Skip to main content

Pillar: Discovery

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

CIMMYT scientists deliver training to improve agriculture in Uzbekistan

Scientists from the Research Institute of Plant Genetic Resources in Uzbekistan (RIPGR) attended training on gene bank management and genetic resources, coordinated by CIMMYT-Türkiye on 13-20 April 2024. Hosted at the Turkish Department of Agricultural Economics and Project Management (TAGEM), the training is supported by the World Bank Group, which is helping Uzbekistan to modernize the country’s agriculture. With one of the highest levels of wheat consumption in Central Asia, the modernization project aims to increase Uzbekistan’s wheat yield and meet demand for the crop.

The course included lectures on status and activity of the Turkish Seed Germplasm Bank (TSGB), policy instruments and international perspectives on plant genetic resources, herbarium techniques, biotechnology studies, and genetic resources. Uzbek scientists also became acquainted with scientific laboratories, visiting the field station in İkizce Gölbaşı and learned about the breeding, pathology, and agronomy activities at the station as well as the collaboration activities between CGIAR Research Centers and TAGEM.

Country-wide expertise

In addition to sessions at CIMMYT’s office in Türkiye, participants also visited the National Gene Bank in Ankara and the National Gene Bank of Izmir.

At the latter location, experts delivered sessions on a range of topics, such as the Plant Diversity and Genetic Resources Program of Türkiye; in vitro and cryopreservation techniques; the conservation, data recording, and documentation of plant genetic resources; conservation and utilization of vegetable genetic resources; conservation studies on mushroom genetic resources; studies on wheat genetic resources and wheat breeding at the international winter wheat breeding program; regional collaboration to combat wheat rust disease in Central and West Asia and North Africa (CWANA); and international winter wheat breeding strategies.

In addition to the seminar sessions, the participants also visited several locations to familiarize themselves with scientific processes in field and laboratory conditions. They visited the field gene banks, guided by Fatih Çağir, who provided brief information about the fruit genetic resources activities of Türkiye. They also visited the plant collection activities and herbarium techniques laboratory, the National Gene Bank, Herbarium, Fungarium & Seed Physiology Laboratory of the Plant Genetics Resources Department & Plant Tissue Center, and the Regional Cereal Rust Research Center.

The importance of the training course for Uzbek scientists is to study the system of rational use, conservation, and management of plant genetic resources of Türkiye and to introduce new innovative knowledge in Uzbekistan. It also consists of discussing aspects related to bilateral cooperation and sustainable development in the field of plant genetic resources as well gene bank management.

The delegation from Uzbekistan, on behalf of the Ministry of Agriculture of the Republic of Uzbekistan, and the director of the Research Institute of Plant Genetic Resources, Zafarjon Mashrapovich Ziyaev, expressed their deep gratitude to the organizers and departments for this training course.

Transforming agriculture together: insights from the Ukama Ustawi Share Fair

The Zimbabwe Team of the Agroecology Initiative participated in the Share Fair event of the CGIAR initiative Ukama Ustawi (UU), which was held in Masvingo, Zimbabwe, and brought together farmers, the private sector, and researchers from seven countries (Zimbabwe, South Africa, Zambia, Mozambique, Malawi, Kenya, and Ethiopia). The overarching goal for our participation was twofold: Glean insights from the UU initiative’s experiences and practices and, where possible, to adopt and adapt approaches and technologies relevant to the Agroecology Initiative. Equally significant was the aim to share our learnings and explore potential areas of collaboration. From the UU initiative perspective, the Share Fair engagement sought greater integration and knowledge exchange across its work packages, and countries where UU is being implemented, and other CGIAR initiatives. Farmers were at the center of the Share Fair, sharing and learning from each other, together with the experts.

The event aimed to foster collaboration and innovation in addressing key issues related to agriculture and sustainability in the region.

Insights from UU Share Fair activities

The Share Fair showcased an array of innovative technologies poised to transform agricultural practices in the region, among these new solar-powered borehole irrigation, chameleon soil moisture sensors for irrigation management, and conservation agriculture practices that included crop intercropping and rotation, cover cropping (mulching), and minimum tillage. Notably, mechanization options tailored for conservation agriculture, such as 2-wheel tractors and basin diggers, were demonstrated, with particular emphasis on gender-inclusive approaches for smallholder farmers. UU initiative prioritizes integrated crop and livestock systems, which are vital for small-scale farmers in terms of both dietary needs and income generation.

UU service providers and CIMMYT staff demonstrating the basin digger.
LERSHA, in collaboration with IWMI, demonstrates the chameleon soil moisture sensor.

We shared insights on the benefits of the adoption of mother-baby trials. Setting up such trials can help researchers and stakeholders identify potential risks, challenges, and limitations of the innovation without risking large-scale failure or negative impacts on the environment or communities. This helps in making informed decisions about whether or not to adopt an innovation.

