Skip to main content

Location: Malawi

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.

CGIAR Initiative: Sustainable Intensification of Mixed Farming Systems (SI-MFS)

Most agricultural production in the Global South takes place in mixed farming systems, which allow farmers to diversify risk from single crop production, use labor efficiently, access cash and add value to products. Key drivers — climate change, population pressure, urbanization, water scarcity, changing diets, volatile food prices — mean that flexible and accelerated changes in mixed farming systems will be needed to achieve global targets such as the Sustainable Development Goals. Sustainable intensification, or the production of more food on the same piece of land while reducing the negative environmental impact, is a viable avenue.

Two types of hurdles must be overcome to adequately meet the challenge at farming systems level. One hurdle is to ensure efficient coordination, integration and transfer of innovations, information, tools and standardized methodologies. A second hurdle is to integrate multiple biophysical and socio-economic thematic-level outputs and identify strategies that minimize trade-offs and maximize synergies, resulting in multiple impacts at scale.

Objective

This Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agro-ecologies and socio-economic settings.

Activities

This objective will be achieved through:

  • Analyzing status, trends and future dynamics of mixed farming systems to identify entry points for equitable sustainable intensification, to mitigate negative impacts of change and seize emerging opportunities for livelihoods.
  • Building methods and tools for sustainable intensification of mixed farming systems to support decisions on what kind of sustainable intensification might work where, and for whom, in specific contexts.
  • Participatory co-design of mixed farming systems with evidence-based, validated sustainable intensification innovation packages that are responsive to improving efficiency, equity and resilience, in regions where mixed farming systems dominate the landscape.
  • Advancing and supporting scaling of innovations, through strategic partnerships and building the capacity of relevant actors in scaling approaches — a gender-transformative approach will be central to all innovation and scaling design to enhance equity.
  • Capacity-building for mixed farming system design and analyses, to support long-term impact on university and college students, scientists, extension agents, farmers, private sector, policy makers and development actors.

Outcomes

Proposed 3-year outcomes include:

  1. Smallholder farmers use resource-efficient and climate-smart technologies and practices to enhance their livelihoods, environmental health and biodiversity.
  2. Research and scaling organizations enhance their capabilities to develop and disseminate innovations.
  3. Smallholder farmers implement new practices that mitigate risks associated with extreme climate change and environmental conditions and achieve more resilient livelihoods.
  4. Women are youth are empowered to be more active in decision-making in food, land and water systems.
  5. National and local governments utilize enhanced capacity to assess and apply research evidence and data in policymaking processes.

New CGIAR Initiative to catalyze resilient agrifood systems in eastern and southern Africa

Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)
Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)

Partners of CGIAR’s new regional integrated Initiative in eastern and southern Africa held a kick-off meeting in Nairobi on March 2–3, 2022. Eighty-five people participated, including national agricultural research extension programs, government representatives, private sector actors, funders and national and regional agricultural research and development organizations.

Entitled Ukama Ustawi, the Initiative aims to support climate-smart agriculture and livelihoods in 12 countries in eastern and southern Africa: Kenya, Zambia, Ethiopia and Zimbabwe (in Phase 1); Malawi, Rwanda, Tanzania and Uganda (in Phase 2); and Eswatini, Madagascar, Mozambique and South Africa (in Phase 3).

The Initiative aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.

Ukama Ustawi is a bilingual word derived from the Shona and Swahili languages. In Shona, Ukama refers to partnerships, and in Swahili, Ustawi means well-being and development. Together, they resemble the vision for the Initiative to achieve system-level development through innovative partnerships.

The meeting brought together partners to get to know each other, understand roles and responsibilities, identify priorities for 2022, and review the cross-cutting programmatic underpinnings of Ukama Ustawi — including gender and social inclusion, capacity strengthening and learning.

Baitsi Podisi, representing the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), said he is excited to be part of the Initiative: “CCARDESA, in its cooperation and coordination mandate, can learn a lot from CGIAR in restructuring to respond to the changing times.” Podisi supported the partnership with CGIAR in the Initiative’s embedded approach to policy dialogue, working with partners such as CCARDESA, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN).

Similarly, FANRPAN’s Francis Hale emphasized the need not to re-invent the wheel but to work with partners who already have a convening power, to advance the policy agenda for diversification and sustainable intensification.

What were key issues discussed?

One of the features of Ukama Ustawi is the use of four interconnected platforms: a scaling hub, a policy hub, an accelerator program and a learning platform. These will provide spaces for exchange and learning with partners across all CGIAR Initiatives in the region. Partners conducted a series of ‘fishbowl’ interactions across work packages to review the planned activities and provide a clearer understanding of deliverables, identify synergies, potential overlaps, common partners and countries, and set timelines.

The Initiative will work with innovative multimedia platforms to change knowledge, attitudes and practices of millions of farmers in eastern and southern Africa. One key partner in this area is the Shamba Shape Up TV show and the iShamba digital platform. Sophie Rottman, Producer of Shamba Shape Up, said she is looking forward to the work with Initiative partners, that will help expand the show to Uganda and Zambia.

