With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.
A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.
The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.
“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.
Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.
Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.
Addressing research gaps
The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.
Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:
Using big data analysis to better understand stress profiles in target environments and design wheat lines with appropriate heat and drought adaptive traits.
Exploring wheat genetic resources for discovery of novel traits and genes and their use in breeding.
Accelerating genetic gains through selection techniques that combine phenomics with genomics.
Crowd-sourcing new ideas and technologies from academia and testing them in real-life breeding situations.
These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.
One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.
“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.
Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.
Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.
The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.
The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.
With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.
The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in the tropical lowlands of Latin America and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities. In some countries, depending on the applicable regulatory framework for commercial maize seed, successful applicants may first need to sponsor the products through the national registration / release process prior to commercialization.
The deadline to submit applications to be considered during the first round of allocations is September17, 2021. Applications received after that deadline will be considered during the following round of product allocations.
Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.
Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal in English or Spanish.
Alternatively, applications may be submitted via email to GMP-CIMMYT@cgiar.org using the PDF forms available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)
Scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been harnessing the power of drones and other remote sensing tools to accelerate crop improvement, monitor harmful crop pests and diseases, and automate the detection of land boundaries for farmers.
A crucial step in crop improvement is phenotyping, which traditionally involves breeders walking through plots and visually assessing each plant for desired traits. However, ground-based measurements can be time-consuming and labor-intensive.
This is where remote sensing comes in. By analyzing imagery taken using tools like drones, scientists can quickly and accurately assess small crop plots from large trials, making crop improvement more scalable and cost-effective. These plant traits assessed at plot trials can also be scaled out to farmers’ fields using satellite imagery data and integrated into decision support systems for scientists, farmers and decision-makers.
Here are some of the latest developments from our team of remote sensing experts.
An aerial view of the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico (Photo: Francisco Pinto/CIMMYT)
Measuring plant height with high-powered drones
A recent study, published in Frontiers in Plant Science validated the use of drones to estimate the plant height of wheat crops at different growth stages.
The research team, which included scientists from CIMMYT, the Federal University of Viçosa and KWS Momont Recherche, measured and compared wheat crops at four growth stages using ground-based measurements and drone-based estimates.
The team found that plant height estimates from drones were similar in accuracy to measurements made from the ground. They also found that by using drones with real-time kinematic (RTK) systems onboard, users could eliminate the need for ground control points, increasing the drones’ mapping capability.
Recent work on maize has shown that drone-based plant height assessment is also accurate enough to be used in maize improvement and results are expected to be published next year.
A map shows drone-based plant height estimates from a maize line trial in Muzarabani, Zimbabwe. (Graphic: CIMMYT)
Advancing assessment of pests and diseases
CIMMYT scientists and their research partners have advanced the assessment of Tar Spot Complex — a major maize disease found in Central and South America — and Maize Streak Virus (MSV) disease, found in sub-Saharan Africa, using drone-based imaging approach. By analyzing drone imagery, scientists can make more objective disease severity assessments and accelerate the development of improved, disease-resistant maize varieties. Digital imaging has also shown great potential for evaluating damage to maize cobs by fall armyworm.
Scientists have had similar success with other common foliar wheat diseases, Septoria and Spot Blotch with remote sensing experiments undertaken at experimental stations across Mexico. The results of these experiments will be published later this year. Meanwhile, in collaboration with the Federal University of Technology, based in Parana, Brazil, CIMMYT scientists have been testing deep learning algorithms — computer algorithms that adjust to, or “learn” from new data and perform better over time — to automate the assessment of leaf disease severity. While still in the experimental stages, the technology is showing promising results so far.
CIMMYT researcher Gerald Blasch and EIAR research partners Tamrat Negash, Girma Mamo and Tadesse Anberbir (right to left) conduct field work in Ethiopia. (Photo: Tadesse Anberbir)
Improving forecasts for crop disease early warning systems
CIMMYT scientists, in collaboration with Université catholique de Louvain (UCLouvain), Cambridge University and the Ethiopian Institute of Agricultural Research (EIAR), are currently exploring remote sensing solutions to improve forecast models used in early warning systems for wheat rusts. Wheat rusts are fungal diseases that can destroy healthy wheat plants in just a few weeks, causing devastating losses to farmers.
