Skip to main content

Pillar: Discovery

Early maturity products popular among farmers in Kenya

Across all production environments in Kenya, early-maturity products demonstrate strong sales. This was revealed in a recent study by the CGIAR Initiative on Market Intelligence. During the long-rains season, farmers in higher rainfall production environments—wet, mid and high altitudes—purchased early-maturity seed products despite potentially lower yields. Also, the short-rains season, which represents almost one-fourth of total maize seed sales, was dominated by early-maturity products.

These insights were obtained through a panel of maize-seed sales data from 722 agrodealers in Kenya during two short-rains seasons and three long-rains seasons in 2020–2022. The study also offers insights into the extent the maturity level of seed products, purchased by farmers in Kenya, aligns with the production environment where they were sold. Market Intelligence applies eight criteria to identify seed product market segments (SPMSs) for CGIAR crop breeding. In the application of these criteria to maize in East Africa, two conditions distinguish the segments: production environment and maturity level. The other criteria do not vary. A key indicator for prioritizing breeding investments across segments is the relative size of SPMSs. In the case of maize, and other crops, teams generally use geospatial data to identify the area of production environments, with the assumption that farmers in each production environment would use the seed product with the maturity level designed for that environment.

The paper contends that a stronger focus on using sales data to inform breeding decisions in maize, and potentially other crops where retailers play an important role in seed distribution, should become a priority for market intelligence. Future work will engage stakeholders in maize seed systems in other countries of East Africa about the changes in demand for earlier-maturing products and the implications for segmentation.

This article is adapted from Market Intelligence Brief 5: Maize Farmers Acquire Early-Maturity Seed Across Production Environments – the fifth paper in the ongoing peer-reviewed series published inMarket Intelligence Briefs.

*About Market Intelligence Briefs

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop-breeding teams, and others to work together toward the design and implementation of a demand-led breeding approach. In 2022, the Market Intelligence Brief (MIB) series was created as a valuable communication tool to support informed decision making by crop breeders, seed-system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector, and non-governmental organizations (NGOs).

The author would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund. This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by Bill & Melinda Gates Foundation; Foundation for Food & Agriculture Research (FFAR); United States Agency for International Development (USAID); and United Kingdom’s Foreign, Commonwealth & Development Office (FCDO).

While you were sleeping: increasing nighttime temperatures and their effects on plant productivity

When one thinks of heat waves, the natural tendency is to consider high daytime temperatures. However, when most people are sleeping, a hidden factor of climate change is taking place: temperatures at night are not dipping as much as observed in the past, which has dramatic effects on many crops, including wheat. In fact, nocturnal temperatures are rising more rapidly globally than daytime temperatures, which is of great concern as research is starting to show the sensitivity of plants to warmer nights.

A group of researchers, from the University of Nottingham, the Sonora Institute of Technology (ITSON) and CIMMYT examined how different wheat lines reacted to the effects of rising nighttime temperatures treatments imposed in the field, for three years at CIMMYT’s Norman E. Borlaug experimental station in Ciudad Obregon, Mexico. Their results, Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses were published in New Phytologist.

Previous studies revealed that wheat yields decline 3-8% for every 1°C increase of the nighttime low temperature. For this research, the team subjected the selected wheat breeds to an increase of 2°C. The varieties were selected based on previous evaluations of their daytime heat tolerance.

Notably, the findings highlighted that genotypes classified as traditionally heat tolerant were sensitive to small increases in nighttime temperature even without daytime temperature stress, implying that adaptation to warm nights is likely under independent genetic control than daytime adaptation.

“These results are exciting as they offer new perspectives on the impact of night temperatures on diurnal photosynthetic performance and wheat yields,” said co-first author Liana Acevedo-Siaca. “Through this work we found that wheat yields decreased, on average, 1.9% for every degree that increased at night. Our hope is that this work can help inform future breeding and research decisions to work towards more resilient agricultural systems, capable of dealing with warmer day and nighttime temperatures.”

Plants at night

While plants do not “sleep” in the way animals do, nighttime for plants has long been thought of as a time of repose compared to daylight hours when photosynthesis is taking place. However, recent findings have revealed that plants are more active than previously thought at night, for example in transpiration, which is the process of plants gathering liquid water from the soil and releasing water vapor through their leaves.

“An interesting result of our research was that we found varieties characterized as heat tolerant, showed some of the greatest declines in yield in response to warmer nights,” said co-first author Lorna McAusland, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham. “These are the varieties wheat farmers are being recommended for increasing daytime temperature, and so there is a worry that advantages gained during the day are being lost at night.”

“There is likely a goldmine of opportunities related to genetically improving nighttime processes in crops, as very little research has been conducted in that space. Useful genetic variation can be expected, since ‘night’ traits have never been considered or needed before now,” said co-author Matthew Reynolds, who leads the CIMMYT’s Wheat Physiology Lab that collaborates globally with experts via HeDWIC (https://hedwic.org/) and uses physiological pre-breeding as a conduit for cutting edge technologies to impact mainstream breeding.

Millers in Nigeria laud the release to farmers of co-developed, CIMMYT-derived wheat varieties

Nigerian wheat scientists and millers recently recognized and thanked CIMMYT for its contributions to four new wheat varieties released to farmers, citing the varieties’ exceptional performance in field trials and farmers’ fields across national wheat-growing regions.

“The release of these four wheat varieties, uniquely tailored to suit our local conditions, has marked a significant milestone in enhancing food security and farmer livelihoods,” said Ahamed T. Abdullahi, agronomist for wheat value chains at the Flour Milling Association of Nigeria (FMAN), in a recent message to CIMMYT’s Global Wheat program. “The improved characteristics, such as higher yield potential, enhanced disease resistance, and adaptability to local climatic conditions, have significantly boosted wheat productivity. Moreover, the quality profiles of these varieties, as expressed in Nigeria, comply fully with the standards required by the local industry.”

Two of the varieties are bread wheat and yield up to 7 tons of grain per hectare, according to a recent Nigeria Tribune article. The other two are durum wheat, a species grown to make pasta and foods such as couscous and tabbouleh. One of those, given the name LACRIWHIT 14D in Nigeria, was from a CIMMYT wheat line selected for its novel genetic resistance to leaf rust and high-yield potential under irrigated conditions. It was also released in Mexico under the name CIRNO C2008 and is the country’s number-one durum wheat variety, according to Karim Ammar, a wheat breeder at CIMMYT.

Four new bread and durum wheat varieties based on CIMMYT breeding lines are well adapted to local conditions and offer excellent yields and grain quality. (Photo: FMAN)

“Aside from its high yield potential, it has considerable grain size and an aggressive grain fill that is expressed even under extreme heat,” explained Ammar. “These characteristics have certainly helped its identification as outstanding for Nigerian conditions.”