In addition to technological innovations, we discussed various agribusiness tools aimed at supporting and empowering smallholder farmers. Different companies presented their agribusinesses and how they complement farming practices related to a spectrum of services, ranging from agroclimatic advice and improved access to financial services, mechanization, and digital technologies. Central to these endeavors was the objective of fostering business growth, promoting diversification, and nurturing stronger value chains within the agricultural sector.

Both initiatives (Agroecology and UU) acknowledge that farming enterprises must be matched with strong business models to guarantee long-term viability, and recognize the critical nexus between production and markets, underlining the importance of equipping farmers with financial literacy skills and encouraging diligent record-keeping practices.

Farmers participating in the Share Fair were trained on the use of the business model canvas to manage their businesses. They were taken through a practical session of aligning their farming enterprises with the business model canvas. The importance of ensuring the balance of all elements of the business model canvas was stressed. Farmers were encouraged to adopt a market-based approach to farming as a business. Farmers were urged to develop a thorough grasp of market dynamics in addition to skillful financial management techniques, emphasizing a market-based approach. The activities of the session, although summarized, were similar to the training that the Agroecology Initiative team has been carrying out in the identified business models of sorghum contract farming and the SASSO brooding program.

Blessing from CIMMYT at one of UU’s mother trial plots explaining the importance and benefits of crop diversification, rotation, and mulching.

Conclusion: Similar approaches, same objectives

The Agroecology Initiative team of Zimbabwe and the UU Initiative share a common goal of strengthening the resilience of the food systems and improving farmer livelihoods through sustainable agriculture methods. Through the development of synergies and the utilization of complementary strengths, they are in a position to jointly map out a course toward a more fair and sustainable agricultural landscape that promises prosperity for future generations. By facilitating cross-learning initiatives and leveraging indigenous knowledge systems, both initiatives can empower farmers with the tools and resources necessary to combat agricultural pests and diseases sustainably. The shared commitment to agroecological principles underscores the potential for collaboration in building resilient production systems. By facilitating cross-learning among farmers, who often have limited resources, the initiatives can empower them to leverage local knowledge and resources to solve their problems.

One major difference between the initiatives is that the UU places farmers at the center of its intervention and stakeholders as enablers, while the Agroecology Initiative emphasizes full partnerships among researchers and food system actors in addressing challenges related to local food systems and the co-development of relevant innovations that can strengthen and support resilience.

A panel of stakeholders and farmers in agribusiness explaining their business models.

Building on UU’s successful interactions with agribusinesses like LERSHA and Farm Africa, which provide mechanization, inputs, and financial services and assist farmers in developing strong and sustainable business models, we can gain from establishing similar alliances to support sustainable business models in the agricultural sector. Given the severe drought in 2023/24, farmers engaged with the SASSO chicken business model will face challenges in obtaining feed for their livestock and poultry. Exploring alternative feed sources, such as the black soldier fly, could be a potential solution. Collaborating with Insectary (a company that was present at the fair) and other local programs focused on alternative feed options could provide valuable insights and support.

The UU initiative has not actively engaged with youth in their study, while we have developed tools to understand youth participation in agriculture. There is an opportunity for the two initiatives to collaborate on a study targeting youth engagement, combining their expertise and resources to gain a deeper understanding of this issue of demographic importance and develop strategies to involve them in sustainable agriculture practices.

The original piece was written by Craig E. Murazhi, Dorcas Matangi, and Vimbayi G. P. Chimonyo and published by CGIAR’s Initiative on Agroecology. 

Climate-proofing India’s daily bread: The race for resilient wheat

CIMMYT collaborates with Indian research institutions like IIWBR to develop climate-resilient wheat varieties, supplying essential genetic materials and leveraging global research initiatives, advanced breeding techniques, and technological tools. This partnership accelerates the creation and distribution of resilient crops, supporting local scientists and smallholder farmers through training, capacity-building programs, and knowledge sharing to ensure sustainable agriculture and enhanced food security in the face of climate change.

Read the full story.

CIMMYT scientist recognized with research leader award

Distinguished Scientist and Head of Wheat Physiology at CIMMYT, Matthew Reynolds, received the Research.com Plant Science and Agronomy in Mexico Leader Award 2024 for placing 53rd in the world and 1st in Mexico in the Research.com ranking of Best Plant Science and Agronomy Scientists 2023.

“Being recognized with this award highlights the far-reaching influence of the wheat science taking place in Mexico and its impact on the development of agronomy around the world,” said Reynolds. “Sharing outputs as international public goods with scientists globally has positive benefits for smallholder farmers and their communities. Widening genetic diversity for key traits helps to improve yield and climate resilience -including resistance to biotic and abiotic stresses, providing reliable harvests and food security.”

Matthew Reynolds

This marks the third consecutive year that Reynolds has received the award, having held the top position in plant science and agronomy in Mexico since 2022. His most cited papers include ‘Physiological breeding’ (2016), ‘Raising Yield Potential in Wheat (2009)’, and Drought-adaptive traits derived from wheat wild relatives and landraces (2007).