Early detection is crucial to combatting disease epidemics and CIMMYT researchers and partners have been working to develop a world-leading wheat rust forecasting service for a national early warning system in Ethiopia. The forecasting service predicts the potential occurrence of the airborne disease and the environmental suitability for the disease, however the susceptibility of the host plant to the disease is currently not provided.
CIMMYT remote sensing experts are now testing the use of drones and high-resolution satellite imagery to detect wheat rusts and monitor the progression of the disease in both controlled field trial experiments and in farmers’ fields. The researchers have collaborated with the expert remote sensing lab at UCLouvain, Belgium, to explore the capability of using European Space Agency satellite data for mapping crop type distributions in Ethiopia. The results will be also published later this year.
CIMMYT and EIAR scientists collect field data in Asella, Ethiopia, using an unmanned aerial vehicle (UAV) data acquisition. (Photo: Matt Heaton)
Delivering expert irrigation and sowing advice to farmers phones
The project has now ended, with the team delivering a webinar to farmers last October to demonstrate the app and its features. Another webinar is planned for October 2021, aiming to engage wheat and maize farmers based in the Yaqui Valley in Mexico.
CIMMYT researcher Francelino Rodrigues collects field data in Malawi using a UAV. (Photo: Francelino Rodrigues/CIMMYT)
Detecting field boundaries using high-resolution satellite imagery
In Bangladesh, CIMMYT scientists have collaborated with the University of Buffalo, USA, to explore how high-resolution satellite imagery can be used to automatically create field boundaries.
Many low and middle-income countries around the world don’t have an official land administration or cadastre system. This makes it difficult for farmers to obtain affordable credit to buy farm supplies because they have no land titles to use as collateral. Another issue is that without knowing the exact size of their fields, farmers may not be applying to the right amount of fertilizer to their land.
Using state of the art machine learning algorithms, researchers from CIMMYT and the University of Buffalo were able to detect the boundaries of agricultural fields based on high-resolution satellite images. The study, published last year, was conducted in the delta region of Bangladesh where the average field size is only about 0.1 hectare.
A CIMMYT scientist conducts an aerial phenotyping exercise in the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: Francisco Pinto/CIMMYT)
Developing climate-resilient wheat
CIMMYT’s wheat physiology team has been evaluating, validating and implementing remote sensing platforms for high-throughput phenotyping of physiological traits ranging from canopy temperature to chlorophyll content (a plant’s greenness) for over a decade. Put simply, high-throughput phenotyping involves phenotyping a large number of genotypes or plots quickly and accurately.
Recently, the team has engaged in the Heat and Drought Wheat Improvement Consortium (HeDWIC) to implement new high-throughput phenotyping approaches that can assist in the identification and evaluation of new adaptive traits in wheat for heat and drought.
The team has also been collaborating with the Accelerating Genetic Gains in Maize and Wheat (AGG) project, providing remote sensing data to improve genomic selection models.
Cover photo: An unmanned aerial vehicle (UAV drone) in flight over CIMMYT’s experimental research station in Ciudad Obregon, Mexico. (Photo: Alfredo Saenz/CIMMYT)
Mexico’s Secretariat of Agriculture and Rural Development (SADER) and its counterpart in the United States reached an agreement to promote knowledge sharing and scientific collaboration on agriculture-related issues.
This tribute to the life and work of Sanjaya Rajaram, one of Norman Borlaug’s most impactful collaborators, also flags CIMMYT’s contribution to improving livelihoods and fostering more productive sustainable maize and wheat farming in low- and middle-income countries.
An op-ed published in El Sol de México recognizes CIMMYT’s contribution to tackling food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices.
During the presentation of Mexico’s 2021 Agri-Food Expectations, Bram Govaerts, Director General of CIMMYT, flagged a number of initiatives aimed at supporting the country’s food self-sufficiency and safeguarding the cultural heritage of its agricultural sector.