Writing on behalf of FMAN and the Lake Chad Research Institute (LCRI) of Nigeria’s Federal Ministry of Agriculture and Rural Development, Abdullahi said, “We deeply appreciate the expertise and support provided by CIMMYT throughout the development and release process. Your team’s technical guidance on the access to germplasm has played a crucial role in equipping our farmers and extension agents with the necessary skills and resources for successful wheat cultivation.”

Nigeria has a fast-growing population which, coupled with increasing per capita demand for wheat, has made increasing wheat production a national priority, according to Kevin Pixley, director of the Dryland Crops and Global Wheat programs at CIMMYT.

“Until recently, Nigeria produced only 2% of the wheat it consumes, but potential exists to double the current average yield and expand wheat production by perhaps 10-times its current area,” said Pixley. “New wheat varieties will be essential and must be grown using sustainable production practices that improve farmers’ livelihoods while safeguarding long-term food security and natural resources.”

Abdullahi said the release of the varieties demonstrated the power of collaborative research and highlighted the potential for future collaborations. “We look forward to continued collaborations and success in the pursuit of sustainable food systems.”

Ten years later: CIMMYT facilities in East Africa continue to make a difference

CIMMYT and partners in Kenya recently marked the 10th anniversary of two major facilities that have been crucial for maize breeding in sub-Saharan Africa. The Maize Doubled-Haploid (DH) facility and the Maize Lethal Necrosis (MLN) screening facility at the Kenya Agriculture and Livestock Research Organization (KALRO) centers in Naivasha and Kiboko, respectively, have made immense contributions to the rapid development of higher-yielding, climate-resilient and disease-resistant maize varieties for smallholder farmers across the continent.

An aerial photo of the Naivasha Research Center. (Photo: CIMMYT)

“These two facilities have been instrumental in furthering KALRO’s mission to utilize technology in the service of Kenya’s smallholder farmers,” said KALRO Director General/CEO, Eliud Kireger. “They also exhibit the spirit of cooperation and collaboration that is necessary for us to meet all the challenges to our food systems.”

“Deploying a higher yielding maize variety may not be impactful in eastern Africa if that variety does not have resistance to a devastating disease like MLN,” said CIMMYT’s Director General Bram Govaerts. “These two facilities demonstrate the holistic methods which are key to working towards a more productive, inclusive and resilient agrifood system.”

Maize DH facility

Hybrid maize varieties have much higher yields than open-pollinated varieties and are key to unlocking the agricultural potential of maize producing countries. The doubled haploid process is an innovative technology producing within a year genetically true-to-type maize lines that serve as building blocks for improved maize hybrids.

Unlike conventional breeding, which takes at least 7 to 8 generations or crop seasons to develop parental lines, DH lines are generated within two seasons, saving significant time, labor and other resources. DH maize lines are highly uniform, genetically stable, and are more amenable to the application of modern molecular tools, making them perfect resources for breeding elite maize hybrids.

Workers in the Kiboko Double Haploid facility. (Photo: CIMMYT)

The aim of CIMMYT’s maize DH facility is to empower the breeding programs throughout the low-and middle-income countries in Africa by offering a competitive, accessible, not-for-profit DH production service that will accelerate their rate of genetic gain and fast-track development of improved maize varieties for farming communities.

Since 2017, the DH facility has delivered 280,000 DH lines from 1,840 populations of which 20% were delivered to public and private sector partners. CIMMYT maize breeding programs and partner organizations have embraced the use of DH technology, with many of the newest maize hybrids released in Africa being derived from DH lines. The facility has also served as a training ground so far for over 60 scientists and hundreds of undergraduate students in modern breeding technologies.

“Before 2013, DH technology was mainly employed by private, multinational corporations in North America, Europe, Asia and Latin America,” said CIMMYT’s DH Facility Manager, Vijay Chaikam. “But the DH facility operated by CIMMYT at the KALRO Kiboko research station is specifically targeted at strengthening the maize breeding programs by the public sector institutions as well as small-and medium-size enterprise seed companies in Africa.”

The maize DH facility at Kiboko, Kenya, was established with funding support from the Bill & Melinda Gates Foundation and inaugurated in September 2013. The facility includes an administrative building, seed quality laboratory, training resources, artificial seed dyer, a cold-storage seed room, a chromosome doubling laboratory, greenhouse and a state-of-the-art irrigation system to support year-round DH production in the 17-hectare nursery.

MLN screening facility

MLN is a devastating viral disease that can decimate farmers’ fields, causing premature plant death and unfilled, poorly formed maize ears, and can lead to up to 100 percent yield loss in farmers’ fields. Though known in other parts of the world for decades, the disease was first identified in eastern Africa in 2011. By 2015, MLN had rapidly spread across eastern Africa, including Kenya, Uganda, Tanzania, South Sudan, Rwanda, Democratic Republic of Congo and Ethiopia. CIMMYT scientists quickly discovered that almost all the commercial maize cultivars in eastern Africa were highly susceptible to the disease.

Against this backdrop, CIMMYT and KALRO recognized the urgent need for establishing a screening facility to provide MLN phenotyping service and effectively manage the risk of MLN on maize production through screening of germplasm and identifying MLN-resistant sources. The facility was built with funding support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, and inaugurated in September 2013.

Resistant and susceptible line at the Maize Lethal Necrosis facility. (Photo: CIMMYT)

“The MLN screening facility is a key regional resource in breeding for resistance to a devastating viral disease. The facility is indeed one of the key factors behind successful management of MLN and helping stem the tide of losses in eastern Africa,” said Director of the Global Maize Program at CIMMYT and One CGIAR Plant Health Initiative, B.M. Prasanna. “Fighting diseases like MLN, which do not respect political boundaries, requires strong regional and local collaboration. The successes achieved through the MLN Screening facility in the past 10 years embody that spirit of collaboration.” Indeed, farmers in the region now have access to over twenty genetically diverse, MLN-tolerant/resistant maize hybrids released in eastern and southern Africa.

The facility is the largest dedicated MLN screening facility in Africa and has evaluated over 230,000 accessions (over 330,000 rows of maize) from CIMMYT and partners, including over 15 national research programs, national and multinational seed companies. The facility covers 20 hectares, of which 17 hectares are used for field screening of germplasm. Dedicated laboratories and screen houses cover the remaining 3 hectares.