Specializing in technologies to increase the productivity of wheat cropping systems around the world, Reynolds has helped to create a new generation of advanced lines at CIMMYT through physiological breeding approaches that widen the genepool, increasing understanding of yield potential and adapting wheat to drought and heat, developing high throughput phenotyping methodologies, and training other researchers.

Reynolds developed and led the Heat and Drought Wheat Improvement Consortium (https://hedwic.org/) and initiated a global academic network that led to the International Wheat Yield Partnership (https://iwyp.org/), where he champions collaboration that brings together plant science expertise from around the globe to boost yield and climate resilience.

Other CIMMYT scientists in the top 100 world rankings include Distinguished Scientist and former Head of Global Bread Wheat Improvement Ravi P. Singh in 57th place globally and 2nd in Mexico, and Distinguished Scientist in the Biometrics and Statistics Unit, José Crossa, who ranked 59th globally and 3rd in Mexico.

This is the third edition of Research.com positioning scholars based on their research output in plant science and agronomy. Rankings are allocated based on a detailed study of 166,880 scientists in bibliometric data sources, with up to 10,700 people analyzed for this field of work.

New heat-tolerant wheat varieties prove fruitful for Ethiopia’s irrigated lowlands

Ethiopia is the largest wheat producer in Africa, accounting for around 65% of the total wheat production in sub-Saharan Africa. Despite the old tradition of rainfed wheat cultivation in the highlands, irrigated production in the dry, hot lowlands is a recent practice in the country.

In the irrigated lowlands of Afar and Oromia, situated along the Awash River Basin, CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) have been supporting small scale farming households to improve yields since 2021. The Adaptation, Demonstration and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project supports research centers to identify new technologies suitable for target planting areas through adaptation and development, which are then released to farmers. Funded by Germany’s Federal Ministry for Economic Development (BMZ) and Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GMBH, EIAR leads on implementation while CIMMYT provides technical support and coordination.

In the Afar and Oromia regions of Ethiopia, farmers observe wheat trials of the new varieties released in partnership with CIMMYT and EIAR. (Photo: Ayele Badebo)

So far, several bread and durum wheat varieties and agronomic practices have been recommended for target areas through adaptation and demonstration. The seeds of adapted varieties have been multiplied and distributed to small scale farmers in a cluster approach on seed loan basis.

Cross-continent collaboration

The Werer Agricultural Research Center (WRC) run by EIAR has released two wheat varieties: one bread wheat line (EBW192905) and one durum wheat line (423613), both suitable for agroecology between 300-1700 meters above sea level.

Both varieties were selected from the CIMMYT wheat breeding program at its headquarters in Mexico. The new bread wheat variety exceeded the standard checks by 17% (Gaámabo and Kingbird) and 28% (Mangudo and Werer). 

The lines were trialed through multi-location testing in Afar and Oromia, with both lines displaying tolerance to biotic and abiotic stresses. Accelerated seed multiplication of these varieties is in progress using main and off seasons.

The ADAPT-Wheat project, working in the region since 2021, has released two new varieties for use in the Ethiopian lowlands. (Photo: Ayele Badebo)

“These new varieties will diversify the number of adapted wheat varieties in the lowlands and increase yields under irrigation” said Geremew Awas, a CIMMYT research officer working for the ADAPT project in Ethiopia. Hailu Mengistu, EIAR wheat breeder at WRC, also indicated the need for fast seed delivery of climate resilient wheat varieties on farmers’ hands to realize genetic gain and increase income and food security of the households.

These new varieties will be provided with a local name by breeders to make it easy for farmers and other growers to identify them and will be introduced to farmers through demonstrations and field days. Eligible seed growers who are interested in producing and marketing the basic and certified seeds of these varieties can access early generation seeds from the WRC.

Ethiopian researchers travel to India to strengthen knowledge regarding increasing wheat productivity

The irrigated lowlands of Afar and Oromia in Ethiopia are vital areas for the cultivation of wheat and increasing their productivity is crucial to attaining food security in the light of extended drought and other climate shocks.

Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) is a three-year project funded by Germany’s Federal Ministry for Economic Cooperation and Development with the objective of identifying, verifying, and adopting wheat technologies that increase wheat production and productivity in Afar and Oromia.

As part of ADAPT-Wheat’s capacity building mission, four Ethiopian wheat researchers from different disciplines visited the Indian Central Soil Salinity Research Institute (CSSRI), the Indian Institute of Wheat and Barely Research (IIWBR), Land force (Dasmesh Mechanical Works), the Borlaug Institute for South Asia (BISA), and National Agro Industries from 13 -22 March 2024.

At CSSRI, the researchers learned how to reclaim salt-affected soils through the use of salt tolerant crops, improve management of water usage, and employ cover crops in salt-affected soils to reduce soil temperature and evapotranspiration. They also visited a sodic and saline microplot facility used to screen genotypes under the desired salinity and sodicity stresses. The researchers witnessed ongoing activities such as agrochemical/ biological/hydraulic technologies to reclaim salt-affected soils, the use of poor-quality irrigation water for crop production and the adoption of ameliorative technologies for salinity management.

