Ceremony for the awarding of an honorary doctorate to Dr. Bram Govaerts of CIMMYT. (Photo: Richa Puri / BISA)
During a formal ceremony at Chandra Shekhar Azad University of Agriculture and Technology (CSA) in Kanpur, India, Bram Govaerts, CIMMYT Director General, was awarded the honorary degree of Doctor Honoris Causa. This prestigious honor not only recognizes Govaerts’ outstanding career but also highlights CIMMYT’s innovative and collaborative work on behalf of global food security, a joint effort that impacts millions of farmers and communities around the world.
Upon receiving the recognition, Govaerts dedicated it to the entire CIMMYT team, emphasizing, “This honor is a testament to the tireless work of my colleagues and collaborators at CIMMYT, who, through science and innovation, are contributing to food and nutrition security in key regions such as India and South Asia.” He further noted that this Honorary Doctorate symbolizes the global commitment of CIMMYT and Mexico in addressing the agricultural and climate challenges that threaten food production.
This recognition also underscores the strong agricultural partnership between Mexico and India, a collaboration that has saved millions of lives. This alliance dates back to the Green Revolution, led by Norman Borlaug, who introduced wheat varieties developed in Mexico that allowed India to double its agricultural output and avert a catastrophic famine in the 1960s.
Ceremony for the awarding of an honorary doctorate to Dr. Bram Govaerts of CIMMYT. (Photo: Richa Puri / BISA)
Today, CIMMYT continues to be a vital partner for India, developing maize and wheat varieties that are resilient to extreme climate conditions and promoting sustainable agricultural practices. The Borlaug Institute for South Asia (BISA), established in 2011 as a collaboration between CIMMYT and the Indian Council of Agricultural Research (ICAR), is a testament to the progress made through international collaboration. BISA has played a critical role in strengthening India’s agri-food systems, improving the livelihoods of millions of farmers, and contributing to environmental restoration in the region.
Beyond commercial ties, scientific collaboration between Mexico and India has been a cornerstone of agricultural improvements in both countries. India, the world’s second-most populous country, faces significant food production challenges, many of which mirror Mexico’s struggles, such as soil degradation and the effects of climate change. Thanks to CIMMYT’s collaboration with Indian institutions, critical advances have been made to address these challenges, paving the way for more resilient and sustainable agriculture.
The honorary doctorate awarded to Bram Govaerts not only recognizes his leadership but also the transformative impact of CIMMYT and its partners in improving the lives of millions of people around the world. Govaerts said, “This award reflects the strength of international scientific collaboration and the power of science to change the world.”
Rice is a critical staple for food security and a key export crop for India. The study published in Nature Communications explores context-specific pathways for increasing rice production in India, focusing on sustainable intensification â boosting yields without harming the environment or farm profitability.
The research analyzed over 15,000 field records across seven major rice-producing states in India using advanced machine learning techniques. The study identified nitrogen application and irrigation as key factors limiting yields, particularly in Eastern India (Bihar and Uttar Pradesh). By targeting farms with nitrogen and irrigation deficiencies, the study projects that yield gains could more than triple compared to general recommendations. Specifically, farms suffering from co-limitation by both nitrogen and irrigation could see the most significant gains in productivity and profitability.
Four scenarios for sustainable intensification were evaluated, ranging from blanket application of current nitrogen recommendations to highly targeted interventions. The analysis showed that targeted strategies, focusing on farms with the greatest yield constraints, could significantly improve nitrogen use efficiency and result in greater yields and profitability without excessive resource use.
The study highlights the potential of data-driven, context-specific solutions for rice intensification in India, emphasizing that targeted interventions could offer both higher returns for farmers and better environmental sustainability. It suggests a move away from “one-size-fits-all” approaches towards more precise, farm-specific recommendations based on local conditions and data. This approach could help close yield gaps while aligning with sustainable development goals.
Thatâs how much farmers have saved this century, through use of disease-resistant wheat varieties. Modern wheat can thank its âwild relativesâ â grassy cousins millions of years old and tested through extremes of earthâs climate â for most of its resistance genes.
Despite such remarkable achievements in wheat breeding, weâve only scratched the surface of the genetic potential in wheatâs wild relatives. With climate change intensifying and the rapid evolution and spread of pathogens â a new strain of fungus can circulate in the jet streamâitâs imperative that we increase investment in researching this largely untapped genetic diversity. Doing so could revolutionize wheat production, ensuring food security while dramatically reducing agricultureâs environmental footprint.
Without such efforts, epidemics or pandemics could devastate yields, potentially leading to massive applications of toxic agrochemicals and increased selection pressure for pests and diseases to develop resistance. The consequences would be far-reaching, impacting not only food security and the environment, but also geopolitical stability, potentially triggering human migration and conflict.
Today, wheat is the most widely grown crop on Earth, providing 20% of all human protein and calories and serving as the primary staple food for 1.5 billion people in the Global South.
However, with its future under threat, standard breeding approaches can no longer keep up with the pace of climate change. Research shows that climate shifts from 1980-2008 reduced wheat harvests by 5.5%, and global wheat production falls 6% for every degree-centigrade increase in temperature.