“MLN phenotyping service is conducted under stringent quarantine standards and the high-quality data is shared with all the CGIAR and public and private partners. The MLN screening service has helped breeding programs across the continent, aided in undertaking epidemiological research activities, and supported capacity building of students from diverse institutions, and regional stakeholders regarding MLN diagnosis and best management practices,” said CIMMYT’s Maize Pathologist in Africa, L.M. Suresh.

“The output of MLN resistant lines and hybrids has been remarkable,” said Director of Phytosanitary and Biosecurity at the Kenya Plant Health Inspectorate Service (KEPHIS), Isaac Macharia. “And the facility has strictly adhered to quarantine regulations.”

In Uganda, the MLN facility was crucial in the “release of the first-generation MLN tolerant hybrids and dissemination of MLN knowledge products that minimized the economic impact of MLN,” said the Director of Research of the National Crops Resources Research Institute, Godfrey Asea.

Peter Mbogo, maize breeder with Seed Co Group, said, “This is the only quarantine facility in the world where you can screen against MLN under artificial inoculation. It has been an excellent return on investment.”

LIPS-Zimbabwe empowers farmers through innovative intercropping trials

Since 2021, CIMMYT, in partnership with the International Livestock Research Institute (ILRI), the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabwe’s Department of Veterinary, has been working in rural communities of Zimbabwe, as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project. The activity is led by Zimbabwe’s Department of Research and Specialist Services and is at the forefront of introducing new agricultural innovations to local farmers.

One of their most impactful initiatives has been the intercropping trials involving maize and various legumes including jack bean, mucuna, lablab, and pigeon pea. This groundbreaking approach has not only transformed the lives of farmers but has also had a positive impact on the overall health of livestock.

Various leguminous fodder crops have been promoted widely as sources of high-quality protein feed in mixed crop-livestock systems of Zimbabwe. However, to diversify and increase the options for the drier regions, the LIPS-Zim project is testing new leguminous crops such as jack bean and pigeon pea, which are well-adapted to dry conditions.

Intercropping trials with jack bean and maize (Photo: CIMMYT)

Netsai Musekiwa, a farmer in the town of Mutoko, has been part of the LIPS-Zim project for the past two seasons, and is currently conducting intercrop trials with jack bean. “Since I started intercropping maize with jack bean, I have been amazed by the results and will continue on this path. The jack bean plants have shown strong tolerance to prolonged dry spells and heat stress,” she said. “Next season, I plan to extend my plot to harvest more jack bean.” These words of encouragement on intercropping maize with jack bean have also been largely echoed by many other farmers in Mutoko and Buhera during the feedback meetings held in October 2023.

What is intercropping and how beneficial is it to farmers?

Intercropping is an agricultural practice of growing two or more crops together on the same field simultaneously to maximize land use and enhance productivity. As different crops have different growth patterns and nutrient requirements, intercropping can help optimize resource utilization and boost overall crop output.

In addition, intercropping reduces the risk of climate induced crop failure as well as minimizing pest damage, enhances soil fertility by diversifying the root system, and can provide additional income streams to farmers.

The science behind jack bean and pigeon pea

Jack bean (canavalia ensiformis) and pigeon pea (cajanus cajan) are leguminous crops valued for their nitrogen-fixing abilities which aides in improving soil fertility. Both jack bean and pigeon pea have deep root systems, making them ideal candidates for the dry semi-arid conditions in Zimbabwe.

Pigeon pea is known for its drought-tolerance and produces edible seeds used in various culinary dishes and is a source of both food and feed. Jack bean is used as a forage crop for livestock, providing nutritious feed.

“Jack bean seeds contain a toxic compound called canavanine, which can be harmful when consumed in large quantities or not properly processed. To make jack beans safe for consumption, it must be boiled, soaked, or fermented,” said Isaiah Nyagumbo, cropping systems agronomist at CIMMYT. “We have introduced many farmers to the best practices for handling jack beans and have opened up new possibilities for its utilization in sustainable farming practices.”

While some farmers were intercropping with jack bean, others explored pigeon pea as an alternative. “I liked the intercropping of maize and pigeon pea on my plot. I am assured of getting nutritious food both for my family and livestock. After harvesting, I usually take the branches, then put them in the shade and dry them to retain the nutritional value. I occasionally give some to my goats during the dry season when feed from natural pastures is scarce, and my goat herd has risen to 12 goats,” said Fungai Kativu, a farmer in Mutoko.

Building capacity of local farmers

To narrow the knowledge gap and highlight the potential of such feed options, LIPS-Zim has also been spearheading the establishment of community level learning centers. These centers are a knowledge hub to local farmers, providing practical knowledge, facilitating the sharing of different perspectives while nurturing working as groups with a common vision. This “farmer learns by seeing” approach has been a success in the community.

Through this initiative, farmers have not only witnessed increased productivity but have also gained the necessary skills and knowledge to adapt to the changing agricultural landscape. “Intercropping leguminous crops with maize has shown great potential in improving food security and livestock feed production in Zimbabwe’s farming communities, especially in areas prone to heat and drought,” said Nyagumbo.

New partnership announced to protect Gorongosa National Park in Mozambique by improving agricultural livelihoods and crop systems

A collaboration scheme launched between the Gorongosa Restoration Project (GRP) and CIMMYT seeks to improve climate resilience, food security and nutrition in Mozambique’s Gorongosa National Park by facilitating the adoption of sustainable practices and giving local farmers access to formal markets and improved value chains.

The partner organizations aim to develop more resilient agrifood systems that contribute to conserve resources and improve the livelihoods of farmers inhabiting the protected area in Mozambique’s Sofala Province.

“Our primary objective is to establish an evidence-based, scalable and replicable model for developing sustainable and resilient agrifood systems in Mozambique that enhance food and nutrition security and climate resilience of local farmers and communities,” said Gregory C. Carr, GRP President.

Gregory C. Carr (left) with Bram Govaerts. (Photo: Ricardo Curiel/CIMMYT)

The parties will explore collaboration opportunities to give local farmers access to drought tolerant and disease resistant varieties and improved seeds by building capacities of local seed systems.

“We are very excited to contribute to protect Gorongosa National Park by restoring soil health, accelerating a transition to resilience and sustainability and improving, as a result, the yields and living standards of local farming communities,” said Bram Govaerts, Director General at CIMMYT.

The new projects will also aim to promote agriculture conservation-based intensification practices that will increase yields sustainably and limit the expansion of the agricultural frontier in the buffer zone neighboring the protected area.

“If you bring two world class organizations together and create critical mass, it is possible to succeed and show that agriculture is not the enemy of biodiversity,” said the U.S. Special Envoy for Global Food Security, Cary Fowler.