Jean Claude Rubyogo, representing the Pan-Africa Bean Research Alliance (PABRA) said: “It is time we move away from CGIAR-initiated to country-initiated development activities. This is what Ukama Ustawi is all about”.

Martin Kropff, Global Director of Resilient Agrifood Systems at CGIAR, explained CGIAR’s regional integrated initiatives are designed to respond to national/regional demands. “The initiatives will start by working with partners to assess the food and nutritional challenges in the region, and tackle them by bringing in innovative solutions.”

The event was concluded by agreeing on the implementation of the inception phase of the Ukama Ustawi Initiative, and follow-on discussions to finalize key activities in 2022.

Learn more about the Ukama Ustawi Initiative.

Materials from the meeting are available online:

This article was originally published on CGIAR.org.

Hambulo Ngoma

Hambulo Ngoma is a Development Economist with research interests spanning the development-environment nexus. He leads or co-leads socio-economic components of several projects in Southern Africa, mainly in Malawi, Tanzania, Zambia, and Zimbabwe. His current research is focused on adoption, scaling, and impact assessment, with special interest in nudging agricultural technology adoption.

He is formerly a Postdoctoral Associate of the Department of Agricultural, Food and Resources Economics of Michigan State University and a Research Fellow and Lead of the Climate Change and Natural Resource Management thematic area at the Indaba Agricultural Policy Research Institute (IAPRI) in Lusaka, Zambia.

He holds a PhD in Applied Economics from the School of Economics and Business, Norwegian University of Life Sciences, an MSc in Applied and Agricultural Economics from the University of Malawi and a BSc in Agricultural Economics from the University of Zambia.

Fighting the stress

East African Seed Company has a rich history of nearly 50 years, serving farmers with improved climate-resilient seed varieties. Established in 1972, the company produces and sells improved seed, through a wide distribution network in at least 15 countries in sub-Saharan Africa. It also markets agrochemicals and other farm inputs, and has ambitions of expanding to the rest of Africa, trading as Agriscope Africa Limited.

Smallholder farmers in sub-Saharan Africa continue to face multiple biotic and abiotic stresses as they try to improve their farms’ productivity and their livelihoods. Maize seed that guarantees high yield is a key trait, coupled with other key attributes such as drought tolerance, disease and pest resistance, early seedling vigor as well as suitability for food and animal feed.

With the varieties serving both small- and large-scale commercial farmers, challenges such as the fall armyworm, diminishing soil fertility and erratic rains have persisted in recent years and remain as key farming obstacles. “Such challenges diminish crop production and the grain quality thereby, lessening farmers’ profitability,” says Rogers Mugambi, Chief Operating Officer of East African Seed Company.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with partners in the national agriculture research systems and the commercial seed sector, continue to develop seed varieties that can guarantee decent yield even in times of climatic, disease and pest stress.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Top-notch research trickles down to farmers

Over the years, East African Seed has inked partnerships with CIMMYT, national research institutes and other agencies in the countries where it operates. Such partnerships have been the driving force to its success and the impacts within the farming communities in sub-Saharan Africa.

“Our collaboration with CIMMYT began in 2008 with germplasm acquisition. The cooperation has expanded to include testing networks for new hybrids, early-generation seed production and marketing. The overall beneficiary is the smallholder farmer who can access quality seeds and produce more with climate-smart products,” Mugambi says.

Apart from the multi-stress-tolerant varieties developed and released over time by the national agricultural research programs, CIMMYT recently announced a breakthrough: fall armyworm-tolerant elite maize hybrids for eastern and southern Africa. This success followed three years of rigorous research and experiments conducted in Kenya and signified a key milestone in the fight against fall armyworm.

As part of the partnership in the Drought Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA) projects, East African Seed Company (Agriscope Africa Limited) established demonstration farms and conducted field days in Kenya, reaching thousands of farmers as a result. It was also able to produce early generation seed, which supported production of 2,000 metric tons of certified seed. This partnership now continues in the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

The company has contracted large- and small-scale growers across the country to meet its seed production targets.

“Most of our small-scale growers are clustered in groups of up to 30 farmers with less than five acres of farmland. The large growers have advanced irrigation facilities such as the pivot system and seed processing plants. The seed from the fields is pre-cleaned and dried in the out-grower facilities before delivery to our factory for further cleaning and processing,” Mugambi explains.

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. (Photo: Anne Wangalachi/CIMMYT)

Out with the drought

Currently, of the 1,300 metric tons of drought-tolerant hybrid seeds it produces yearly, 500 metric tons constitute those derived from the partnership in the STMA project. Two notable hybrids,  HODARI (MH501) and TOSHEKA (MH401), were derived during the DTMA and STMA projects. Released in 2014 and accepted for regional certification through the Common Market for Eastern and Southern Africa (COMESA)’s regional catalogue, the MH501 is a mid-altitude adapted and medium maturing three-way cross hybrid. The yield advantage of 15% over the local commercial checks triggered widespread adoption by the farmers, according to Mugambi. In Kenya, it was used as a commercial check during national performance trials, from 2017 to 2019.