Wheat science urgently requires enhanced investments to scale up genetic studies of wild relatives, utilizing next-generation breeding tools. These tools include gene sequencing technologies, big-data analytics, and remote sensing technologies. Satellite imagery makes the planet a laboratory, allowing researchers to monitor traits like plant growth or disease resistance globally. Artificial intelligence can super-charge breeding simulations and quickly identify promising genes that enhance climate-resilience.
The basic genetic resources are already available: more than 770,000 unique seed samples are stored in 155 seed banks across 78 countries. These samples represent the full scope of known wheat genetic diversity, from modern varieties to ancient wild relatives and landraces developed at the dawn of agriculture.
Whatâs missing is funding to accelerate the search for specific genes and combinations that will fortify wheat against harsher conditions. This requires political will from key decision-makers and public interest. Nothing is more important than food security and the environmental legacy we leave to our children.
Harnessing the power of microorganisms
The genetic variation in seed banks is largely absent in modern wheat, which became genetically separate from other grass species 10,000 years ago and has undergone recent science-based breeding, constricting its diversity. Wheat needs its cousinsâ diversity to thrive in a changing climate.
Beyond climate resilience and disease resistance, wild wheat relatives offer another exciting avenue for environmental benefits: enhanced interactions with beneficial microorganisms. These ancient grasses have evolved intricate relationships with soil microbes largely absent in modern wheat.
Some wild wheat relatives can inhibit soil microbes that convert ammonium to nitrate. While both are usable nitrogen forms for plants, nitrate is more prone to loss through leaching or gaseous conversion. Slowing this process of conversion, called nitrification, has profound implications for sustainable agriculture, potentially mitigating greenhouse gas emissions, improving nitrogen-use efficiency, and decreasing synthetic fertilizer use.
As proof of concept, the first and only crop (so far) bred to promote microbiome interaction is wheat, using a gene from a wild relative (Leymus racemosus) to slow nitrification.
In addition, wild relatives often form more effective symbiotic relationships with beneficial soil fungi and bacteria, enhancing nutrient uptake, drought tolerance, and natural pest defenses. Reintroducing these traits could reduce chemical inputs while improving soil health and biodiversity.
The benefits extend beyond the field. Wheat varieties that use water and nutrients more efficiently could reduce agricultural runoff, protecting water bodies. Enhanced root systems could increase soil carbon sequestration, contributing to climate change mitigation.
By systematically exploring wild wheatâs microbial interaction traits, wheat varieties can be developed that not only withstand climate challenges but also actively contribute to environmental restoration.
This represents a paradigm shift from crop protection through chemicals to resilience through biological synergies. Indeed, even a fraction of the US $1.4 trillion spent annually on agrochemical crop protection could work wonders to fortify wheat against present and future challenges.
The path forward is clear: increased investment in researching wild wheat relatives can yield a new generation of wheat varieties that are not just climate-resilient, but also environmentally regenerative. This will be a crucial step towards sustainable food security in a changing world.
CIMMYT Director General Bram Govaertsâ visit to The University of Queensland (UQ) on September 27, 2024, reinforced a long-standing partnership aimed at tackling global food security and sustainability challenges. For over 50 years, CIMMYTâs collaboration with Australian researchers has advanced wheat breeding, contributing significantly to Australia’s agricultural resilience. The visit emphasized expanding research on key crops like sorghum, millets, and legumes, while promoting sustainable practices and climate resilience in agriculture. This collaboration continues to drive innovations that benefit not only Australia but also regions across the Indo-Pacific and Africa.
Mariam Salim with amaranth grain that is ready to harvest from her vegetable field. (Photo: World Vegetable Centre)
On Pemba Island, part of Tanzaniaâs Zanzibar archipelago, more women are engaging in vegetable production and value addition, bolstering household nutrition and income security. This movement is significant in areas where modern agricultural technology and awareness of nutrient-rich crops like amaranthâa vegetable high in fiber, protein, and essential micronutrientsâare limited.
Mariam Salim, who lives in Mjini Ole village on Pemba Island, is among the women embracing amaranth cultivation. Along with 272 other farmers, 53% of whom are women, she attended a three-day training course on vegetable cultivation and value addition. Funded by the United States Agency for International Development (USAID), through CIMMYT under the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) project, and implemented by the World Vegetable Center, the training covered good agricultural practices, as well as the cultivation and processing of grain amaranth into flour.
The training equipped Mariam with essential knowledge and skills to enhance her agricultural productivity and livelihood.
Sowing seeds for success
Participants received seed kits containing eight varieties of nutritious traditional African vegetables, including African eggplant, African nightshade, amaranth, cowpea, and Ethiopian mustard. Farming a diverse range of crops supports food security and improves community nutrition.
During the training, Mariam realized the potential of growing grain amaranth for seed production. âI discovered that I could produce my own seeds and amaranth flour,â she said. âThis opened up new opportunities for me to take control of my farming practices and increase my self-sufficiency.â
Seed production is a vital part of sustainable agriculture, enabling farmers like Mariam to boost productivity, diversify crops, and adopt climate-smart practices. By venturing into seed production, Mariam not only gained a valuable skill but also contributed to conserving and propagating important crop varieties within her community.