Gregory C. Carr (left), Cary Fowler and Bram Govaerts sign a Memorandum of Understanding. (Photo: Ricardo Curiel/CIMMYT)

The 5-year Memorandum of Understanding was signed at the annual Borlaug Dialogue organized by the World Food Prize Foundation, which convenes international thought leaders, development specialists, researchers, farmers, practitioners and authorities from around the world to promote global food systems transformation and food security.

Under this year’s “Harnessing Change” theme, the Foundation presented the prestigious World Food Prize to Heidi KĂŒhn from the United States for her farmer-focused development model that revitalizes farmland, food security, livelihoods and resilience in war-torn regions around the world as a way for restoring peace and prosperity through agriculture.

About GRP

Gorongosa Restoration Project is a poverty alleviation, sustainable development and conservation non-profit organization used by Gorongosa National Park as a development engine for the Sofala region. GRP is a unique organization, with a mission to advance an integrated, multi-partner approach to conservation and people-centered development. While GRP actively protects Gorongosa National Park’s biodiversity and ecosystems, it also strives to unlock its economic potential for the community inhabitants of the Park’s Buffer Zone, former hunting and forestry concessions, Sofala Province and further afield. GRPs dual mandate of biodiversity conservation and human development is undergirded by the principle that the quest for conservation is a human-nature dynamic that must be addressed holistically. This axiom is increasingly supported by conservation science as well as by GRP’s 15 years of experience in the field.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

For more information, visit staging.cimmyt.org.

Press contact: Ricardo Curiel, Communications Manager to the Director General, CIMMYT, r.curiel@cgiar.org

Extension capacity-building leverages Nepal soil, seed and science for rice farming

Workshop participants. (Photo: CIMMYT)

Staff of the Nepal Seed and Fertilizer (NSAF) project conducted a three-day “training of trainers” workshop on integrated soil fertility management and related practices for commercial rice farming, for 50 agricultural technicians from 50 farm cooperatives in districts of mountainous midwestern Nepal and its lowland Terai Region.

Held in Nepalgunj, midwestern Nepal, the workshop focused on the “4Rs” for soil fertilization—right source, right rate, right time, and right place—along with other best farming and soil nutrient stewardship practices for rice-based farming systems.

“Subject matter was comprehensive, covering variety selection, transplanting, weeding, management of nursery beds, fertilizer, irrigation, controlling pests and diseases and proper handling of rice grain after harvest,” said Dyutiman Choudhary, NSAF project coordinator and scientist at CIMMYT. “Topics relating to the integrated management of soil fertility included judicious application of organic and inorganic fertilizer, composting and the cultivation of green manure crops such as mungbean and dhaincha, a leguminous shrub, were also included.”

Support to sustainably boost Nepal’s crop yields

With funding from the United States Agency for International Development (USAID), the NSAF project promotes the use of improved seeds and integrated soil fertility management technologies, along with effective extension, including the use of digital and information and communication technologies.

Agriculture provides livelihoods for two-thirds of Nepal’s predominantly rural population, largely at a subsistence-level. Rice is the nation’s staple food, but yields are relatively low, requiring annual imports worth some $300 million, to satisfy domestic demand.

Workshop participants attended sessions on digital agri-advisories using the Geokrishi and PlantSat platforms and received orientation regarding gender and social inclusion concerns and approaches—crucial in a nation where 70% of smallholder farmers are women and exclusion of specific social groups remains prevalent.

“Topics in that area included beneficiary selection, identifying training and farmer field day participants, and support for access to and selection of improved seed and small-scale farm equipment,” explained Choudhary. “The participants will now go back to their cooperatives and train farmers, local governments and agrovets on improved rice production.”

Nepal scientists and national research programs have partnered with CIMMYT for more than three decades to breed and spread improved varieties of maize and wheat and test and promote more productive, resource-conserving cropping systems, including rotations involving rice.

CIMMYT makes progress on some of the world’s top problems: 2022 Annual Report, “Harvesting Success”

CIMMYT targets some of the world’s most pressing problems: ending poverty, ensuring food for the future, mitigating climate change and improving the lives of farmers and consumers (especially women). CIMMYT is a CGIAR Research Center and has long been the world’s leading center for research on maize and wheat. This research capacity is being harnessed to achieve the crucial goals of climate resilience, and food and nutrition security.

Most of the world’s people depend on annual grain crops for their survival. Yet some of the world’s poorest men and women produce cereals. Annual grain farming has exacerbated climate change. The world’s great challenges of achieving climate resilience and nutrition security are being addressed by focusing CIMMYT’s research and development (R&D) on maize, and wheat, as well as on underutilized grain and legume crops.

Highlights from the 2022 Annual Report:

Annual cereal farming tends to release carbon into the atmosphere, while degrading the soil. Improving the soil takes years, and the high annual variation in weather demands long-term experiments. Field trials by CIMMYT over many years show that farmers can return carbon to the soil by using minimum tillage, rotating cereals with legumes, and by applying animal manure and strategic amounts of nitrogen fertilizer. As soil fertility improves, so do farmers’ yields.

Eleven million farmers in India alone produce maize, usually without irrigation, exposing families to climate-related disaster. Twenty new hybrids bred by CIMMYT out-perform commercial maize, even in drought years. One thousand tons of this heat-tolerant maize seed have now been distributed to farmers across South Asia.

Farmer Yangrong Pakhrin shells maize on his verandah in Gharcau, Kanchanpur, Nepal. (Photo: Peter Lowe/CIMMYT)

Some wheat is rich in zinc and iron, which prevent anemia, especially in children. Yet naturally-occurring phytic acid in wheat blocks the body’s absorption of these minerals. A technique developed by CIMMYT lowers the cost of assaying phytic acid, so plant breeders in developing countries can identify promising lines of wheat faster. CIMMYT is also helping to reduce food imports by learning how other crops, like cassava and sorghum, can be blended with wheat to make flours that consumers will accept.

Some wheat hotspots are warm, dry, and subject to plant diseases. CIMMYT collaborates with plant breeders worldwide through the International Wheat Improvement Network (IWIN) to test promising new wheat lines in these tough environments. As more places become warmer and drier with climate change, CIMMYT and allies are developing wheat varieties that will thrive there.

Harvesting more maize in the future will depend on higher yields, not on planting more land. In plant breeding programs in Africa, South Asia and Latin America, CIMMYT and partners are already developing maize varieties and hybrids that will be released in just a few years. A review of these efforts reveals that annual yield increases will be about twice the rate achieved from 1973 to 2012.

Sorghum, millets, pigeon pea, chickpea and groundnuts have been favorite food crops in Africa for centuries. They are already adapted to warm, dry climates. CIMMYT is now working with national research programs to ensure that new crop varieties have the traits that male and female farmers need. Seed systems are being organized to produce more of Africa’s preferred crops.