The Ethiopian researchers also attended an international conference organized by the Indian Society of Soil Salinity and Water Quality, “Rejuvenating salt affected soil ecologies for land degradation neutrality under changing climate.”

At IIWBR, researchers visit a gene bank. (Photo: CIMMYT)

They learned about breeding methods, and advances in yield enhancement, disease resistance, sustainable agricultural practices, innovative farming methods, genetic stocks developed for grain protein, iron, and zinc enhanced wheat varieties, phytic acid levels, gluten strength, and grain texture.

At Dasmesh Mechanical Works, they learned the operation and maintenance of equipment ADAPT-Wheat has purchased from Dasmesh, including machines for plowing, land leveling, planting, and threshing.

The visit to BISA included an introduction to Conservation Agriculture methods, such as fertilizer use efficiency and crop residue management, which will ultimately help improve productivity back in Ethiopia. They also viewed an ongoing experiment on Precision–Conservation Agriculture Based Maize-Wheat Systems.

Finally, the researchers visited the CIMMYT-India office and met with Mahesh Kumar Gathala, systems agronomist and lead scientist.

“We are proud to host our Ethiopian colleagues. Collaborating with them allowed us to learn as much from them as they hopefully learned from us during their visit,” said Gathala.

A visit to CSSRI. (Photo: CIMMYT)

For Daniel Muleta (irrigated wheat project coordinator), Shimelis Alemayehu (agronomist), Hailu Mengistu (wheat breeder) and Lema Mamo (soil scientist) all from Ethiopian Institute of Agricultural Research (EIAR), the visit to India was beyond their imagination and gave them the opportunity to participate in salinity workshop, visited different institutions and gained experience. Shimelis said “even though the workshop was for experience sharing the travel made was beyond that”.

The team acknowledged CIMMYT-Ethiopia and CIMMYT India offices and EIAR management.

Cultivating healthier communities with provitamin A maize varieties

In Murehwa District, situated in Zimbabwe’s grain basket in the eastern part of the country, vitamin A deficiency is prevalent in almost all households, regardless of their wealth, reveals a study striving to quantify the nutritional yields of provitamin A maize across a diverse range of smallholder farms in Zimbabwe and to understand the potential role of improved agronomy in increasing nutritional yields. Published in the Journal of Nutrition, the study is part of a collaborative project between CIMMYT and Rothamsted Research, funded by the UK Global Challenges Research Fund, administered by the Biotechnology and Biological Sciences Research Council.

The study revealed that vitamin A deficiency is most prevalent in the wet seasons when the number of people within a household is higher. Using a range of realistic provitamin A concentration levels, modelling showed that the consumption of provitamin A maize could ensure that almost three-quarters of households reach 50% of their vitamin A requirement.

“This study highlights how provitamin A maize could make a real difference in vitamin A intake of smallholder farmers in rural areas of Zimbabwe,” said Frédéric Baudron, the lead author of this study. “And the impact could be even higher as greater gains are made through breeding and supported by better agronomy, a key determinant of nutrient concentration in the grain produced.”

Thirty households participated in the study, quantifying the composition of their diet across the main agricultural (wet) season and off (dry) season. A market study of locally available food was also conducted at the same time. In Murehwa District, almost 80% of the population is engaged in small-scale agriculture as their primary livelihood and stunting rates have increased over the past decade in this district, in sharp contrast to the rest of Zimbabwe.

Though maize is a dietary staple widely consumed in various forms in Zimbabwe, vitamin A deficiency exerts a heavy toll on people’s health, particularly in rural communities where its impact is most keenly felt. The consequences, ranging from preventable blindness in children to heightened maternal mortality rates and reduced immune function, emphasize the urgency of sustainable interventions.

Preparation of “sadza” a local staple widely consumed in Zimbabwe. (Credit: Jill Cairns/Alan Cairns)

The first provitamin A maize variety was released in Zimbabwe over a decade ago. Subsequent breeding efforts, aiming to develop varieties capable of providing 50% of the estimated average requirement of vitamin A, have focused on increasing the provitamin A concentration in maize and yields obtained under a range of stresses that farmers frequently encounter. To date, 26 provitamin A varieties have been released in Southern Africa. However, several key research questions remained unanswered. For instance, how prevalent is vitamin A deficiency within vulnerable populations and what is the cost of an affordable diet providing enough vitamin A? Furthermore, can the nutritional concentration of provitamin A maize grown by smallholder farmers help significantly decrease vitamin A deficiency for the majority of rural households?

The nutritional concentration of biofortified crops is related to the environment they are grown in. Biofortified maize primarily targets resource-poor farmers, holding potential in addressing nutritional gaps. However, existing research on the potential health outcomes of the consumption of provitamin A has largely been centered on maize grown in controlled environments, such as on experimental research stations or commercial farms.