The MH401, an early maturing hybrid with moderate drought tolerance, has been adopted in lowland and mid-altitude dry ecologies of Kenya and Tanzania. It has a 20% yield advantage over the local commercial checks.

As part of its varietal replacement, East African Seed Company looks to steadily retire older varieties such as KH600-15A and WE1101 and promote new ones including TAJIRI (EASH1220), TAJI (MH502) and FARAJA (MH503).

To promote new varieties and successfully reach smallholders, the company conducts field days, farm-level varietal demonstrations, road shows and radio programs. It also disseminates information on the benefits of new varieties while also dispensing promotional materials such as branded t-shirts and caps.

“Additionally, we organize annual field days at our research farm in Thika, where key and influential farmers and other stakeholders are invited from across Kenya and neighboring countries to learn about our new agricultural technologies,” Mugambi says.

Development of Smart Innovation through Research in Agriculture (DeSIRA)

The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.

CIMMYT’s role is focused on the following project outputs:

  • Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
  • Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.

Q&A: A decade of improved and climate-smart maize through collaborative research and innovation

The food security and livelihoods of smallholder farming families in sub-Saharan Africa depend on maize production. The region accounts for up to two-thirds of global maize production, but is facing challenges related to extreme weather events, climate-induced stresses, pests and diseases, and deteriorating soil quality. These require swift interventions and innovations to safeguard maize yields and quality.

In this Q&A, we reflect on the results and impact of the long-term collaborative work on drought-tolerant maize innovations spearheaded by two CGIAR Research Centers: the International Maize and Wheat Improvement Center (CIMMYT) and International Institute of Tropical Agriculture (IITA). This innovative work has changed guises over the years, from the early work of the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects through later iterations such as Stress Tolerant Maize for Africa (STMA) and the newest project, Accelerating Genetic Gains in Maize and Wheat (AGG).

In this Q&A, three leaders of this collaborative research reflect on the challenges their work has faced, the innovations and impact it has generated for smallholder farmers, and possible directions for future research. They are: B.M Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program on Maize (MAIZE); Abebe Menkir, a maize breeder and maize improvement lead at IITA; and Cosmos Magorokosho, project lead for AGG-Maize at CIMMYT.

Briefly describe the challenges confronting small-scale farmers prior to the introduction of drought-tolerant maize and how CIMMYT and IITA responded to these challenges?

B.M.P.: Maize is grown on over 38 million hectares in sub-Saharan Africa, accounting for 40% of cereal production in the region and providing at least 30% of the population’s total calorie intake. The crop is predominantly grown under rainfed conditions by resource-constrained smallholder farmers who often face erratic rainfall, poor soil fertility, increasing incidence of climatic extremes — especially drought and heat — and the threat of devastating diseases and insect pests.

Around 40% of maize-growing areas in sub-Saharan Africa face occasional drought stress with a yield loss of 10–25%. An additional 25% of the maize crop suffers frequent drought, with yield losses of up to 50%. Climate change is further exacerbating the situation, with devastating effects on the food security and livelihoods of the millions of smallholder farmers and their families who depend on maize in sub-Saharan Africa. Therefore, the improved maize varieties with drought tolerance, disease resistance and other farmer-preferred traits developed and deployed by CIMMYT and IITA over the last ten years in partnership with an array of national partners and seed companies across sub-Saharan Africa are critical in effectively tackling this major challenge.

A.M.: Consumption of maize as food varies considerably across sub-Saharan Africa, exceeding 100 kg per capita per year in many countries in southern Africa. In years when rainfall is adequate, virtually all maize consumed for food is grown in sub-Saharan Africa, with a minimal dependence on imported grain. Maize production, however, is highly variable from year to year due to the occurrence of drought and the dependence of national maize yields on seasonal rainfall. One consequence has been widespread famine occurring every five to ten years in sub-Saharan Africa, accompanied by large volumes of imported maize grain as food aid or direct imports.

This places a significant strain on resources of the World Food Programme and on national foreign exchange. It also disincentivizes local food production and may not prevent or address cyclical famine. It also leaves countries ill-equipped to address famine conditions in the period between the onset of the crisis and the arrival of food aid. Investment in local production, which would strengthen the resilience and self-sufficiency in food production of smallholder farming families, is a far better option to mitigate food shortages than relying on food aid and grain imports.

C.M.: Smallholder farmers in sub-Saharan Africa face innumerable natural and socioeconomic constraints. CIMMYT, in partnership with IITA and national agricultural research system partners, responded by developing and catalyzing the commercialization of new maize varieties that produce reasonable maize yields under unpredictable rainfall-dependent growing season.