A group member harvests groundnut in Tanzania. (Photo: Susan Otieno/CIMMYT)

Researchers can only breed new crop varieties if someone saves the old ones from extinction. CIMMYT does that with its world-class collection of wheat and maize seed. In 2022, CIMMYT’s two separate wheat and maize germplasm banks were combined into one. Modern techniques, such as vacuum-sealed seed packets and QR codes, allow rapid response to requests for seed from plant breeders around the world.

CIMMYT is helping Nepali farmers to plant maize in the lowlands, in the spring, when most land lies fallow. In 2022, CIMMYT provided training and investment to 2,260 farmers (35% women), who earned, on average, an additional $367 in one year. The added income allowed these farmers to invest in health care and schooling for their children.

Mexican farmers are saving money, harvesting more and selling their grain more easily. Some 4,000 farmers are now selling on contract to food manufacturing companies. The farmers lower production costs by using CIMMYT innovations in irrigation, fertilizer application and ecological pest control. Yields increase, the soil improves, and farmers find a ready market for their harvest.

The stories we have highlighted in this article are just some of the ones included in the Annual Report. See the full text of all the stories in “Harvesting Success” to learn how CIMMYT scientists are doing some of the most important research, for some of the world’s best causes.

India transforms wheat for the world

India can applaud a hallmark in national food production: in 2023, the harvest of wheat—India’s second most important food crop—will surpass 110 million tons for the first time.

This maintains India as the world’s number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolution—the modernization of India’s agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.

“Newer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,” said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. “More than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Center’s international yield trials and nurseries or developed locally using CIMMYT parents.”

Wheat grain yield in Indian farmers’ fields rose yearly by more than 1.8 percent—some 54 kilograms per hectare—in the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.

“The emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,” Singh explained. “This both protected their crops and delivered breeding gains for yield and climate resilience.”

CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.

Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.

Farm innovations for changing climates and resource scarcities

Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.

New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.

Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.

Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)

“This ‘zero tillage’ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,” said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). “Also, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.”

Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.

Science and policies ensure future wheat harvests and better nutrition

Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. “Added to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.”

To safeguard India’s wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladesh’s wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.

“More than a dozen wheat blast resistant varieties have been deployed in eastern India to block the disease’s entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,” said Pawan Singh, head of wheat pathology at CIMMYT.

Building on wheat’s use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.

“At least 10 such ‘biofortified’ wheat varieties have been released and are grown on over 2 million hectares in India,” said Velu Govindan, CIMMYT breeder who leads the Center’s wheat biofortification research. “It is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.”

A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.

Celebrating joint achievements and committing for continued success

The April-June 2018 edition of the “ICAR Reporter” newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research “
one of the longest and most productive in the world
” and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.

Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts,  Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of India’s Ministry of Agriculture and Farmers Welfare and Director General of ICAR, “reaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.”

“The ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,” said Gyanendra Singh, director, ICAR-IIWBR. “This in turn advances global peace and prosperity.”

India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)

According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. “The way forward to the next milestone — say, harvesting 125 million tons of wheat from the same or less land area — is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,” he said.

Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workers’ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.

Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UK’s Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).

Transformative research provides pathways for including gender and socially marginalized groups

Intention, collaboration and commitment are critical to bridging the research and practice gap. Gender development practitioners and researchers from CGIAR centers, universities, national agricultural research and extension systems (NARES), civil society, and donor representatives this week shared insights from their research and work at the gender conference in New Delhi, India.

The discussion and exchange promises to create collaborations and opportunities devoted to improving the conditions and agency of women, youth and Indigenous communities in the Global South. “Transformative research can lead to meaningful impact,” said Angela Meentzen, senior gender researcher at CIMMYT. “We have been looking forward to this conference because coming together as researchers, scientists and development practitioners, we can discuss and share insights from each other’s practices and experiences from the field.”

Angela Meentzen (third from left) with CIMMYT colleagues from Asia and Africa at the CGIAR Gender 2023 conference in New Delhi. (Photo: Nima Chodon/CIMMYT)

Leading researchers and scientists from CIMMYT Asia and Africa presented their research and enriched the gender discussions at the conference. Meentzen said that CIMMYT is proud to support gender research that contributes meaningfully to transformative change and impact.

Below are highlights of four research poster presentations by our researchers (of the six presented by CIMMYT) at the conference:

Increased participation in agricultural processes does not mean more decision-making power for women farmers

Scientist Vijayalaxmi Khed examined how women manage excess workload (working inside and outside the house), a clear trade-off between productive and leisure time without change in domestic responsibilities. Due to domestic workload, she found that women’s time away from farms does not translate into leisure. Another important finding was that women with more agency had less time for leisure, unlike for men.

In her poster presentation, she concluded that rural women’s nexus of time poverty and decision-making has “clear implications for the development and diffusion of laborsaving technologies in agriculture.”

Working on the same study with Khed, Vijesh Krishna explored the relationship between women’s involvement in agricultural activities and decision-making. His presentation, ‘Farm managers or unpaid laborers?’, from the study covering 347 wheat-farming households across two years, concludes that “despite playing a crucial role in wheat farming in central India, most women lacked the ability to influence decisions.”

Gender-intentional maize breeding for better adoption and productivity in sub-Saharan Africa

Michael Euler, agriculture and resource economist, in his poster presentation explained how an on-farm trial to improve gender-intentional breeding and varietal adoption in maize was designed by CIMMYT breeders and researchers.

The study hypothesized that gender dynamics in household labor allocation and decision-making in maize systems influence trait preferences and farmers’ adoption of varieties. So, researchers conducted on-farm trials and household surveys with individual women and men household members to capture differences in their trait preferences in maize cultivation—production systems, seed demand and seed access—with 800 smallholder farmers in Zimbabwe and Kenya.

Euler emphasized the influence of socioeconomic and agroecological factors, including biotic–abiotic stress, in the household decisions on maize varietal adoption.

He concluded that the study results will help “guide the product development of regional maize breeding programs and strengthen communities’ adaptation to the changing environmental conditions for maize cultivation.”

Adoption of a weeding technology may lead to labor displacement of marginalized women laborers

Presenting a poster for the same session as Euler, Maxwell Mkondiwa—in a study coauthored with colleagues Khed and Krishna—highlighted how rapid diffusion of a laborsaving technology like herbicides could exclude the marginalized further. The study occurred in India’s state of Bihar, looking at nonfarming rural poor, primarily women, from socially marginalized groups.

From data on chemical weeding, the study analyzed the technology’s impact on inequality— highlighting how marginalized women laborers who work on manual weeding are then replaced by men who apply herbicides.