Mariam now sells seeds to other farmers, providing her with a new income source while supporting the broader agricultural community by facilitating access to quality seeds. Since the training in July 2023, Mariam has harvested 150 kg of seeds, selling them per kilogram (kg), earning US $450 and enhancing her household income security.
Healthy choices for communities
As the first woman in her community to undertake such an endeavor, Mariam is inspiring other women to explore new farming and food processing opportunities. Through the AID-I project on Zanzibar Island, more than 500 women have started home gardening to access quality vegetables for family consumption and business purposes, introducing new crop varieties and increasing household vegetable consumption.
This light bulb moment underscores the transformative power of education and knowledge-sharing initiatives under AID-I. By providing farmers with information on vegetable grain production and value addition, the project fosters self-reliance and innovation in sustainable farming practices.
Mariam’s detailed description of her seed production process highlights her dedication to agricultural innovation and community health. âIt takes three months to harvest seeds, so I must be patient and committed to nurturing healthy crops,â she said. âI must also be precise in caring for the seeds through harvesting, drying, tapping, and sifting.â
The World Vegetable Center promotes home gardening among women. More than 500 participants actively cultivate and process vegetables into nutrient-dense packs. By growing their own vegetables, these women access nutritious food for their families, generate income from surplus produce, and improve health and well-being within the community.
Mariam Salimâs light bulb moment came during a training session on amaranth grain, where she recognized the potential of producing her own seeds. (Photo: World Vegetable Center)
A new study by CIMMYT, published in Global Change Biology, reveals that ancient wild relatives of wheat, which have adapted to extreme environmental conditions for millions of years, could be key to securing our future food supply. These wild varieties offer valuable genetic traits that can help modern wheat resist diseases, build climate resilience, and reduce agricultural emissions, making them essential for adapting to increasingly challenging growing conditions.
Melinda Smale’s groundbreaking work in agricultural economics, particularly her collaboration with CIMMYT, has played a pivotal role in advancing the understanding of crop diversity conservation. At CIMMYT, Smale worked with plant breeders and agronomists to analyze maize landraces and wheat genetic diversity, contributing to the development of strategies that support sustainable agriculture and food security. Her research has informed CIMMYTâs efforts to preserve biodiversity and enhance the resilience of farming systems, directly aligning with the organization’s mission to improve global food security through science and innovation.
The World Food Prize Foundation names CIMMYT’s former Deputy Director General for Research, Marianne BĂ€nziger, and current post-harvest specialist in the Sustainable Agrifood Systems (SAS) program, Sylvanus Odjo, as two of its inaugural 2024 Top Agri-food Pioneers (TAP).Â
The TAP List, introduced by the Foundation in celebration of its 38th anniversary, highlights 38 innovators from 20 countries and six continents who are making groundbreaking contributions to food and agriculture. Working in a wide range of fields, including agriculture, agtech, nutrition, education and advocacy, these pioneers embody the spirit of innovation needed to address the challenges facing global food systems today.Â
Leading the way: Meet the Top Agri-Food Pioneers of 2024Â
Photo: CIMMYT
Sylvanus Odjo, one of the awardees, is a postharvest specialist focused on the development and implementation of postharvest practices to improve food security in rural communities. He leads a network of research platforms in Mexico, Central America, and Africa, working with collaborators to fill research gaps and provide key recommendations to farmers, the private sector, governments, and NGOs. Odjo holds an M.S. in Food Science and Nutrition and a Ph.D. in Agricultural and Biological Engineering, with his doctoral research focused on the effects of drying processes on maize grain quality.
Photo: CIMMYT
Marianne BĂ€nziger, also recognized on the TAP list, received her Ph.D. in plant physiology from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in 1992. She is the former Deputy Director General for Research at CIMMYT, where she coordinated efforts to develop drought-tolerant maize varieties for smallholder farmers, promoting innovative approaches such as stress breeding methods and participatory trials.Â
Throughout her career, she has held positions in both science and management. BĂ€nziger has an impressive publication record, with more than 50 articles and book chapters in peer-reviewed international journals and books.Â
As the first cohort of the TAP List, this group of pioneers will grow annually to form a global network dedicated to fostering collaboration and shared learning across food systems. These pioneers will also be featured at the 2024 Borlaug Dialogue in Des Moines, Iowa, October 29 to 31.Â
CIMMYT, Mexico, August 27, 2024 â Crop wild relatives that have survived changing climates for millions of years may provide the solution to adapting wheat, humanity’s most widely grown crop, to climate change. Two new studies led by the International Maize and Wheat Improvement Center (CIMMYT) reveal how tapping into this ancient genetic diversity can revolutionize wheat breeding and safeguard global food security.
As the weather becomes more erratic and extreme, wheat â providing 20% of all calories and protein globally and serving as the primary staple food for 1.5 billion people in the Global South â faces unprecedented threats. These include heat waves, delayed rains, flooding, and new pests and diseases.