The CIMMYT-led study concludes that the consumption of provitamin A maize alone would not fully address vitamin A deficiency in the short-term, calling for additional interventions such as diet diversification, industrial fortification, and supplementation. Diet diversification is one viable option highlighted by the study: modelling showed most households could obtain a diet adequate in vitamin A from food produced on their farms or available in local markets at a cost that does not exceed the current cost of their diets.

In Murehwa District, the CIMMYT-led study estimated the daily costs of current diets at USD 1.43 in the wet season and USD 0.96 in the dry season. By comparison, optimization models suggest that diets adequate in vitamin A could be achieved at daily costs of USD 0.97 and USD 0.79 in the wet and dry seasons, respectively. Another study conducted in 2023 showed that almost half of the farms in the district had knowledge of PVA maize and its benefits but did not grow it, primarily due to a limited availability of seed.

Unlocking genetic innovations through collaborative pathways

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

The International Maize Improvement Consortium for Africa (IMIC-Africa) held its Southern Africa field day on 25 March 2024 at Harare, Zimbabwe. IMIC-Africa, launched by CIMMYT in 2018, is a public-private partnership designed to strengthen maize breeding programs of partner institutions in Africa. As part of this initiative, CIMMYT organizes annual field days which bring together representatives from seed companies and national agricultural research system (NARS) partners across Zimbabwe and Kenya.

At the heart of the IMIC-Africa field day lies a vibrant showcase of genetically diverse materials developed from various maize breeding pipelines of CIMMYT in Southern Africa. Such events serve as a catalyst to drive innovations in maize breeding programs, deliver solutions to stakeholders, and enable seed companies and NARS partners to make informed selections tailored to local contexts.

“It is an important forum to have organized discussions with partners, and redesign—where possible—our breeding approaches to deliver targeted products to stakeholders,” said Director of CIMMYT’s Global Maize Program, One CGIAR Global Maize Breeding Lead, and One CGIAR Plant Health Initiative Lead, B.M. Prasanna. “The main stakeholders here are our partners, including seed companies and public sector national programs, through whom we reach out to farming communities.”

The significance of these field days cannot be overstated. It allows the partners to have a critical look at the breeding materials on display and undertake selections of maize lines relevant to their breeding programs. In addition, the IMIC-Africa field days enable CIMMYT team to have structured dialogues with diverse stakeholders and to review and refine breeding (line and product development) strategies and approaches.

“It is key to bridge the gap between the national programs and private sector players. This platform allows us to stay ahead in terms of research, and innovative breakthroughs in the seed sector,” added Kabamba Mwansa, principal agriculture research officer, ZARI, Zambia and Southern Africa Breeding, and seed systems network coordinator.

Highlights from the Harare field day

With an impressive array of 737 CIMMYT maize lines on display, partners at the Harare field day gained insights about the performance of different materials. The materials span early-, intermediate-, and late- maturity groups to nutritious maize breeding pipelines. This comprehensive showcase enabled seed companies and NARS partners to make informed selections, tailored to their local contexts. The material on display ranged from early generation (one or two years of testing data) to advanced generation (more than three years of testing) coming from the Southern Africa breeding pipelines targeting multiple market segments.

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

One of the strategic priorities of CIMMYT’s maize breeding program in Africa is improving the nutritional quality of maize. This is exemplified by the development of provitamin A-enriched maize (PVA). On display were 169 lines originating from the PVA-enriched maize breeding pipeline. The efforts underscore CIMMYT’s commitment to address regional nutritional needs through targeted breeding initiatives.

Felix Jumbe, a partner from Peacock Seeds in Malawi reflected on the importance of the IMIC-Africa partnership. “We have been part of IMIC-Africa since its inception, and we continue to appreciate the different climate-resilient lines emerging from CIMMYT maize breeding programs in Africa. Last year, we sold out of our seed as people continue to appreciate the need for resilient maize varieties. The drought-tolerant (DT) maize lines from the consortium have been a huge selling point as most farmers are happy with it,” he said.

The field day not only showcased cutting-edge breeding innovations but also offered a historical perspective by tracing the trajectory of the most popular lines taken up under IMIC-Africa from 2019 to 2023. This served as a crucial reference point for partners, enabling them to assess the performance of newly displayed lines against established benchmarks. Furthermore, partners considered the presence of trait donors as invaluable in improving resistance to key biotic stresses or tolerance to certain abiotic stresses prevalent in Africa.

CIMMYT, NARS, and seed company partners participate in the IMIC-Africa field day in Harare, Zimbabwe. (Photo: CIMMYT)

CIMMYT partnership continues to add value

In the face of escalating environmental pressures, including climate change and pest infestations such as the fall armyworm (FAW), CIMMYT breeders have been working tirelessly to develop resilient varieties capable of withstanding these challenges. Partners such as SeedCo have embraced these robust varieties. For breeder Tariro Kusada, it is her second year of attending the IMIC- Africa field day. “We continue to see value in getting breeding materials through IMIC. The vigor from the lines on display is outstanding as compared to last year. We hope the vigor translates to yield.”