He stressed that not enough research is devoted to understanding whether farmer adoption of laborsaving technologies worsens economic inequalities or reinstates labor into better tasks. “We hope the evidence we generated will help researchers and policymakers develop relevant actions toward more inclusive innovations, and support laborers with new skills for the transitions,” said Mkondiwa.

Maxwell Mkondiwa presents his poster under the session Gender Dynamics in Agri-Food System Innovation at the CGIAR Gender 2023 conference. (Photo: M Mkondiwa/CIMMYT)

Women exhibit limited technical knowledge and experience social benefits differently in male-headed households of CASI technology adoption

Emma Karki, in her poster, explained that there is limited knowledge of the impact of technology adoption on women in a male-headed household in South Asia—with decision powers generally resting with male household members. The research tried to understand the gendered differences in the evaluation of technology adoption in male-headed households using conservation agriculture-based sustainable intensification (CASI) technology as a case study.

The study focused on identifying the commonalities and differences in the experiences and evaluation of CASI technology. Results indicated that “despite technology adoption, women had limited mechanistic understanding compared to men, with similar limitations on women’s time use and capacity development,” said Karki.

For future CASI promotion, Karki concluded: “Reducing information gaps and incorporating technological preferences of women needs prioritizing, including creating opportunities for them to access knowledge and engage both men and women in critical discussions surrounding gender norms.”

Similarly, Moti Jaleta’s research presentation highlighted the challenges of mechanization adoption for smallholder farmers in Ethiopia, primarily women. “Intentional research, whether in gender or social development, helps identify problems and opportunities for change,” endorsed Jaleta.

Meaningful research helps achieve gender and social inclusion goals

The ‘From Research to Impact: CGIAR GENDER Impact Platform and ICAR Conference 2023’, between October 9-12, 2023, in New Delhi, gathered researchers from 68 countries. In her inaugural address at the conference’s opening, the President of India Smt. Draupadi Murmu affirmed, “For ecologically sustainable, ethically desirable, economically affordable and socially justifiable production, we need research which can enable conditions to reach these goals.”

At the end of the four-day conference—with 60 research presentations and six plenary sessions—the organizers and participants reflected on their resolve ‘From Research To Impact,’ and the promise to recognize and collectively address the gender and social inequities in agrifood systems development.

In sub-Saharan Africa, mineral fertilization and agroecology are not incompatible

Are agroecological approaches, based for example on the use of legumes and manure, enough by themselves to ensure a long-term increase in annual crop yields in sub-Saharan Africa (SSA), without using more mineral fertilizer?

The answer is no, according to a team of agronomists who have published an in-depth analysis of 150 scientific articles on annual crops (maize, sorghum, millet, rice, cassava, etc.) and tropical legumes, both annual grain legumes (cowpea, groundnut) and legume trees (acacia, sesbania) in tropical environments.

These publications collate 50 years of knowledge on nutrient balances in sub-Saharan Africa, biological nitrogen fixation by tropical legumes, manure use in smallholder farming systems and the environmental impact of mineral fertilizer.

“When we look at comparable climate conditions and physical soil constraints, yields of maize – the main source of calories for people – in sub-Saharan Africa are three to four times lower than elsewhere in the world. This is largely due to the fact that mineral fertilizer use (nitrogen, potassium) is on average four times lower there”, says Gatien Falconnier, a researcher at CIRAD based in Zimbabwe and lead author of the article. “On average, 13 kg of nitrogen are used per hectare and per year in sub-Saharan Africa, for all crops, bearing in mind that the poorest farmers have no access to nitrogen fertilizers and therefore do not use them. It is mainly agri-business and vegetable farmers that have access to fertilizers”, adds François Affholder, an agronomist at CIRAD based in Mozambique and co-author of the article.

Maize and cowpea intercropping in the Maravire field. (Photo: CIMMYT)

“Our objective is not to produce like Europe or North America, but to produce more and more regularly according to the seasons and the years, and thus to increase the economic sustainability of our farming systems. To do so, we must ensure a minimum level of nutrients for crops, which require essential mineral elements for efficient photosynthesis, and therefore growth. Soils are typically lacking in mineral elements in sub-Saharan Africa, and the largely insufficient organic inputs lead to nutrient deficiencies in crops. This is the main limiting factor for crop yields, excluding drought situations”, says Pauline Chivenge of the African Plant Nutrition Institute (APNI). “The work by Christian Pieri showed as early as 1989 that it is possible to restore high levels of fertility to African soils through a balanced approach to organic and mineral nutrient inputs”, says François Affholder.

The article highlights five reasons why more mineral fertilizer is needed in sub-Saharan Africa:

  1. Farming systems are characterized by very low mineral fertilizer use, widespread mixed crop-livestock systems, and significant crop diversity, including legumes. Inputs of mineral elements to crops by farmers are insufficient, resulting in a widespread decline in soil fertility due to soil nutrient mining.
  2. The nitrogen requirements of crops cannot be met solely through biological nitrogen fixation by legumes and manure recycling. Legumes can only fix atmospheric nitrogen if symbiosis with soil bacteria functions correctly, which requires absorption of different mineral elements by the plant. Ken Giller of Wageningen University highlights that the ability of legumes to capture nitrogen from the air through their symbiosis with rhizobium bacteria is a fantastic opportunity for smallholder farmers, “but the amounts on nitrogen fixed are very small unless other nutrients such as phosphorus are supplied through fertilizers”.
  3. Phosphorus and potassium are often the main limiting factors of the functioning of plants and living organisms, including symbiotic bacteria: if there is not enough phosphorus and potassium in soils, then there is no nitrogen fixation. These nutrient elements, phosphorus, potassium and micro-elements, need to be provided by fertilizers, since they cannot be provided by legumes, which draw these elements directly from the soil. In the case of manure, this is simply a transfer from grazing areas to cultivated areas, which gradually reduces fertility in grazing areas.
  4. If used appropriately, mineral fertilizers have little impact on the environment. The greenhouse gas emissions linked to nitrogen fertilizer use can be controlled through a balanced and efficient application. In addition, mineral fertilizers can be produced more efficiently in order to reduce the impact of their production on greenhouse gas emissions, keeping in mind that this impact is low, at around 1% of total anthropogenic emissions.
  5. Further reducing mineral fertilizer use in SSA would hamper productivity gains and would contribute directly to increasing food insecurity and indirectly to agricultural expansion and deforestation. Producing for a population that will double by 2050 is likely to require the use of more agricultural land. An extensive strategy thus harms biodiversity and contributes to increasing greenhouse gas emissions, contrary to an agroecological intensification strategy combined with efficient and moderate mineral fertilizer use.