“We’re at a critical juncture,” says Dr. Matthew Reynolds, co-author of both studies. “Our current breeding strategies have served us well, but they must now address more complex challenges posed by climate change.”
The research points to a vast, largely untapped reservoir of nearly 800,000 wheat seed samples stored in 155 genebanks worldwide. These include wild relatives and ancient, farmer-developed varieties that have withstood diverse environmental stresses over millennia. Although only a fraction of this genetic diversity has been utilized in modern crop breeding, it has already delivered significant benefits.
Photo CIMMYT: Wheat diversity spikes
Proven impacts of wild wheat genes
One of the studies, a review published today in Global Change Biology (GCB)*, documents the immense impact of wild relativesâ traits, including on environmental sustainability. It finds that the cultivation of disease-resistant wheat varieties has avoided the use of an estimated 1 billion liters of fungicide just since 2000.
âWithout transferring disease-resistant genes from wild relatives to wheat, fungicide use would have easily doubled, harming both human and environmental health,â says Dr. Susanne Dreisigacker, Molecular Breeder at CIMMYT and co-author of the review.
Sharing of new wheat breeding lines through the CIMMYT-led International Wheat Improvement Network, comprising hundreds of partners and testing sites around the world, increases productivity worth USD 11 billion of extra grain every year. The extra productivity has saved millions of hectares of forests and other natural ecosystems from cultivation.
The review highlights other key breakthroughs using wheat wild relatives, including:
Some experimental wheat lines incorporating wild traits show up to 20% more growth under heat and drought conditions compared to current varieties.
Genes from a wheat wild relative have generated the first crop ever bred to interact with soil microbes, reducing the production of nitrous oxide, a potent greenhouse gas, and enabling the plants to use nitrogen more efficiently.
New, high-yielding cultivars in Afghanistan, Egypt and Pakistan were developed using wild genes and have been released as they are more robust to the warming climate.
âBreeding the first beneficial interaction with the soil microbiome â in this case biological nitrification inhibition, or BNI-wheat â is a landmark achievement by CIMMYT and JIRCAS, opening up a whole new spectrum of opportunities to boost cropping systemsâ resilience and reduce environmental footprints,â says Victor Kommerell, co-author of the GCB review, and Director of CropSustaiN, a new research initiative to determine the global climate mitigation and food security potential of BNI wheat.
The second study in Nature Climate Change* showcases the urgent need to scale-up exploration and use of genetic diversity for improved climate resilience. Among the traits needed are deeper, more extensive root systems for better water and nutrient access; photosynthesis that performs well across a wider temperature range; better heat tolerance in reproductive processes; and improved survival during delayed rains or temporary flooding.
âTapping into the complex climate-resilient traits so urgently needed today requires both access to greater genetic diversity and a paradigm shift in breeding approaches,â explains co-author of the GCB review, Dr. Julie King of Nottingham University.
Modern crop breeding has focused on a relatively narrow pool of âstar athletesâ: elite crop varieties that are already high performers and that have known, predictable genetics. In contrast, the genetic diversity of wild wheat relatives offers complex climate-resilient traits â but their use has been more time-consuming, costly and riskier than traditional breeding approaches with elite varieties. Now, new technologies have changed that equation.
Making the impossible possible
“We have the tools to quickly explore genetic diversity that was previously inaccessible to breeders,” explains Dr. Benjamin Kilian, co-author of the review and coordinator of the Crop Trustâs Biodiversity for Opportunities, Livelihoods and Development (BOLD) project that supports conservation and use of crop diversity globally.
Among these tools are next-generation gene sequencing, big-data analytics, and remote sensing technologies, including satellite imagery. The latter allows researchers to routinely monitor traits like plant growth rate or disease resistance at unlimited numbers of sites globally.
However, realizing the full potential of these genetic resources will require global cooperation. “The most significant impacts will come through widespread sharing of genetic resources and technologies,” says Dr. Kilian.
New technologies allow crop researchers to precisely identify and transfer beneficial traits from wild relatives, making what has been seen as a risky, time-consuming process into a targeted, efficient strategy for climate-proofing crops. âSatellite technology turns the planet into a laboratory,â says Dr. Reynolds, âCombined with artificial intelligence to super-charge crop-breeding simulations, we can identify whole new solutions for climate resilience.â
This research, which also applies to any crop with surviving wild relatives, promises to enhance global food security and make cropping systems more environmentally sustainable. Developing more resilient and efficient wheat varieties will help feed a global population while reducing agriculture’s environmental footprint.
