M.; Dababat, A.A.; De-Liang Peng. Turkish Journal of Entomology 40 (3) : 303-314.
  7. Identification of tropical maize germplasm with tolerance to drought, nitrogen deficiency, and combined heat and drought stresses. 2016. Trachsel, S.; Leyva, M.; Lopez, M.; Suarez, E.A.; Mendoza, A.; Gomez, N.; Sierra-Macias, M.; Burgueño, J.; San Vicente, F.M. Crop Science 56 : 1-15.
  8. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. 2016. Corbeels, M.; Chirat, G.; Messad, S.; Thierfelder, C. European Journal of Agronomy 76 : 41-53.
  9. The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from Zimbabwe with contrasting management practices. 2016. Cruz-Barrón, M. de la.; Cruz-Mendoza, A.; Navarro–Noya, Y.E.; Ruiz-Valdiviezo, V.M.; Ortiz-Gutierrez, D.; Ramirez Villanueva, D.A.; Luna Guido, M.; Thierfelder, C.; Wall, P.C.; Verhulst, N.; Govaerts, B.; Dendooven, L. Microbial Ecology. Online First.
  10. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). 2016. Ayala, M.; Guzman, C.; Peña-Bautista, R.J.; Alvarez, J.B. Journal of Cereal Science 71 : 61-65.

Gazing into the crystal ball at the future of food: Nutrient-dense maize and wheat

A scientist examines wheat grain. CIMMYT/Nathan Russell
A scientist examines wheat grain. CIMMYT/Nathan Russell

Gideon Kruseman is CIMMYT’s ex-ante and foresight specialist.

Over the next few decades, projections indicate global population will grow from more than 7 billion to more than 9 billion people by 2050. A large proportion of that world population will be living in low- and middle-income countries in urban environments – often huge — cities.

In India, the country with the largest rural population, for instance, the percentage of urban population is expected to increase from 37 percent in 2011 to 56 percent by 2050. Globally it will grow from 55 percent in 2011 to 70 percent in 2050. The trends we anticipate in India are comparable to Africa as a whole where urban population is projected to increase from less than 40 percent to around 55 percent, although there are differences between countries and regions.

Meeting the sustainable development goals (SDGs) established in 2015 by the United Nations and the global community will be challenging. The 17 goals with 169 targets aim to solve problems related to climate change, hunger, education, gender equality, sanitation, jobs, justice and shared peace by 2030.

In particular, SDG 2, which aspires to eliminate hunger, and SDG 3, which aims to establish good health and well-being, will be challenging even if we concentrate only on climatic, environmental and biophysical constraints. If we also take into account all the implications of urbanization and economic growth on diets and dietary change a new dimension of complexity becomes apparent.

Whether model calculations are based on current consumption patterns and trends, healthy diets or a variety of ecological sustainability criteria, maize and wheat will play a significant dietary role. Currently, these two staple crops feed two-thirds of the world population and will continue to be the main supply of energy in human diets in all scenarios.

However, scenarios for maize and wheat will not ensure decrease in quantitative and qualitative malnutrition unless we act upon projected future demands now. Diets, dietary change and their effects on health and nutritional status form complex interactions with socio-economic and environmental drivers.

In the future, diets will inevitably change as they have in previous decades. Basic commodities in food consumed in urban areas require different traits than food consumed in rural areas where the chain between production and consumption is shorter. The reason for this is that in rural areas in low and middle income countries staple grains are milled and processed locally, while in urban areas people tend to eat industrialized processed or pre-processed food.

In urban areas in Africa and South Asia wheat-based products are starting to replace traditional staples such as maize and rice to some extent. Moreover, research reveals that in urban centers people tend to eat energy dense food, which can help prevent quantitative malnutrition in terms of calorie intake, but does not ensure a healthy diet. Healthy eating requires a wide range of nutrients that traditionally are found in diverse foods. When people opt for less diversity and more convenience, this requires nutrient-dense as well as calorie-dense food. A significant trend that points to convenience food is the increased consumption levels of snacks and fast food, in low- and middle-income countries.

Maize-based snacks are important components of urban diets. Moreover, maize is a key ingredient found in convenience food made by the food industry in the form of starch and syrup. Ensuring that maize and wheat can meet nutritional demands in less diverse diets requires the introduction of new traits into the varieties comparable to the ongoing efforts of maize and wheat biofortification at the International Maize and Wheat Improvement Center (CIMMYT).

The development of nutrient-dense varieties takes time since they must also incorporate traits that address environmental conditions, climate change and resistance to pests and diseases as well as feature favorable post-harvest characteristics such as milling and processing quality.

Crucial to this process are the genetic resources that allow the traits to be combined in the breeding done at CIMMYT.

How do we do this? Billions of seeds, expertly and carefully conserved for humankind, are housed in our seed bank. They are freely available to breeders and other researchers around the world who may use them to uncover solutions to some of the challenges that face humanity in the future. Any one seed could help secure the food of our future.

While the potentially desirable traits hidden in the seeds in the seed bank are very valuable, there are costs involved in maintaining this diversity. Diversity is important for finding traits that will allow maize and wheat to be more nutritious than they are already today and so aid in meeting the demands of the future. Today, everyone can be part of this future by joining the save a seed movement.