“If we take account of biophysical production factors, such as climate and soil, and shortages of land and agricultural workers, it will be impossible to reach a satisfactory production level by fertilizing soils only with manure and using legumes”, says Leonard Rusinamhodzi, an agricultural researcher at the Ghana International Institute of Tropical Agriculture.

However, “agroecological principles linked directly to improving soil fertility, such as recycling of mineral and organic elements, crop efficiency and diversity, with for example agroforestry practices and cereal-legume intercropping, remain essential to improve soil health. Soil fertility is based on its organic matter content, provided by plant growth that determines the biomass that is returned to the soil in the form of roots and plant residues. Efficient mineral fertilizer use starts a virtuous circle. These nutrients are crucial for the sustainability of agricultural productivity”, says Gatien Falconnier.

The researchers therefore argue for a nuanced position that recognizes the need to increase mineral fertilizer use in sub-Saharan Africa, in a moderate manner based on efficient practices, in conjunction with the use of agroecological practices and appropriate policy support. This balanced approach is aimed at ensuring long-term food security while preserving ecosystems and preventing soil degradation.

Référence
Falconnier, G. N., Cardinael, R., Corbeels, M., Baudron, F., Chivenge, P., Couëdel, A., Ripoche, A., Affholder, F., Naudin, K., Benaillon, E., Rusinamhodzi, L., Leroux, L., Vanlauwe, B., & Giller, K. E. (2023).

The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook on Agriculture, 0(0). https://doi.org/10.1177/00307270231199795

*CIRAD, CIMMYT, International Institute of Tropical Agriculture (IITA), Wageningen University and the African Plant Nutrition Institute (APNI)

Contact: presse@cirad.fr

Scientists: 

Gatien Falconnier
gatien.falconnier@cirad.fr

Pauline Chivenge
P.CHIVENGE@apni.net

Leonard Rusinamhodzi
L.Rusinamhodzi@cgiar.org

Exploring alternative solutions: the case for synthetic mulch in a changing world

Food security remains elusive for most smallholder farmers reliant on rainfed crop production, given the erratic rainfall patterns induced by climate change in Southern Africa. Among others, conservation agriculture (CA) is a concept often considered to be effective to adapt to these erratic rainfall patterns, enabling farmers to cope better with the prolonged dry spells that are characteristic of the semi-arid regions in Zimbabwe.

Conservation agriculture essentially involves three key pillars, namely, reduced soil disturbance, the use of crop rotations or intercrop associations, and the provision of permanent soil cover. The soil-cover component often requires the use of previous crop residues or other organic materials as a surface mulch. However, local farmers consider this task to be the most laborious aspect of implementing CA, which poses a significant challenge to its widespread uptake.

Collecting insights on influence of synthetic mulch. (Photo: CIMMYT)

Traditionally, farmers are advised to use organic mulch, such as maize residues, for soil cover. However, in most communal areas, there is a growing scarcity of organic mulches as they are predominantly used as livestock feed in mixed crop-livestock farming systems. Ironically, semi-arid regions that benefit from the use of crop residues as soil cover are also regions where the residues are the scarcest due to competing uses as livestock feed or as firewood. These competing interests pose a dilemma, as it is essential to cover the soil while also necessary to feed the animals. In neighboring countries like Malawi, maize residues are also used as fuel for firewood, further increasing the demand. It is clearly important, therefore, to develop alternative solutions to address this pressing issue.

“Since I embarked on my journey in conservation agriculture back in 1998, the matter of residues has been a topic of discussion. It is imperative that we walk the talk and develop practical solutions to meet the needs of farmers who rely on residues to feed their animals. One potential solution we are exploring is the use of synthetic mulches to cover the soil. By employing this method, we can cover the soil, apply fertilizer, and hopefully witness a positive impact. We certainly must develop synthetic materials that can be used sustainably as surface mulches in the semi-arid environments where organics are most scarce yet most needed,” stated Isaiah Nyagumbo, regional cropping systems agronomist.

To test such innovations, some water-conservation experiments were established in Buhera and Mutoko, Zimbabwe, during the last two seasons, and the results have been encouraging.

“I am grateful to work with the CIMMYT team on these water conservation trials, and I hope they continue. Before the trials, we were using organic mulch, but after using the synthetic approach and comparing it with organic mulches and none at all, we are seeing so many positive results. But there are challenges we can’t escape, including affordability. But I have seen higher yield returns this year as I harvested close to 15 by 50kgs of maize,” said Nyawasha, a farmer from Mutoko, Zimbabwe, ward 16.

Further detailed studies to understand these systems have also been established in the current dry season at the CIMMYT campus in Harare, to test the effectiveness of these synthetic mulches under conditions of severe moisture stress. The different treatments include clear synthetic mulch, black synthetic mulch, organic mulch and no mulch. So far, for the maize crop now at flowering stage, the growth and yield are strikingly better in plots under the synthetic mulches compared with the organic and no mulch plots. This clearly shows the importance of finding viable alternatives. The crop with synthetic mulches also developed much faster, all the way from crop emergence.

Exploring the tied-ridging system

In these trials, mulching treatments are being tested in conventionally tilled plots, CA basins (pfumvudza basins) and under the tied-ridging system. Tied ridging has been developed in Zimbabwe for use by smallholder farmers since the 1980s and is well known for its effectiveness in reducing sheet erosion and water run-off. This system employs ridges 15–20 cm high, with crossties in the furrows at 1–2 m intervals that trap rainwater and prevent runoff and soil erosion. However, in a typical rainfed system, poor germination challenges can arise when planting on top of these ridges due to excessive drying of moisture from the raised ridges. Furthermore, during prolonged dry spells, the exposed ridges tend to cause crops to wilt more than flat-planted conventional crops. To address these issues, scientists at CIMMYT in Zimbabwe are also exploring innovative ways to improve the tied-ridging system through ways that minimize water loss through direct soil evaporation.

“This has been one of the shortcomings of the tied-ridging system, and we need ways to overcome this excessive moisture evaporation. Once the water has gone into the soil, it should only leave through plant uptake and not be wasted through direct soil evaporation,” said Nyagumbo.

Integrating synthetic mulch into the tied-ridge system. (Photo: CIMMYT)

One approach being considered is incorporating mulch into the system to reduce evaporation and ensure that captured water is retained. The results are evident in the vibrant greenery of the plants with mulch compared with those without. Observing the number of plants with tassels and silk, it is clear that the plots with clear synthetic material have faster growth and reach maturity sooner compared with the plots with black synthetic mulch.