Agricultural knowledge management framework for innovation (AKM4I) in agri-food systems. (Graphic: CIMMYT)
The key to transforming food production systems globally lies in knowledge management processes, according to a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT).
The challenge is to combine traditional knowledge with state-of-the-art scientific research: to meet regional needs for improvement in farming systems with knowledge networks fostering innovative practices and technologies that increase yields and profits sustainably.
A group of CIMMYT researchers led by Andrea Gardeazábal, Information and Communications Technology for Agriculture Monitoring and Evaluation Manager, recently published a proposal for a new knowledge management framework for agri-food innovation systems: Agricultural Knowledge Management for Innovation (AKM4I).
“We are proposing a knowledge management framework for agricultural innovation that addresses the need for more inclusive and environmentally sustainable food production systems that are able to provide farmers and consumers with affordable and healthy diets within planetary boundaries,” Gardeazábal said.
The AKM4I framework was designed to help agricultural development practitioners understand how farming skills and abilities are developed, tested and disseminated to improve farming systems in real-life conditions.
Following systems theory principles, the model empirically describes how information is created, acquired, stored, analyzed, integrated and shared to advance farming knowledge and produce innovative outcomes that effectively contribute to: collaboratively building local capacities for developing joint problem-solving abilities and integrated-knowledge solutions; empowering farmers with site-specific knowledge; co-creating technology and conducting participatory community-based research; and bridging innovation barriers to drive institutional change.
Knowledge access for systems transformation
Schematic illustration of CIMMYT’s knowledge and technology development networks, or hubs, for sustainable maize and wheat production systems. (Graphic: CIMMYT)
The framework builds on CIMMYT’s learnings from MasAgro, a bilateral project with Mexico that relies on participatory research and knowledge and technology development networks for sustainable maize and wheat production systems.
This CIMMYT project was recently acknowledged with the 2020 Innovative Applications in Analytics Award for developing groundbreaking monitoring, evaluation, accountability and learning (MEAL) systems and tools for publicly funded researchers and field technicians who advise more than 150,000 farmers in Mexico.
“Through the outlined principles and processes, the AKM4I framework can assist in closing the cycle of continually re-creating knowledge, evaluating and iterating upon innovations, building coalitions to democratize knowledge access and utilization, and using MEAL to facilitate course-correction of all stages of knowledge management,” concludes the study.
Denise E. Costich, the recently retired head of the Maize Collection at the Germplasm Bank of the International Maize and Wheat Improvement Center (CIMMYT), sometimes likes to include a Woody Allen quote in her presentations.
“I have no idea what I’m doing,” declares the text over a photo of a befuddled-looking Allen. “But incompetence never stopped me from plunging in with enthusiasm.”
This is perhaps Costich’s tongue-in-cheek way of acknowledging the unusual trajectory that led her to the Germplasm Bank and her zeal for new and interesting challenges. But it is in no way an accurate reflection of the skill, knowledge and humane managerial style she brought to the job.
“CIMMYT requires individuals with a broad set of experiences,” says Tom Payne, head of the Wheat Collection at CIMMYT’s Germplasm Bank. Though she was not trained as a crop scientist, and despite having never worked in a genebank before, Costich’s rich set of professional and life experiences made her an ideal person for the job.
From Ithaca and back again
Born and raised in Westbury, NY, Costich spent much of her childhood on a tree nursery. Her grandfather was the manager, her father became the sales director and eventually her sister also went into the horticulture business. While her experiences on the nursery contributed to an early interest in plants and ecology, the business aspect of the nursery eluded her. “I just can’t sell things. I’m terrible,” Costich says. “But I really do like to study them.”
This studiousness took her to Cornell University in Ithaca, NY, where she initially declared as a wildlife biology major. Her notion of what it meant to “study things” was influenced by her early heroes, primatologists and field biologists Dian Fossey and Jane Goodall. It involved travel. Fieldwork in faraway places. So, when the opportunity arose at the end of her sophomore year to travel to Kenya with Friends World College, Costich didn’t hesitate.