Photo CIMMYT: Wheat diversity spikes
Study information and links
*Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. King J, Dreisigacker S, Reynolds M et al., 2024. Global Change Biology (Study available under embargo upon request)
*New wheat breeding paradigms for a warming climate. Xiong, W., Reynolds, M.P., Montes, C. et al. Nat. Clim. Chang. (2024). Â https://doi.org/10.1038/s41558-024-02069-0
Note to editors
About CIMMYT
Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat cropping systems in the developing world. Learn more at staging.cimmyt.org
About the Crop Trust
The Crop Trust is an international organization working to conserve crop diversity and protect global food and nutrition security. At the core of the Crop Trust is an endowment fund dedicated to providing guaranteed long-term financial support to key genebanks worldwide. The Crop Trust supports the Svalbard Global Seed Vault and coordinates large-scale projects worldwide to secure crop diversity and make it available for use, globally forever and for the benefit of everyone. The Crop Trust is recognized as an essential element of the funding strategy of the International Treaty on Plant Genetic Resources for Food and Agriculture. Learn more at www.croptrust.org
About the Biodiversity for Opportunities, Livelihoods and Development (BOLD) Project
BOLD is a 10-year project to strengthen food and nutrition security worldwide by supporting the conservation and use of crop diversity. The project works with national genebanks, pre-breeding and seed system partners globally. Funded by the Government of Norway, BOLD is led by the Crop Trust in partnership with the Norwegian University of Life Sciences and the International Plant Treaty.
Food security in the prevailing uncertain climatic and economic conditions can only be guaranteed by deliberate actions toward maximizing production, especially in stress-prone environments. The main priority of the CGIAR and NARS breeding programs is to enhance genetic gain in crops through the assessment of seed varieties with drought-resilient, nutritional, and yield traits. This is achieved by leveraging data-driven approaches and embracing contemporary tools and methodologies.
Innovative approaches such as molecular tools, doubled haploid technology, and refined breeding schemes have greatly contributed to the strides made in CIMMYTâs endeavor to elevate genetic gain within breeding pipelines. These advancements not only drive improved productivity but also promise cost-effective strategies for navigating the challenges posed by climate variability.
Molecular Tools
In maize breeding, traditionally, at each stage of the pipeline, entries are grown in multi-location trials. Phenotyping in multiple environments helps to select the best entries not only based on their genetic values but also on environmental factors and their interaction with diverse environments. However, this is also a labor-intensive and time-consuming step in the breeding pipeline. Molecular breeding offers a transformative solution by expanding breeding programs while minimizing phenotyping requirements. It is a well-known fact that trait phenotype results from both genetic and non-genetic factors, with genetic factors being contributed by the expression of genes at the DNA level.
Identifying genomic regions close to causative genes for traits of interest, such as high yield, disease resistance, or quality, can help to incorporate desirable genes/alleles into selected elite genotypes. DNA-based markers aid in efficiently tracking the inheritance of genetic traits, thereby facilitating the selection of desired traits in breeding programs. Marker-assisted forward breeding accelerates the selection of plants with desired traits by identifying the genetic markers associated with those traits. With such harnessed genotypic information, breeders can pre-select genetic material before embarking on the resource-intensive phenotyping stages. This strategic utilization of molecular markers, particularly in identifying susceptibility to key diseases like maize streak virus (MSV) and maize lethal necrosis (MLN), enables the judicious allocation of resources for phenotyping.
Figure 1. Summary of marker-assisted forward breeding across six breeding pipelines for MLN- and MSV-resistance haplotypes over the past six years.
Since 2018, CIMMYT has been implementing marker-assisted forward breeding for MSV and MLN. Since then, more than 100,000 pure breeding lines have been tested by examining their favorable haplotypes with a small set of 10 genetic markers and discarding the lines carrying unfavorable haplotypes for MSV and MLN resistance. In the last six years, nearly 30,000 lines have been rejected before undergoing field testing. In southern Africa, for instance, a rapid response to seed movement using molecular and serological techniques prevented the spread of MLN and facilitated the incorporation of resistance traits into new plant varieties.
Most hybrids in the final stages of breeding pipelines are passed through forward breeding. While Fall Armyworm, Gray Leaf Spot, common rust, and Turcicum Leaf Blight also cause substantial yield reductions in sub-Saharan Africa, research carried out under the AGG project indicates that the genetic makeup of these traits is oligogenic, governed by both moderate and small effect quantitative trait loci (QTLs), but lacking a single major-effect QTL and not amenable to forward breeding. This means that their resistance is influenced by complex multiple genetic factors, rather than being primarily controlled by a few major genetic regions. Alternatively, these biotic stress traits can be improved effectively through genomic selection.
Genomic selection is used to improve complex traits that are controlled by many small-effect QTLs. This approach does not require prior genetic information about the trait of interest and uses genome-wide marker information to estimate all marker effects and select individuals with high genomic-estimated breeding values (GEBVs). This means it uses data from various genetic markers to predict which individuals are likely to have desirable alleles for MSV and MLN. Genomic selection is being applied for grain yield under drought stress, and efforts are underway to extend its application to address more complex challenges related to plant diseases and pests. Foliar diseases are moderately complex traits.