“My outlook on the use of synthetic mulch on ridges is that they are much more effective, as it makes the soil very loose for good aeration to the plant and encourages high growth rate. I noticed that plants germinated in three days and the little water provided will directly benefit the plant without escaping. I am encouraged to continue doing this tied ridge approach using synthetic material,” said Nyekete, a farmer in Buhera, Zimbabwe, ward 7.

While exploring various options, it has also been important to prioritize and focus on one aspect at a time. The initial focus has been on maize residue, as it is a valuable resource for both soil cover and livestock feed. However, the scarcity of maize residue poses a significant challenge for many farmers, especially in regions like Buhera, Mberengwa and Shurugwi, where animals consume all available resources. Placing maize residues in open fields is not a very viable solution, as freely roaming livestock will just consume it. Fencing or creating structures to protect the residues from livestock also requires substantial effort and resources, thereby making this mulching a daunting task for farmers.

Food for thought

While the challenges faced in providing mulch for conservation agriculture are multifaceted, there is a growing need to develop innovative solutions that address the scarcity of organic mulch and explore alternative methods such as synthetic coverings. By continuously adapting and refining our practices, we can ensure the sustainability of agriculture in this region and improve the livelihoods of farmers.

Climate Adaptation Atlas will support evidence-based solutions in Sri Lanka

We are all aware the immense challenges countries face due to climate change, particularly its impacts on vital sectors like agriculture, forestry and livestock. The agriculture industry is profoundly affected by unpredictable weather patterns and frequent incidences of extreme events such as floods, droughts and landslides. Consequently, finding effective solutions to address these issues becomes of paramount importance. Climate-resilient agriculture necessitates the adoption of sustainable crop and land management technologies.

(Photo: Karen Conniff/IWMI)

In the context of South Asia, Sri Lanka stands out as one of the most severely affected countries by the impacts of climate change. The nation contends with a multitude of hazards, ranging from floods and landslides in the western and southwestern regions, drought and pest outbreaks in the northern region and coastal erosion along the coastal belts. These examples underscore the growing complexity and challenges associated with managing climate risks and patterns, especially when multiple hazards occur simultaneously.

In response, Sri Lanka has implemented climate-smart agricultural interventions, including the development and introduction of stress-tolerant crop varieties, rainwater harvesting, the introduction of energy-efficient irrigation systems, implementation of soil and water conservation programs and crop diversification. However, the agricultural sector still faces formidable challenges. There is a lack of up-to-date information on climate change and its impacts, a fragmented institutional setup, overlapping mandates and limited capacity for information sharing. To address these issues, we require zone-based planning and institutional collaboration. Integrating spatial considerations into rehabilitation and development interventions is the main consensus among stakeholders. All ongoing and planned programs need vulnerability information, and there is a consensus among stakeholders on the need to integrate spatial considerations into rehabilitation and development interventions.

This is where the Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project becomes an invaluable asset in expediting Sri Lanka’s journey towards climate-smart agriculture. Recent evidence highlights the need for a comprehensive assessment of location-specific climate actions to bridge knowledge gaps within the country. Through the Atlas, we will quantify localized climatic risks today and, in the future, assess their likely impacts on agriculture and identify key adaptation options to mitigate these risks. This knowledge will strengthen Sri Lanka’s food security and reduce its vulnerability to climate-related hazards. By complementing traditional methods of risk characterization with novel approaches like intensity and frequency analysis of hazards and historical crop yields, our efforts will gain added efficacy.

ACASA, therefore, offers us a unique opportunity to foster collaboration, share knowledge and develop evidence-based innovative solutions to confront the challenges posed by climate change in Sri Lanka. It serves as a platform to connect hazards, practices, tools and adaptation options. By intertwining various aspects of climate change and gaining a deeper understanding of its spatial and temporal dimensions through the Atlas, Sri Lanka is steadfast in its commitment to building resilience and creating a sustainable future for generations to come.

Piece by P. Malathy, DG-Agriculture, Sri Lanka

A new Climate Adaptation Atlas to safeguard South Asian agriculture

(Photo: Vinaynath Reddy/CCAFS)

Climate change is no longer a distant threat but a reality that profoundly affects our lives. Among the most vulnerable regions to climate change, South Asia stands out because it is home to over 100 million farmers and produces over 285 million metric tons of milled rice and 128 million metric tons of wheat (FAO 2020-21). Among 193 countries worldwide, South Asian countries rank in the top quarter for climate risk and are experiencing rising meteorological and climate-related disasters. These pose significant challenges to farmers and the 216 million people in South Asia living in extreme poverty (World Bank, 2018), further jeopardizing their food security and livelihoods.

Considering this, with support from the Bill & Melinda Gates Foundation, the Borlaug Institute for South Asia (BISA) is working with national agriculture research systems in South Asia to develop the Atlas of Climate Adaptation in South Asian Agriculture (ACASA).

The Atlas brings together spatially explicit South Asian data on the nature and evolving patterns of climate hazards. It will assess climate risks using gridded, village-scale analyses and through historical crop yield data and satellite signatures. The Atlas will consider the exposure of smallholder populations, farms and crop and livestock enterprises. It will assess the vulnerability or adaptive capacity of those populations and impacts on the region’s critical commodities. Importantly, the Atlas will provide a unique set of on-line tools and a portfolio of adaptation options to underpin better decisions regarding investments in agricultural technologies, climate information services, and policies. The project will also focus on building the capacity of concerned stakeholders such as multi-lateral agencies, government bodies, NGOs, and the private sector in the use of Atlas assets, through training materials, tutorials, and periodic workshops. This will enable informed investments and policy decisions to benefit 100 million farmers in South Asian region. For wider use, the Atlas will be embedded online as an open-source, web-enabled and interactive and dynamic tool for easy access by all concerned stakeholders.

Drawing on the expertise and experience of South Asian nations such as Bangladesh, India, Nepal, and Sri Lanka, which have suffered from extreme heat, prolonged droughts, and severe flooding in key crop-producing areas, ACASA represents an example of collaboration and knowledge exchange to reduce farmers’ risks and offer them ways to adapt.

BISA and CIMMYT are pleased to anchor this remarkable collaboration that leverages multi-disciplinary expertise and perspectives to address the complex challenges posed by climate change, linking the detailed characterization of climatic risks with mitigation technologies and policies to meet the needs of diverse stakeholders. The proposed work will contribute actively to the CIMMYT2030 Strategy where one of the 5 impact areas is centered around Climate adaptation and Mitigation. The entire strategy designs a path toward a Food and Nutrition Secure world through science and innovation in the midst of a global climate crisis.

Established in 2011 by CIMMYT and the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) is a non-profit international organization that applies advanced technologies to improve food systems and food security, nutrition, livelihoods, and the environment in South Asia, home to more than 300 million undernourished people.