Costich eventually spent four years in Kenya, studying baboons. When she finally returned to Ithaca, she knew two things. Fieldwork was absolutely her thing, and she wanted to pursue a doctorate.
A chance conversation with her housemates in her last semester led to a post-graduation fieldwork stint in the Brazilian Amazon under the supervision of the legendary tropical and conservation biologist, Thomas Lovejoy. But instead of a dissertation topic, she stumbled across a parasite, a case of leishmaniasis and the realization that the rainforest was not the work environment for her.
Unexpected influences and outcomes continued to mark Costich’s career throughout her graduate studies at the University of Iowa. She found her plant not in the field, but while reading a dusty review paper as an exchange student at the University of Wisconsin. Her study of Ecballium elaterium (a wild species in the Cucurbitaceae, or squash, family) did not take her back to the tropics — where most of her peers were working and where she expected to be headed as a grad student — but rather to Spain where, incidentally, she first learned Spanish.
Several years after defending, Costich landed a tenure-track position in the Biology Department at The College of New Jersey. She continued to publish on Ecballium elaterium. Her career appeared to be settling into a predictable, recognizable academic trajectory — one with no obvious intersection with CIMMYT.
Then Costich saw an ad in the Ecological Society of America bulletin for a managing editor position for all of the Society’s journals. Her husband, a fellow biology Ph.D., had been working as an academic journal editor for several years. When Costich saw the ad she immediately drove over to her husband’s office. “I slapped the thing on his desk and said, ‘Here’s your job!’” she recalls.
Costich was right. Soon after, she was on her way back to Ithaca — where the Society’s offices were located — with a family that now included three children. While it was the right move for her family, it came at the cost of her budding academic career. In Ithaca, she soon found herself stuck in the role of itinerant postdoc.
Denise Costich in Spain in 1986, doing fieldwork on Ecballium elaterium with her daughter Mara.
An amazing turn of events
Costich admits that, especially the beginning, the return to Ithaca was tough, even depressing. Her recollections of these years can sound a bit like a game of musical chairs played with research laboratories. As one post-doc or research project wound down, she’d find herself scanning the campus for her next perch. She became very adept at it. “In ten years, I never missed a paycheck,” Costich says.
The turn of the millennium found Costich scanning the horizon yet again. As the days wound down at her latest post, a maize geneticist moved into the lab next door. What started as hallway jokes about Costich jumping ship and joining the maize lab soon turned into an interview, then a job offer.
The job introduced her to nearly everyone at Cornell working in maize genetics. Costich soon found herself managing the Buckler Lab’s work on maize population genetics. Meanwhile, she dabbled in side projects on Tripsacum, a perennial grass genus that is closely related to maize, and managed a major project on switchgrass. At the end of her postdoc, Buckler set to work trying to create a permanent position for her. Once again, Costich’s trajectory was beginning to take a stable, predictable form.
Then CIMMYT scientist Sarah Hearne showed up. “I’d heard through the grapevine — or maybe through the corn field — that the position of manager of the Maize Collection of CIMMYT’s Germplasm Bank was open… and that they were having a hard time trying to find a person for the position,” Costich recalls. She had met Hearne previously and personally knew and had worked with Suketoshi Taba, the pioneering longtime director of the germplasm bank. Naturally the topic emerged as she and Hearne caught up in Ithaca.
Hearne admitted that the search hadn’t yet been successful. “But I know the perfect person for the job,” she added.
“Yeah, who’s that?” Costich asked, not getting the setup.
Denise Costich, the maize collection manager at CIMMYT’s Maize and Wheat Germplasm Bank, shows one of the genebank’s more than 28,000 accessions of maize. (Photo: Luis Salazar/Crop Trust)
A stranger in a strangely familiar land
Costich was not a little surprised by the suggestion. She had never worked at a germplasm bank before. She was finally finding some stability at Cornell.
At the same time, her early dreams of exploring new places through her work, especially the tropics, beckoned. Her youngest son was nearly college-aged. Against the advice of some who had watched her work so hard to establish herself at Cornell, she took the plunge.