Over the life of the partnership, more than 300 new climate-adaptive maize varieties were developed and released in more than 20 countries across sub-Saharan Africa where maize is a major staple food crop. Certified seed of over 100 stress-tolerant improved maize varieties have been produced by seed company partners, reaching more than 110,000 tons in 2019. The seeds of these drought-tolerant maize varieties have benefited more than 8 million households and were estimated to be grown on more than 5 million hectares in eastern, southern and west Africa in 2020.

A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)
A farmer in Mozambique stands for a photograph next to her drought-tolerant maize harvest. (Photo: CIMMYT)

In what ways did the drought-tolerant maize innovation transform small-scale farmers’ ability to respond to climate-induced risks? Are there any additional impacts on small scale farmers in addition to climate adaptation?

B.M.P.: The elite drought-tolerant maize varieties can not only provide increased yield in drought-stressed crop seasons, they also offer much needed yield stability. This means better performance than non-drought-tolerant varieties in both good years and bad years to a smallholder farmer.

Drought-tolerant maize varieties developed by CIMMYT and IITA demonstrate at least 25-30% grain yield advantage over non-drought-tolerant maize varieties in sub-Saharan Africa under drought stress at flowering. This translates into at least a 1 ton per hectare enhanced grain yield on average, as well as reduced downside risk in terms of lost income, food insecurity and other risks associated with crop yield variability. In addition to climate adaptation, smallholder farmers benefit from these varieties due to improved resistance to major diseases like maize lethal necrosis and parasitic weeds like Striga. We have also developed drought-tolerant maize varieties with enhanced protein quality — such as Quality Protein Maize or QPM — and provitamin A, which improve nutritional outcomes.

We must also note that drought risk in sub-Saharan Africa has multiple and far-reaching consequences. It reduces incentives for smallholder farmers to intensify maize-based systems and for commercial seed companies to invest and evolve due to a limited seed market.

Drought-tolerant maize is, therefore, a game changer as it reduces the downside risk for both farmers and seed companies and increases demand for improved maize seed, thus strengthening the commercial seed market in sub-Saharan Africa. Extensive public-private partnerships around drought-tolerant maize varieties supported the nascent seed sector in sub-Saharan Africa and has enabled maize-based seed companies to significantly grow over the last decade. Seed companies in turn are investing in marketing drought-tolerant maize varieties and taking the products to scale.

A.M.: The DTMA and STMA projects were jointly implemented by CIMMYT and IITA in partnership with diverse national and private sector partners in major maize producing countries in eastern, southern and western Africa to develop and deploy multiple stress-tolerant and productive maize varieties to help farmers adapt to recurrent droughts and other stresses including climate change.

These projects catalyzed the release and commercialization of numerous stress-resilient new maize varieties in target countries across Africa. Increasing the resilience of farming systems means that smallholder farmers need guaranteed access to good quality stress resilient maize seeds. To this end, the two projects worked with public and private sector partners to produce large quantities of certified seeds with a continual supply of breeder seeds from CIMMYT and IITA. The availability of considerable amount of certified seeds of resilient maize varieties has enabled partners to reach farmers producing maize under stressful conditions, thus contributing to the mitigation of food shortages that affect poor people the most in both rural and urban areas.

C.M.: The drought-tolerant maize innovation stabilized maize production under drought stress conditions in sub-Saharan Africa countries. Recent study results showed that households that grew drought-tolerant maize varieties had at least half a ton more maize harvest than the households that did not grow the drought-tolerant maize varieties, thus curbing food insecurity while simultaneously increasing farmers’ economic benefits. Besides the benefit from drought-tolerant innovation, the new maize varieties developed through the partnership also stabilized farmers’ yields under major diseases, Striga infestation, and poor soil fertility prevalent in sub-Saharan Africa.

How is the project addressing emerging challenges in breeding for drought-tolerant maize and what opportunities are available to address these challenges in the future? 

Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)
Margaret holds an improved ear of drought-tolerant maize. Margaret’s grandmother participated in an on-farm trial in Murewa district, 75 kilometers northeast of Zimbabwe’s capital Harare. (Photo: Jill Cairns/CIMMYT)

B.M.P.: A strong pipeline of elite, multiple-stress-tolerant maize varieties — combining other relevant adaptive and farmer-preferred traits — has been built in sub-Saharan Africa through a strong germplasm base, partnerships with national research partners and small- and medium-sized seed companies, an extensive phenotyping and multi-location testing network, and engagement with farming communities through regional on-farm trials for the identification of relevant farmer-preferred products.

CGIAR maize breeding in sub-Saharan Africa continues to evolve in order to more effectively and efficiently create value for the farmers we serve. We are now intensively working on several areas: (a) increasing genetic gains (both on-station and on-farm) through maize breeding in the stress-prone environments of sub-Saharan Africa by optimizing our breeding pipelines and effectively integrating novel tools, technologies and strategies (e.g., doubled haploids, genomics-assisted breeding, high-throughput and precise phenotyping, improved breeding data management system, etc.); (b) targeted replacement of old or obsolete maize varieties in sub-Saharan Africa with climate-adaptive and new varieties; (c) developing next-generation climate-adaptive maize varieties with traits such as native genetic resistance to fall armyworm, and introgressed nutritional quality traits (e.g., provitamin A, high Zinc) to make a positive impact on the nutritional well-being of consumers; and (d) further strengthening the breeding capacity of national partners and small and medium-sized seed companies in sub-Saharan Africa for a sustainable way forward.