Proof of concept on applying genomic selection for foliar diseases like gray leaf spot and northern corn leaf blight showed high prediction accuracies, supporting the implementation of genomic selection together with forward breeding for other traits at the early stage of the breeding pipeline. Implementing genomic selection for GY under optimum and drought management proved that maize breeders could obtain the same gain as with conventional breeding, where all entries are phenotyped in the field, but at approximately 35-40% less cost. Many candidate hybrids now entering the advanced stages of the breeding pipeline were developed using genomic selection. Several of our earlier studies (Beyene et al., 2015, 2016, 2019, 2021; Chaikam et al., 2019; Crossa et al., 2017; Prasanna et al., 2022; Vivek et al., 2017) showed that breeding pipelines achieved high genetic gain by adopting new molecular tools, thus confirming the benefit of adopting molecular breeding tools.
Currently, in CIMMYTâs eastern and southern breeding pipelines, all product profiles are using genomic selection at stage I, where the training population is evaluated in multiple locations with a sparse design, estimating the GEBVs for the unphenotyped lines, and using GEBVs and phenotypic BLUPs of test crosses in the selection for stage II. This process allows the handling of a large number of lines at stage I with a fixed budget without losing selection accuracy. Since 2017, we have used the âtest half and predict halfâ strategy (Figure 2), where all the lines were genotyped with mid-density markers, and the selected ~50% of the total stage I lines were testcrossed and evaluated in multiple locations to be used as a training population to estimate the GEBVs for the other 50% of the unphenotyped lines for the traits of interest. High prediction correlations were observed in three selected product profiles for GY under optimum, managed drought, and low soil N conditions (Figure 3).
Genomic selection is also implemented to reduce the breeding cycle. However, our final products are three-way cross hybrids, where genomic selection is applied only to select the best line rather than selecting the best hybrid combinations. Historical data were used to test the possibility of reducing the breeding cycle. However, our results showed that the use of historical data to predict 100% of lines from the current year yielded low to moderate prediction correlations both under optimum and drought conditions for GY, anthesis date, and plant height (Figure 4). Incorporating 10 to 30% of the testing population into the training population leads to high prediction correlations. This concludes that by using historical data, the training population, which needs to be test-crossed and evaluated in multiple locations every year, can be reduced from 50% to 10-30%, which helps breeders allocate the saved resources to evaluate more lines without losing prediction accuracy.
Doubled Haploid Technology
Doubled haploid technology speeds up the creation of inbred lines by producing entirely uniform lines. Pedigree line development is a traditional method in plant breeding aimed at gradually improving and stabilizing the genetic makeup of the new variety over time. It involves multiple generations of controlled crosses between parent plants with known characteristics. Each subsequent generation is carefully selected based on specific traits of interest, such as yield, disease resistance, or quality. Pedigree line development is expensive, particularly when nurseries are in remote locations.
Unlike traditional methods where some genetic variation remains, doubled haploid lines are completely homogeneous. This means that there is increased heritability of desirable traits and improved accuracy of selection. Doubled haploid technology, which is more compatible with the use of molecular markers, simplifies breeding processes and shortens the time needed to develop inbred lines (Chaikam et al., 2019).
The first doubled haploid facility in Africa was established in 2013 and is extensively used by the CGIAR, NARES, and the private sector. Over the past five years, 1,349 populations have been induced and more than 223,144 doubled haploid lines delivered to breeding programs from CGIAR, NARES, and the private sector in sub-Saharan Africa. Shifting from traditional pedigree-based breeding to doubled haploid technology has shown a high impact on key breeding metrics (gain per cycle and gain per year) not only in CIMMYT but also in national partners’ breeding programs, thus increasing genetic gain within the available budget.
Figure 2. Number of lines evaluated with phenotypic selection (PS) and genomic selection (GS) at stage I in EAPP1 product profile from 2017 to 2023. (PS â phenotypic selection, GS â genomic selection)Figure 3. Prediction correlations for grain yield (GY) under optimum (OPT), drought (MDt) and low soil N (low N) management conditions in EAPP1, EAPP2 and SAPP1 at stage I in 2023
Figure 4. Prediction accuracies for grain yield (GY), anthesis date (AD) and plant height (PH) estimated from independent validation schemes using a training population (TRN) consisting of 2017- and 2018-years breeding data and 10%, 30%, 50%, 70% and 90% of 2019 data converted from the testing population (TST) to the training population under optimum and managed drought conditions
Beyene, Y., Gowda, M., Suresh, L. M., Mugo, S., Olsen, M., Oikeh, S. O., Juma, C., Tarekegne, A., and Prasanna, B. M. (2017). Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica213.
Beyene, Y., Semagn, K., Crossa, J., Mugo, S., Atlin, G. N., Tarekegne, A., et al. (2016). Improving maize grain yield under drought stress and non-stress environments in sub-saharan africa using marker-assisted recurrent selection. Crop Science 56, 344â353. doi: 10.2135/cropsci2015.02.0135
Beyene, Y., Semagn, K., Mugo, S., Tarekegne, A., Babu, R., Meisel, B., Sehabiague, P., Makumbi, D., Magorokosho, C., and Oikeh, S. (2015). Genetic gains in grain yield through genomic selection in eight biâparental maize populations under drought stress. Crop Science55, 154-163.