By the time she reached the CIMMYT campus in Texcoco, Costich had crisscrossed a good part of the globe, picking up Spanish here, management skills there, a deep knowledge of maize and its biological and cultural evolution yonder. During this life journey, she developed a deep humanism that is all her own.
It all seemed like happenstance, perhaps, until she reached Mexico and — suddenly, counterintuitively — found herself in the field she was perfectly adapted for. “It turned out that being a germplasm bank manager was the perfect job for me, and I didn’t even know it!” Costich says. “I ended up using everything I learned in my entire career.”
That isn’t to say that it was easy, especially at first. Taba, her predecessor, had occupied the post for decades, was a trained crop scientist, and had grown the bank from a regionally-focused collection with 12,000 accessions to the preeminent maize germplasm bank globally with 28,000 accessions, a state-of-the-art storage facility, and a slew of pioneering practices.
Not only had Taba left enormous shoes to fill, during his tenure — as is common in the expansionary phase of many projects — it had been difficult for the bank to keep a full accounting and understanding of all the new material that had been added. According to germplasm bank coordinator Cristian Zavala, by the time Costich joined CIMMYT “we knew very little about the material in our vaults.”
“Taba was primarily a breeder,” Costich says. “I actually think this oscillation between a focus on breeding and a focus on conservation and curation is good for the bank.”
Visiting a newly-built community seed reserve in Chanchimil, Todos Santos Cuchumatanes, Huehuetenango, Guatemala, in 2016. From left to right: Mario Fuentes (collaborator), a member of the community seed reserve staff, Denise Costich, Carolina Camacho (CIMMYT), Miriam Yaneth Ramos (Buena Milpa) and Esvin López (local collaborator).
Visiting one of the oldest community seed reserves in the region, Quilinco, Huehuetenango, Guatemala, in 2016. From left to right: Pedro Bello (UC Davis), Esvin López (local collaborator), Denise Costich, José Luis Galicia (Buena Milpa), Ariel Rivers (CIMMYT) and Miriam Yaneth Ramos (Buena Milpa).
Costich with the winners of the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state.
Costich (left) measures ears of corn for the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state in 2019.
Costich (center) shares some comments from the stage at the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state. To her left is Angel Perez, a participating farmer from La Cofradía, and to her right, Rafael Mier, Director of the Fundación Tortillas de Maíz Mexicana.
A bank for farmers
However, according to Zavala, because of the limited knowledge of much material they were working with, many in the bank’s rank-and-file didn’t fully understand the importance of their work. Morale was mixed. Moreover, despite an assumption that her new job would see her working closely with local smallholders, Costich found that the institution was poorly known by everyday farmers in its host country. Where it was known, associate scientist on innovation and social inclusion, Carolina Camacho, notes, there was an assumption that CIMMYT only worked with hybrid varieties of maize and not the native landraces many smallholders in Mexico depend on.
These became the principal axes of Costich’s work at the bank: curation of backlogged material, staff development, and community outreach.
Thus, when Costich realized that records were being kept in a combination of paper and rudimentary digital formats, she sent Zavala, a promising young research assistant at the time, to an internship at the USDA’s Maize Germplasm Bank Collection in Ames, Iowa, to workshops at CGIAR germplasm banks in Colombia (CIAT) and Ethiopia (ILRI), and to meetings on specialized topics in Germany and Portugal.
Zavala had never left the country before, spoke little English, and remembers being “rebellious” at work. “I needed more responsibility,” he says. “Dr. Denise saw that and helped me grow.” Upon returning from an early trip, Zavala helped implement up-to-date traceability and data management processes, including migrating the genebank’s data onto the USDA’s GRIN-Global platform.
But as Payne points out, Costich’s tenure was never about simple bean — or, in this case, grain — counting. “She sees a more human aspect of the importance of the collections,” he says. The main tasks she set for the bank came to be subsumed into the overarching goal of a fuller understanding of the contents of the bank’s vaults, one that encompassed both their biological and sociocultural importance.