A.M.:  The DTMA and STMA projects established effective product pipelines integrating cutting-edge phenotyping and molecular tools to develop stress-resilient maize varieties that are also resistant or tolerant to MLN disease and fall armyworm. These new varieties are awaiting release and commercialization. Increased investment in strengthening public and private sector partnerships is needed to speed up the uptake and commercialization of new multiple stress-resilient maize varieties that can replace the old ones in farmers’ fields and help achieve higher yield gains.

Farmers’ access to new multiple-stress-tolerant maize varieties will have a significant impact on productivity at the farm level. This will largely be due to new varieties’ improved response to fertilizer and favorable growing environments as well as their resilience to stressful production conditions. Studies show that the adoption of drought-tolerant maize varieties increased maize productivity, reduced exposure to farming risk among adopters and led to a decline in poverty among adopters. The availability of enough grain from highly productive and stress-resilient maize varieties can be the cheapest source of food and release land to expand the cultivation of other crops to facilitate increased access to diversified and healthy diets.

C.M.:  The project is tackling emerging challenges posed by new diseases and pests by building upon the successful genetic base of drought-tolerant maize. This is being done by breeding new varieties that add tolerance to the emerging disease and pest challenges onto the existing drought-tolerant maize backgrounds. Successes have already been registered in breeding new varieties that have high levels of resistance to MLN disease and the fall armyworm pest.

Opportunities are also available to address new challenges including: pre-emptively breeding for threats to maize production challenges that exist in other regions of the world before these threats reach sub-Saharan Africa; enhancing the capacity of national partners to build strong breeding programs that can address new threats once they emerge in sub-Saharan Africa; and sharing knowledge and novel high-value breeding materials across different geographies to immediately address new threats once they emerge.

Cover photo: Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)

Who benefits?

Maize post-harvest losses in smallholder farming systems in sub-Saharan Africa have been shown to result in significant costs at household and national level, making it difficult to move towards achievement of SDG2 – Zero Hunger.

Within smallholder farming systems, new grain storage technologies such as metal silos can help reduce these losses during storage. However, technologies are often introduced into systems with complex sets of relationships, which may differentially affect the ability of women and men to secure the expected benefits. This, in turn, can have a knock-on effect on adoption rates and expected outcomes.

A recent study by an international team of researchers investigated whether modern storage structures such as metal silos provide equal benefits to women and men farmers in sub-Saharan Africa, using a mixed methods approach to explore the relationships governing maize production and storage in Kenya, Malawi, Zambia and Zimbabwe, where 1717 metal silos have been introduced through the Effective Grain Storage Project (EGSP).

The authors used random sampling to carry out quantitative surveys on metal silo owners in Kenya (124 respondents) and Malawi (100 respondents). Qualitative surveys using purposive sampling were also conducted in all four countries covering 14 ethnic groups using focus group discussions (360 respondents), key informant interviews (62 respondents), and household case studies (62 respondents). “Our aim was to understand gendered post-harvest management and storage strategies in traditional systems and to map changes when metal silos were introduced,” explain the authors.

“We hypothesized that existing gender norms might differentially influence women’s ability to benefit from the introduction of metal silos and our findings seem to indicate that this is correct. In most instances when metal silos are introduced, ownership of the grain storage facility and any benefits attached to that ownership typically switch from women to men, or men’s existing control over stored maize is deepened.”

A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)
A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)

Their findings highlight that roles and responsibilities regarding the ownership and management of storage structures are strongly gendered. Though there are differences between ethnic groups and countries, overall men benefit more than women from the introduction of metal silos. Ownership of a grain storage facility and the benefits attached to this ownership can switch from women to men, with women having less scope for bargaining over their rights to use the stores for their own needs and the benefit of all household members.

Many of the women interviewed suggested that this compromised their ability to access sufficient maize because men might insist on taking any grain set aside to meet their personal needs. “We did not measure how much grain is taken and whether food security is indeed negatively affected, but our research registers that women are concerned about this issue.”

The qualitative research explored whether ownership over the granary — and control over the maize stored within — changed when metal silos were purchased. In all four countries, cultural norms tend to result in men typically owning all large household assets such as land, water pumps, ox-ploughs and carts, etc. They generally make key decisions about how these assets are to be used as well. Furthermore, the income differential between women and men in male-headed households means that it is considerably more difficult for women than men to make a large purchase like a metal silo. “As a consequence of these factors, we found men were more likely to own metal silos in each country.”