Chaikam, V., Molenaar, W., Melchinger, A. E., and Prasanna, B. M. (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theor. Appl. Genet. 132, 3227â3243. doi: 10.1007/s00122-019-03433-x
Prasanna BM, Burgueño J, Beyene Y, Makumbi D, Asea G, Woyengo V, Tarekegne A, Magorokosho C, Wegary D, Ndhlela T, Zaman-Allah M, Matova PM, Mwansa K, Mashingaidze K, Fato P, Teklewold A, Vivek BS, Zaidi PH, Vinayan MT, Patne N, Rakshit S, Kumar R, Jat SL, Singh SB, Kuchanur PH, Lohithaswa HC, Singh NK, Koirala KB, Ahmed S, San Vicente F, Dhliwayo T, Cairns JE. 2022. Genetic trends in CIMMYTâs tropical maize breeding pipelines. Scientific Reports 12, 20110. https://doi.org/10.1038/s41598-022-24536-4
Vivek, B. S., Krishna, G. K., Vengadessan, V., Babu, R., Zaidi, P. H., Kha, L. Q., et al. (2017). Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome 10, 1â8. doi: 10.3835/plantgenome2016.07.0070
Wheat breeding strategies for increased climate resilience
With the challenges of climate change already affecting plant breeding, especially warmer days and warmer nights, the time to future proof the worldâs food supply is now. In order to make the best-informed changes, scientists at CIMMYT ran simulations mimicking five scenarios that might play out over the next 70+ years.
The researchers used 3,652 breeding line records from six global nurseries administered by the International Wheat Improvement Network, which is coordinated by CIMMYT, and involves hundreds of partners and testing sites worldwide. Researchers ran the data through five different climate change scenarios, ranging from stable to severe.
Along with colleagues from Henan Agricultural University, Zhengzhou, China, ICARDA, and the Chinese Academy of Agricultural Sciences, CIMMYT scientists published their research in Nature Climate Change.
The results showed that less than one-third of wheat varieties adapted well to the warming the planet has already seen in the last 10 years. As temperatures increased in the simulation, researchers found a clear connection between rising temperatures and lower stability for a variety. As the global wheat-growing area becomes warmer and experiences more frequent heatwaves, breeding programs have to look beyond just yield optimization.
âStability is key for breeding programs and farmers,â said co-lead author Matthew Reynolds, CIMMYT distinguished scientist and head of wheat physiology. âKnowing that a specific variety works well in a specific environment and produces an expected amount of yield allows farmers better plan their crop futures.â
âWe performed the analysis from different perspectives, so that climate effects and appropriate adjustment suggestions for current breeding models can be considered from climate change, gene selection and/or geneâenvironment interaction perspectives,â said co-lead author Wei Xiong, CIMMYT Senior Scientist and Agricultural System Modeler.
The paradox of breeding elite lines
Local and regional breeding programs, as well as targeted breeding by CIMMYT, contribute to gene pools that overlap for many key agronomic traits, which limit genetic diversity.
âIt is an unintended consequence,â said Reynolds. âAs conventional breeding focuses on crossing the best and elite material, such focus can actually reduce genetic diversity.â
This âparadoxâ shows the need to increase genetic variability and environmental diversification in breeding programs that are developing higher-yielding climate-resilient cultivars. Breeding programs also need to target traits associated with improved adaptation to increased temperatures and tolerance to heatwaves, which requires multidisciplinary integration.
Looking to the past for answers
Over the past 10,000 years, the climate has been unusually stable, meaning modern, domesticated bread wheat has not been exposed to wide swings in temperature that are forecast for the next 100 years. Wild wheat relatives, like Triticeae, have had millions of years of experience in weathering changing climates.
CIMMYT has a pre-breeding program that examines wild wheat races and more exotic sources for climate resilience traits. When such traits are identified genetically, new breeding techniques such as gene editing can be employed and breeding models refined.
To activate these new techniques, several barriers need to be overcome, including more sharing of germplasm between countries and breeding teams, the use of faster breeding cycles where appropriate and improved understanding of genes that improve heat tolerance without a yield penalty.
With reduced climate resilience and slow cultivar development, the need to increase genetic variability for climate adaptation is urgent, particularly in developing countries, where warming rate is unprecedented, and breeding cycles tend to be longer than in developed countries.
âFaced with more climate variability, breeders need to revisit their breeding strategies to integrate genetic diversity that confers climate resilience without penalties to productivity,â said Reynolds.
While agricultural food systems feed the world, they also account for nearly a third of the worldâs greenhouse gas (GHG) emissions. Reducing the negative environmental footprint of agrifood systems while at the same time maintaining or increasing yields is one of the most important endeavors in the worldâs efforts to combat climate change.
One promising mechanism is carbon credits, a set of sustainable agricultural practices designed to enhance the soilâs ability to capture carbon and decrease the amount of GHGâs released into the atmosphere.
Farmers generate these carbon credits based on their reduction of carbon released and then sell these credits in the voluntary carbon market, addressing the critical concern of sustainably transforming agricultural systems without harming farmersâ livelihoods.
Two is better than one
Conservation Agriculture (CA) is a system that involves minimum soil disturbance, crop residue retention, and crop diversification, among other agricultural practices. Its potential to mitigate threats from climate change while increasing yields has made it increasingly popular.