Danny Mfula from Synergy Zambia reinforced the value of the partnership. “It is always good to tap into CIMMYT’s germplasm to supplement what we have. We are glad that more FAW-tolerant hybrids are coming on board. We want to leverage on these developments as farmers have gone through a lot of challenges to control FAW,” he said.

As the harvest stage approaches, partners can select their material by assessing the performance of the lines from flowering to grain filling stages. Each plot’s harvest provides invaluable insights, guiding partners in their selections. Partners are also given the opportunity to view the improved maize lines from CIMMYT through a virtual gallery of ears from each plot, ensuring informed decision-making. By fostering dialogue, facilitating partnerships, and highlighting genetic innovations, the field days catalyze progress towards a more sustainable and resilient future for African agriculture.

It’s time to scale: Emerging lessons from decades of Conservation Agriculture research in Southern Africa

CA in action at the farmer level. (Photo: Christian Thierfelder/CIMMYT)

For decades, smallholder farmers in Southern Africa have battled the whims of a changing climate—from withered crops to yield reductions and looming food insecurity concerns. And the outlook is not improving. Based on the latest available science, the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) reaffirms the projected negative impacts of climate change on livelihoods in Southern Africa.

Conservation Agriculture (CA) has been considered as an important step to make smallholder farming systems climate smart and resilient. The principles of CA are simple yet potent: minimal soil disturbance, crop cover, and diverse rotations, which tend to have lasting implications on rebuilding soil health, conserving moisture, and nurturing a thriving ecosystem. A strong evidence base from on-farm and on-station trials show that CA has the potential to build the adaptive capacity and resilience of smallholder farming systems to climate stress.

Yet, despite the positive results, significant scaling gaps remain. Key questions arise on what can be done to turn the tide, scale, and encourage uptake. What institutional, policy and economic incentives would enable scaling? Could mechanization be the missing link? The Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA) project responds to these questions. With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA), and CIMMYT, the ACASA project goes beyond the narrow focus on promotion and technology delivery of past and ongoing interventions on CA in Southern Africa.

ACASA was designed to help stakeholders gain deeper understanding of the interactions between the socio-economic, biophysical, and institutional constraints and opportunities for adoption of CA practices. To do this, the project has undertaken extensive surveys aimed at understanding incentives, drivers, and barriers of CA adoption across Zambia, Malawi, and Zimbabwe.

Dialogues for change

Participants from across the region during the reflective meeting. (Photo: CIMMYT)

In December 2023, CIMMYT collaborated with IITA and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development of Zimbabwe to convene a highly engaging, reflective, and learning meeting, with the participation of government representatives, the private sector, and research institutes, among others. The primary objective was to share valuable insights accumulated over years of research and development on conservation agriculture in southern Africa. These insights are a result of collaborative efforts in social science, scaling, and mechanization work by CIMMYT, IITA, and extension and research partners in Malawi, Zambia, and Zimbabwe. Conversations centered on tracing the historical pathway of CA, leveraging mechanization, and identifying key enablers to transform smallholder agriculture.

Tracing the pathway of conservation agriculture

For decades, CIMMYT has been a leading force in promoting Conservation Agriculture. From the early stages in the 1990s, CIMMYT introduced CA principles and practices through on-farm and on-station field days, to undertaking robust research on biophysical impacts and developing adapted technologies in collaboration with national and global partners. As this research progressed and matured, efforts were made to integrate and focus on understanding the social and economic factors influencing CA adoption, while recognizing the significance of enabling environments. To date, linkages with mechanization and other innovations promoting CA-friendly equipment have been strengthened, ensuring inclusivity and empowerment. Questions remain around policy and institutional innovations to nudge and sustain adoption. In a nutshell, there is scope to borrow tools and methods from behavioral and experimental economics to better study and facilitate behavioral change among smallholder farmers. This snapshot highlights global efforts, grounded in scientific evidence, farmer centric approaches, and collaborative partnerships.

Insights from the field

Described as a data and evidence driven process, a notable highlight was the detailed gathering and analytical efforts using a large multi-country household survey involving 305 villages and 4,374 households across Malawi, Zambia, and Zimbabwe. The main thrust was not only to harvest data but listen to farmers and better understand their context while deciphering their decision-making processes concerning CA adoption, across the three countries. A compelling and hopeful story unfolds from the results. The adoption of CA practices such as crop residue retention, minimum tillage, crop rotation, and intercropping is much higher than previously thought, highlighting a crucial need for better targeted surveys. Key enablers to strengthen adoption include access to CA extension, hosting demonstrations, and access to credit. In addition, age, and extension in the case of Zambia were identified as important drivers of the speed and persistence of adoption. Demand for mechanization is rising, which is key to address drudgery associated with CA and to raise production efficiencies. Key recommendations centered on the need for investments in a dense network of farmer-centric learning centers that allow for experiential learning, facilitating equitable access to mechanization, promoting private sector participation, and developing integrated weed management options as weeds remain the Achilles Heel of CA adoption in the region. [1]

Emerging lessons

A deep dive on the findings reveals critical considerations for the widespread adoption of Conservation Agriculture (CA). Firstly, weed-related labor challenges pose a significant obstacle, with around 75% of farmers in three countries citing weeds as the most constraining issue during initial CA adoption. Addressing this weed management challenge is essential, emphasizing the need for environmentally safe, non-chemical solutions as a research priority. Secondly, there is a noticeable gap between scientific research on CA and farmer practices, primarily attributed to limited technical knowledge. Bridging this gap requires innovative approaches to translate scientific information into practical, farmer-centered products. Thirdly, incentivizing CA adoption through complementary input support programs, like payments for environmental services, may encourage farmers, especially when private returns are not immediate.