There is some differentiation between ethnic groups. In Zimbabwe, for example, Zezuru women who had previously owned and managed a dura — a traditional granary — lost control over maize grain reserves when metal silos were introduced. But for Korekore women nothing changed: men had always controlled traditional storage technologies and the maize within, and they continued to do so when metal silos were introduced. These examples highlight the fact that despite the cultural differences between ethnic groups, Zimbabwean women lost out across the board when metal silos were introduced, either through losing control over storage structures, or because male ownership was not challenged.

In light of these findings, the authors argue that understanding social context is key to designing and disseminating post-harvest technologies that meet the needs and preferences of both men and women farmers in various cultural contexts.

Their results make a strong case for ensuring that agricultural policy-makers prioritize the provision of equal access to improved technologies, as this is crucial not only for supporting women to meet their individual production goals, but also for ensuring that household-level food security needs are met.

Read the full study “Do metal grain silos benefit women in Kenya, Malawi, Zambia and Zimbabwe?” in the Journal of Stored Products Research.

Building networks and capacity

The active involvement of partners in the co-design of project and capacity building activities is key to the success of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, led by the International Maize and Wheat Improvement Center (CIMMYT). To that end, the AGG Regional Collaborative Breeding and Testing Networks launched with virtual meetings on September 14 and 15 for southern African partners, and October 28 and November 2 for eastern African partners.

In addition, the AGG team collaborated with researchers from the Excellence in Breeding (EiB) Platform on a number of capacity development webinars in October and November, on topics including Continuous Improvement for breeding processes, programs and products,  enhancing and measuring genetic gain in crop breeding, and a three-webinar series on statistical analysis for plant breeders with CIMMYT’s Biometrics and Statistics Unit.

These training events and regional meetings provided opportunities for well over 100 breeders from CIMMYT, national agricultural research systems (NARS) and seed companies to refresh their capacities to improve genetic gains, and to collectively review and discuss upcoming project activities, current issues of interest, and broader project objectives within their current regional context.

Several themes of importance to partners emerged during the network virtual meetings, for attention in future AGG activities and capacity development work.

Gender inclusion and the impact of COVID-19

Ugandan partners, including Godfrey Asea, director of the National Crops Resources Research Institute at Uganda’s National Agricultural Research Organization, and Josephine Okot, founder and managing director of Victoria Seeds, applauded the project’s emphasis on inclusion of women’s knowledge and preferences in breeding programs.

“We notice that this time there is a lot of focus on gender-inclusiveness,” remarked Asea. “I can tell you there is need for enhanced capacity building for both the private sector and research in proper gender inclusion.”

They also noted the importance of building local capacity, not just for food security but also for other value chain items like raw materials. “COVID-19 has demonstrated to all policy-makers that we cannot depend on the global supply chains,” said Okot. “How can we leverage this project if, for instance, some private sector actors want to [know] the appropriate protein-content maize for, say, animal feed?”

Godfrey Asea (R) and Daniel Bomet (L) from Uganda’s National Agricultural Research Organization (NARO) admire maize cobs on a farm in Uganda. (Photo: Joshua Masinde/CIMMYT)
Godfrey Asea (R), director of the National Crops Resources Research Institute (NaCRRI) at Uganda’s National Agricultural Research Organization (NARO), and Daniel Bomet (L), a maize breeder at NARO, admire maize cobs on a farm in Uganda. (Photo: Joshua Masinde/CIMMYT)

Demand for knowledge

NARS members in Tanzania requested increased support on how to measure or assess genetic gains, especially at the national level, to allow them to establish a baseline upon which genetic gains would be pegged for the project lifecycle.

With statistics an essential element to plant breeding — from analyzing yield trials to ranking varieties — the webinar series in Statistical Analysis for Plant Breeders was a first step towards meeting these capacity development needs.

“The idea of this webinar series was to share insights on how we can improve the breeding plans using statistical methods in an effective way,” said Juan Burgueño, the head of CIMMYT’s Biometrics and Statistics Unit. “The training offered both theory and hands-on experience using open-access software.”

Reaching farmers

Looking beyond breeding, meeting participants also discussed how to improve access and adoption of improved varieties among farmers.

“For a large country such as Tanzania, it is at times very hard to reach the farmers,” said Zabron Mbwaga, managing director of the Tanzania-based Beula Seed Company and Consultancy Limited. “We may have a lot of seed in the store, but how to get the farmers to adopt the newer varieties is quite difficult. This is more so when farmers tend to stick to varieties which they know well and are always reluctant to adopt the new varieties,” he explained.

“We need to put in a lot of effort to set up demonstration farms and enhance other awareness-raising activities such as radio programs so that farmers can know about the new varieties.”

This interest in working with smallholder farmers along the entire value chain was echoed by partners in southern Africa.

“Through this project, we would like to explore ways of collaborating along the whole value chain — as the Agriculture Research Council, other partners and small to medium enterprises — to make it an effective chain,” said Kingstone Mashingaidze, senior research manager at the South Africa Agricultural Research Council. “By planning together, we can identify best-fits for all activities in the value chain and ultimately benefit the smallholder farmers.”