Using remote sensing data and surveys with farmers in the Indian states of Bihar and Punjab, four CIMMYT researchers quantified the effect on farmerâs incomes by combining CA methods with carbon credits. Their findings were published in the April 22, 2024, issue of Scientific Reports.
Previous CIMMYT research has shown that implementing three CA practices: efficient fertilizer use, zero-tillage, and improved rice-water management could achieve more than 50% of India’s potential GHG reductions, amounting to 85.5 million tons of CO2.
âSuccessfully implemented carbon credit projects could reward farmers when they adopt and continue CA practices,â said Adeeth Cariappa, lead author and environmental and resource economist at CIMMYT. âThis creates a winâwin scenario for all stakeholders, including farmers, carbon credit businesses, corporate customers, the government, and the entire economy.â
Farmers would enjoy an additional income source, private sectors would engage in employment-generating activities, the government would realize cost savings, and economic growth would be stimulated through the demand generated by these activities.
Less carbon and more income
The researchers found by adopting CA practices in wheat production season, farmers can reduce GHG emissions by 1.23 and 1.97 tons of CO2 per hectare of land in Bihar and Punjab States, respectively.
The researchers determined that CA practices, when combined with carbon credits, could boost farmer income by US $18 per hectare in Bihar and US $30 per hectare in Punjab. In Punjab, however, there is a ban on burning agricultural residue, which reduces potential earnings from carbon markets to US $16 per hectare.
âMore farmers engaging CA methods is an overall positive for the environment,â said Cariappa. âBut convincing individual farmers can be a struggle. By showing them that carbon credits are another potential source of income, along with increased yields, the case for CA is that much stronger.â
While the potential benefits are significant, there are challenges to linking CA and carbon credits.
âTo achieve these potential benefits, carbon credit prices must rise, and projects must be carefully planned, designed, monitored, and implemented,â said Cariappa. âThis includes selecting the right interventions and project areas, engaging with farmers effectively, and ensuring robust monitoring and implementation mechanisms.â
In a discussion on the future of crop breeding at the Cereals seminar, experienced wheat breeder Bill Angus highlighted CIMMYT as a leading example of effective global crop breeding, particularly for regions with limited agricultural inputs. He emphasized that while the UK has a competitive wheat breeding environment, it could learn from CIMMYT’s approach, which successfully develops wheat varieties suited for the developing world, where farmers often lack the luxury of chemical inputs. Angus advocated for the UK to adopt a more impactful and globally engaged breeding strategy, drawing inspiration from CIMMYT’s successes.
CIMMYT proudly announces that Distinguished Scientist and Head of Wheat Physiology, Matthew Reynolds, has been honored with the prestigious 2024 International Crop Science Award by the Crop Science Society of America (CSSA). Reynolds has advanced CIMMYTâs mission by promoting global partnerships that strengthen plant science, expand the centerâs international reach, and provide young scientists with opportunities to engage in agricultural research.
Revolutionizing wheat breeding for climate resilience
Reynolds develops wheat breeding technologies aimed at improving climate resilience and the productivity of wheat cropping systems. His research has unveiled the physiological bases of yield potential and abiotic stress resistance in wheat. Reynolds’s efforts reveal the genetic underpinnings of complex traits, facilitating the development of hardier wheat varieties from diverse gene pools.
Global collaboration and impact
Reynolds promotes international collaboration among wheat scientists. He leads key initiatives such as the International Wheat Yield Partnership (IWYP) and the Heat and Drought Wheat Improvement Consortium (HEDWIC). These collaborations leverage collective expertise and have resulted in significant outputs, including high-yield lines tested at approximately 200 sites globally, which confirm innovative routes to enhanced yields and climate resilience.
Mentorship and educational contributions
Reynolds’s laboratory at CIMMYT is a hub for mentoring young scientists. He has provided open-access manuals on phenotyping, translated into four languages, to support global research efforts. His extensive publication record covers crop physiology, genomics, and pre-breeding. Since 2018, Reynolds has consistently ranked in the top 1% of researchers in his field by Web of Science. In 2024, Matthew Reynolds also received the Research.com Plant Science and Agronomy in Mexico Leader Award for placing 53rd in the world and 1st in Mexico.
International Crop Science Award
The International Crop Science Award recognizes creativity and innovation in transforming crop science practices, products, and programs on an international level. The award acknowledges scientists who have achieved global impact through long-lasting knowledge generation that strengthens international crop science.
For more information on the 2024 awards, including award descriptions, please visit CSSA Awards or contact awards@sciencesocieties.org.
The SKUAST-K Maize Improvement Programme, in collaboration with CIMMYT, is making significant advancements in maize agriculture in Jammu and Kashmir. By developing resilient maize varieties and leveraging cutting-edge research, the programme addresses key challenges such as poor soil nutrition and erratic rainfall. This partnership has not only enhanced maize productivity and climate resilience but also secured substantial funding and facilitated the release of landmark varieties, ultimately contributing to a sustainable maize-based economy in the region.