Fourthly, strengthening extension systems is crucial to facilitate farmer learning and bridge the awareness-to-know-how gap. Lastly, investing in improved machinery value chains can alleviate high labor costs and drudgery associated with CA practices, with economic estimates suggesting farmers’ willingness to pay for machinery hire services. These insights collectively highlight the multifaceted nature of challenges and opportunities for scaling up CA adoption.

Moving forward

ACASA’s research findings are not just numbers — they are seeds of hope. They point towards a future where CA adoption among smallholder farmers can transform the breadbasket of the three African countries, and beyond. CIMMYT and its partners remain committed to continuous learning, refining their approaches, and working hand-in-hand with farmers to nurture the CA revolution.

It will not be a pipe dream to transform agriculture in Southern Africa through CA by cultivating seeds of resilience, one at a time. This is because the experience from the region suggests that with the right political will, it is possible to mainstream CA as a critical adjunct to climate-smart agriculture strategies and resilience building. This broader institutional and political buy-in is important since CA programming cannot succeed without sector-wide approaches to removing systemic constraints to technology adoption.  A classic example is the Government-backed Pfumvudza program in Zimbabwe, which has seen adoption of planting basins conditioned on receipt of input subsidies soar to more than 90%.

[1] CIMMYT/IITA Scientists explore the weed issue in detail in a paper just accepted and forthcoming in Renewable Agriculture and Food Systems – Unanswered questions and unquestioned answers: The challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa.

New CGIAR Deputy Executive Managing Director warmly welcomed at CIMMYT

Bram Govaerts receives Guillaume Grosso at CIMMYT’s global headquarters. (Photo: Jenifer Morales/CIMMYT)

The visit of Grosso was much more than a courtesy call. As the largest research center in CGIAR, CIMMYT plays a significant role. Grosso’s visit also came at an important moment for CIMMYT as it reorients its people and culture, operations, and research to address today’s challenges of food security, climate change mitigation, and agricultural development.

“CIMMYT was pleased to have Guillaume for a few days,” said CIMMYT’s Director General, Bram Govaerts. “We discussed areas where CIMMYT can most deliver value in CGIAR and shared all our important advancements in revamping our organizational capacity and forward-thinking vision to meet current food system demands.”

A central focus of CGIAR’s and CIMMYT’s work is the creation of resilient and inclusive food systems. Effective operations are essential for delivering research that will advance agrifood systems towards a sustainable, food-secure future.

Grosso joins CIMMYT colleagues for lunch. (Photo: Jenifer Morales/CIMMYT)

“I enjoyed speaking with CIMMYT’s scientists and staff, who embody a spirit of dedicated, collective action towards creating systems that produce more nutritious food for vulnerable populations. I am confident that the CGIAR-CIMMYT integrated partnership will only accelerate the needed inclusive transformation of our food systems,” said Grosso.

Grosso engaged with CIMMYT’s enabling units part of the operations and engagement chapters, which are driving forward the Excellence in Operations strategic pillar. This pillar is a cornerstone in supporting and expanding the organization’s global impact. Grosso also toured CIMMYT’s museum, which showcases over 55 years of the institution’s history and operational distinction.

Laboratory specialists share how CIMMYT distributes improved wheat lines annually to public breeding research programs and educational institutions. (Photo: Jenifer Morales/CIMMYT)

The new deputy executive managing director also learned about CIMMYT’s Excellence in Science pillar. He spoke with researchers and Mexican partners who gave him an overview of the center’s research portfolio in genetic innovation and resilient agrifood systems—critical areas which will support CIMMYT’s efforts to contribute to the UN’s Sustainable Development Goals and CGIAR’s 2030 Research and Innovation Strategy.

Expression of interest: VACS Capacity Project

USAID is partnering with CIMMYT to implement Feed the Future VACS Capacity Activity, which aims to capacitate African breeding programs and research professionals and to build a cohort of VACS Fellows in partnership with both private and public sectors. The cohort will be mentored by CGIAR, advanced research institutes and universities, and other partners around the globe. There are three areas where we are looking for partners.

  1. Hubs for training
  2. Scholars (MSc and PhD)
  3. Professionals (1–6-month placements)

The awarding process is two steps for the Hubs, which is based on the review of the submissions to this EOI solicitation, shortlisted applicants will be invited to submit a more detailed application and engage further in the award process.

How to apply

Only online submissions via the provided links below will be accepted: https://sra.cimmyt.org/vacs.