About the AGG Regional Collaborative Breeding and Testing Networks

The AGG Regional Collaborative Breeding and Testing Networks aim to improve breeding efficiencies among partners by enabling the use of modern tools and approaches and enriching the existing network of research organizations, public and private seed companies, farmers’ organizations, non-governmental organizations and community-based organizations. It is expected that these networks will lead to increased efficiency and communications across the partnership network and within countries, improved sharing of best practices and protocols, and increased collective ownership of products for accelerated variety development and turnover.

The virtual meetings for the Regional Collaborative Breeding and Testing Network for southern Africa convened participants from Malawi, Mozambique, South Africa, Zambia and Zimbabwe, while meetings for eastern Africa had participants from Ethiopia, Kenya, Tanzania and Uganda.

AGG communications staff Joshua Masinde and Shiela Chikulo contributed to this story.

Breaking Ground: Isaiah Nyagumbo advances climate-smart technologies to improve smallholder farming systems

Most small farmers in sub-Saharan Africa rely on rain-fed agriculture to sufficiently feed their families. However, they are increasingly confronted with climate-induced challenges which hinder crop production and yields.

In recent years, evidence of variable rainfall patterns, higher temperatures, depleted soil quality and infestations of destructive pests like fall armyworm cause imbalances in the wider ecosystem and present a bleak outlook for farmers.

Addressing these diverse challenges requires a unique skill set that is found in the role of systems agronomist.

Isaiah Nyagumbo joined the International Maize and Wheat Improvement Center (CIMMYT) in 2010 as a Cropping Systems Agronomist. Working with the Sustainable Intensification program, Nyagumbo has committed his efforts to developing  conservation agriculture  technologies  for small farming systems.

“A unique characteristic of systems agronomists,” Nyagumbo explains, “is the need to holistically understand and address the diverse challenges faced by farming households, and their agro-ecological and socio-economic environment. They need to have a decent understanding of the facets that make technology development happen on the ground.”

“This understanding, combined with technical and agronomical skills, allows systems agronomists to innovate around increasing productivity, profitability and efficient farming practices, and to strengthen farmers’ capacity to adapt to evolving challenges, in particular those related to climate change and variability,” Nyagumbo says.

Isaiah Nyagumbo stands next to a field of maize and pigeon pea. Currently, Nyagumbo’s research seeks to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity. (Photo: CIMMYT)
Isaiah Nyagumbo stands next to a field of maize and pigeon pea. Currently, Nyagumbo’s research seeks to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity. (Photo: CIMMYT)

Gaining expert knowledge

Raised by parents who doubled as teachers and small-scale commercial farmers, Nyagumbo was exposed to the realities of producing crops for food and income while assisting with farming activities at his rural home in Dowa, Rusape, northeastern Zimbabwe. This experience shaped his decision to study for a bachelor’s degree in agriculture specializing in soil science at the University of Zimbabwe and later a master’s degree in soil and water engineering at Silsoe College, Cranfield University, United Kingdom.

Between 1989 and 1994, Nyagumbo worked with public and private sector companies in Zimbabwe researching how to develop conservation tillage systems in the smallholder farming sector, which at the time focused on reducing soil erosion-induced land degradation.

Through participatory technology development and learning, Nyagumbo developed a passion for closely interacting with smallholder farmers from Zimbabwe’s communal areas as it dawned to him that top-down technology transfer approaches had their limits when it comes to scaling technologies. He proceeded to study for his PhD in 1995, focusing on water conservation and groundwater recharge under different tillage technologies.

Upon completion of his PhD, Nyagumbo started lecturing at the University of Zimbabwe in 2001, at the Department of Soil Science and Agricultural Engineering, a route that opened collaborative opportunities with key international partners including CIMMYT.

“This is how I began my engagements with CIMMYT, as a collaborator and jointly implementing on-farm trials on conservation agriculture and later broadening the scope towards climate-smart agriculture technologies,” Nyagumbo recalls.

By the time an opportunity arose to join CIMMYT in 2010, Nyagumbo realized that “it was the right organization for me, moving forward the agenda of sustainability and focusing on improving productivity of smallholder farmers.”

Climate-smart results

Cropping systems agronomist Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot in Ward 4, Murewa, Zimbabwe. (Photo: CIMMYT)
Cropping systems agronomist Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot in Ward 4, Murewa, Zimbabwe. (Photo: CIMMYT)

Projects such as SIMLESA show results of intensification practices and climate-smart technologies aimed at improving smallholder farming systems in eastern and southern Africa.

One study showed that when conservation agriculture principles such as minimum tillage, rotation, mulching and intercropping are applied, yield increases ranging from 30-50 percent can be achieved,” Nyagumbo says.

Another recent publication demonstrated that the maize yield superiority of conservation agriculture systems was highest under low-rainfall conditions while high-rainfall conditions depressed these yield advantages.

Furthermore, studies spanning across eastern and southern Africa also showed how drainage characteristics of soils affect the performance of conservation agriculture technologies. “If we have soils that are poorly drained, the yield difference between conventional farming practices and conservation agriculture tends to be depressed, but if the soils are well drained, higher margins of the performance of conservation agriculture are witnessed,” he says.

Currently, Nyagumbo’s research efforts in various countries in eastern and southern Africa seek to better understand the resilience benefits of cereal-legume cropping systems and how different planting configurations can help to improve system productivity.

“Right now, I am focused on understanding better the ‘climate-smartness’ of sustainable intensification technologies.”

In Malawi, Nyagumbo is part of a team evaluating the usefulness of different agronomic practices and indigenous methods to control fall armyworm in maize-based systems. Fall armyworm has been a troublesome pest particularly for maize in the last four or five seasons in eastern and southern Africa, and finding cost effective solutions is important for farmers in the region.

Future efforts are set to focus further on crop-livestock integration and will investigate how newly developed nutrient-dense maize varieties can contribute to improved feed for livestock in arid and semi-arid regions in Zimbabwe.

Sharing results

Another important aspiration for Nyagumbo is the generation of publications to share the emerging results and experiences gained from his research with partners and the public. Working in collaboration with others, Nyagumbo has published more than 30 articles based on extensive research work.

“Through the data sharing policy promoted by CIMMYT, we have so much data generated across the five SIMLESA project countries which is now available to the public who can download and use it,” Nyagumbo says.

While experiences with COVID-19 have shifted working conditions and restricted travel, Nyagumbo believes “through the use of virtual platforms and ICTs we can still achieve a lot and keep in touch with our partners and farmers in the region.”

Overall, he is interested in impact. “The greatest reward for me is seeing happy and transformed farmers on the ground, and knowing my role is making a difference in farmers’ livelihoods.”

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

CIMMYT and IITA collaborate to increase adoption of conservation agriculture in southern Africa

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.

The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.

The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.

The project was officially launched online on September 16, 2020. Zambia’s Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.

“It is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,” Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. “Conservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.”

Proven benefits

Conservation agriculture — a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species — can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.

Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.

“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.

“Although adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,” said  Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.

Christian Thierfelder, Principal  Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.

Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).

The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.


Interview opportunities:

Arega Alene, Agricultural Economist, IITA.

Christian Thierfelder, Principal  Cropping Systems Agronomist, CIMMYT

For more information, or to arrange interviews, contact the media team:

Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org

Katherine Lopez, Head of Communication, IITA. k.lopez@cgiar.org

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

About IITA:

The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africa’s most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.

Collaborating to accelerate genetic gains in maize and wheat

Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.

The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the world’s most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

Tackling current and emerging threats

Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR),  acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. “We are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,” he said.

AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.

Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYT’s global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, “from the development of product profiles to breeding, field trials and line advancement.”

Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. “The technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,” he said.

Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)

Symbiotic partnerships with great impact

“From the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,” said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. “We see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.”

Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYT’s maize and wheat programs and national programs in countries where CIMMYT works. “A wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that – not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,” he said.

Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. “I believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.”

He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, “because farmers are very risk averse and to change their habits requires a great deal of effort.”

On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.

“We expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,” he said.

Challenges and opportunities in a time of crisis

Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries – and the global demand for food generally – but also to address foreseen threats.

“We are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,” he said.

Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, “which will be crucial to our envisioned strategy to achieve socioeconomic change.”

Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.

In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.

Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Reaching women with improved maize and wheat

By 2050, global demand for wheat is predicted to increase by 50 percent from today’s levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions – with climate change as a constant pressure exacerbating all these stresses.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.

Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.

“Until recently, investments in seed improvement work have not actively looked in this area,” said Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, “it has been built in as a primary objective of AGG to focus on […] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.”

In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.

Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.

“It is a primary objective of AGG to ensure gender intentionality,” said Kevin Pixley, Director of CIMMYT’s Genetic Resources Program and AGG project leader. “Often women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.”

Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)

New project to ramp up genetic gains in maize for better livelihoods

Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)

As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Ambitious targets

At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.

“We are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.

Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)

A matter of “life or death”

“When farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,” remarked David Chikoye, the director of Southern Africa Hub at IITA.

A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.

“AGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. “Our vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.”

AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmers’ fields.

Old vs new

Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.

“We are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?” posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. “We need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.”

To enhance AGG’s ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.

Guest of honor, Ethiopia’s Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYT’s support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.

“We consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,” he said.

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmers’ specific needs.

The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.

This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.

Objectives

The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.

To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.

Funders

Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

Key partners

The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.

Scientific and technical steering committees

We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.

Year 1 Executive Summary

In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals –despite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).

Year 2 Executive Summary

AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).

CIMMYT’s adult plant resistance breeding strategy

Download a summary of CIMMYT’s breeding strategy for adult plant resistance (PDF).

Subscribe to the AGG newsletter