Due dates to complete your submission:

  • Hubs and Scholars by June 30, 2024, 11:59 p.m. GMT
  • Professionals by July 31, 2024, 11:59 p.m. GMT

Virtual briefing session

An information session will be conducted on June 7, 2024, at 5:00 p.m. East African Time, to explain further and clarify the application and award process. This will also constitute the official launch of the VACS Capacity Activity. Email CIMMYT-VACS-capacity@cgiar.org to register!

Re-imagining heat tolerance traits in wheat – part 2

CIMMYT, along with other institutions, is enhancing wheat’s heat tolerance through four GRDC investments. These projects focus on identifying heat tolerance traits and developing scalable phenotyping technologies. Utilizing advanced tools like High Performance Liquid Chromatography (HPLC), the Dualex flavonoid meter, and hyperspectral technology, these initiatives aim to create heat-tolerant wheat varieties to ensure resilience against climate change.

Read the full story.

Heat tolerant maize: a solution for climate change-induced 360◦ water deficits

Seed company partners observe the performance of heat-tolerant hybrids in the dry heat of southern Karnataka, India. (Photo: CIMMYT)

Millions of smallholders in the Global South depend on maize, largely cultivated under rainfed conditions, for their own food security and livelihoods. Climate change mediated weather extremes, such as heat waves and frequent droughts, pose a major challenge to agricultural production, especially for rainfed crops like maize in the tropics.

“With both effects coming together under heat stress conditions, plants are surrounded, with no relief from the soil or the air,” said Pervez H. Zaidi, maize physiologist with CIMMYT’s Global Maize Program in Asia. “Climate change induced drought and heat stress results in a double-sided water deficit: supply-side drought due to depleted moisture in soils, and demand-side drought with decreased moisture in the surface air. “

Extreme weather events

Weather extremes have emerged as the major factor contributing to low productivity of the rainfed system in lowland tropics. South Asia is already experiencing soaring high temperatures (≥40C), at least 5C above the threshold limit for tropical maize and increased frequency of drought stress.

A woman agricultural officer discusses the performance of heat tolerant hybrids at farmers’ field in Raichur districts of Karnataka, India. (Photo: CIMMYT)

“In today’s warmer and drier climate, unless farmers have copious amounts of water (which might not be a sustainable choice for smallholders in the tropics) to not only meet the increased transpiration needs of the plants but also for increased evaporation to maintain necessary levels of humidity in the air, the climate change mediated weather extremes, such as heat and drought pose a major challenge to agricultural production, especially for rainfed crops like maize in lowland tropics,” said Zaidi.

To deal with emerging trends of unpredictable weather patterns with an increased number of warmer and drier days, new maize cultivars must combine high yield potential with tolerance to heat stress.

Maize designed to thrive in extreme weather conditions

CIMMYT’s Global Maize Program in South Asia, in partnership with public sector maize research institutes and private sector seed companies in the region, is implementing an intensive initiative for developing and deploying heat tolerant maize that combines high yield potential with resilience to heat and drought.

By integrating novel breeding and precision phenotyping tools and methods, new maize germplasm with enhanced levels of heat stress tolerance is being developed for lowland tropics. Over a decade of concerted efforts have resulted in over 50 elite heat stress tolerant, CIMMYT-derived maize hybrids licensed to public and private sector partners for varietal release, improved seed deployment, and scale-up.

Popular normal hybrids (left) & CAH153, a heat tolerant hybrid (right) under heat stress. (Photo: CIMMYT)

As of 2023, a total of 22 such high-yielding climate-adaptive maize (CAM) hybrids have been released by partners throughout South Asia. Through public-private partnerships, eight hybrids are being already deployed and scaled-up to over 100,000 hectares in Bangladesh, Bhutan, India, Nepal, and Pakistan. Also, the heat tolerant lines developed by CIMMYT in Asia were used by maize programs in sub-Saharan Africa for developing heat tolerant maize hybrids by crossing these as trait donors with their elite maize lines.

Studies on the new CAM hybrids show that while their yield is like existing normal maize hybrids under favorable conditions, the CAM hybrids outperform normal hybrids significantly under unfavorable weather conditions.

“The unique selling point of the new CAM hybrids is that they guarantee a minimum yield of at least 1.0 tons per hectare to smallholder farmers under unfavorable weather when most of the existing normal hybrids end-up with very poor yield,” said Subhas Raj Upadhyay, from the Lumbini Seed Company Ltd. in Nepal.

Given the superior performance of CAM seeds in stress conditions, Nepali farmers have expressed willingness to pay a premium price: an average of 71% more with government subsidy, or at least 19% extra without a subsidy for CAM seed. Similarly, the farmers in hot-dry areas of the Karnataka state of India are ready to pay 37% premium price for CAM seed compared to normal hybrid seed. These reports strongly validate the demand of CAM seed and therefore a targeted initiative is needed to accelerate deployment and scaling these seeds in climate-vulnerable marginal agroecologies in tropics.