When Costich came across a collection of maize landraces from Morelos state assembled by Ángel Kato in the mid 1960s that conserved the name of the farmer who had donated each sample, she worked with Camacho and graduate student Denisse McLean-Rodriguez to design a study involving the donor families and their communities. McLean-Rodriguez, Camacho and Costich set out to compare the effects of ex-situ versus in-situ landrace conservation in both genetic and socioeconomic terms.
Similarly, when a colleague at INIFAP invited Costich to be a judge at a yearly contest for largest ear of Jala landrace maize in Mexico’s Nayarit state, they soon began discussing how they could contribute more than just their participation as judges to the community. Starting in 2016 Costich was a co-lead on a study of the landrace’s genetic diversity as well as an initiative to rematriate Jala seeds conserved at CIMMYT for over 60 years.
Costich and members of the Maize Collection team hosting Pedro Bello from UC Davis (center, glasses) at the CIMMYT Germplasm Bank in Texcoco, Mexico, for a workshop on seed longevity and conservation techniques.
A genebank is not an island
Genebanks are bulwarks against genetic erosion. But, as Camacho explains, this mission can be understood in both very narrow and very broad senses. The narrow sense focuses on genetic processes per se: the loss of alleles. The broad sense includes the loss of cultural practices and knowledge built and sustained around the cultivation of a given landrace. Through the initiatives the bank has undertaken during her tenure, Costich has tried to demonstrate, both scientifically and in practice, how germplasm collections such as CIMMYT’s can complement, reinforce, and be enriched by the work of smallholders — de facto germplasm conservators in their own right — while contributing to the difficult task of combating genetic erosion in the broad sense.
One gets the sense that in Costich’s view this isn’t about a one-way process of big institutions “helping” smallholders. Rather it’s about collaboration among all the participants in an interdependent web of conservation. As she argued at her recent exit seminar, Costich views germplasm banks as one link in a chain of food security backups that begins at the farm level.
Indeed, Costich’s most recent initiative demonstrated how innovations intended for one link in the chain can travel upwards and find applications at bigger institutions.
Costich recently led an initiative with community seed banks in the Cuchumatanes mountain range of Guatemala to study the use of DryChain technology in post-harvest storage of maize. This experiment showed the enormous benefits that incorporating such technologies could yield for energy-insecure or low-tech family and community seed reserves.
Ultimately, however, the study led to a second experiment at CIMMYT’s tropical-climate station at Agua Fría in Mexico. With advice from collaborators at UC Davis and an industry partner (Dry Chain America), the seed conditioning team retrofitted an old drying cabinet at the station to dry maize without using heat, but rather by forcing air to circulate through sacks of drying beads. Under the direction of Filippo Guzzon, a postdoc and seed biologist working with Costich, the long-term viability of seeds dried using the accelerated technique versus traditional, slower techniques was tested. The study showed no loss in long-term viability using the accelerated drying technique.
Denise Costich, CIMMYT director general Martin Kropff, and the Maize Collection team confer certificates of participation to two visiting interns, Jiang Li (to the left of Kropff), a doctoral student from CAAS, Beijing, China, and Afeez Saka Opeyemi (to the right of Costich), a staff member of the IITA Germplasm Bank in Nigeria.
Costich and the Maize Collection team at the 2018 CIMMYT Christmas party. Filippo Guzzon, seated to the right of Costich, had just been offered a postdoc with the team.
Costich and the Maize Collection team at the 2018 CIMMYT Christmas party.
A very busy retirement
At her exit seminar, Costich was presented a plaque in appreciation of her service at CIMMYT by Kevin Pixley, director of the genetic resources program. Terence Molnar, maize breeder with the Genetic Resources Team, has succeeded Costich as the Maize Germplasm Bank Head.
For some of her close colleagues, however, Costich’s departure is not the end of the road. “This is not a forever goodbye,” Guzzon says. “I will continue to be in touch with my cuatita,” says Camacho, who has also left CIMMYT.
For her part, Costich echoes that this is not a forever goodbye at all. Not to her friends and colleagues, and certainly not to her work. At a socially-distanced, maize-based farewell lunch Costich held just days before her departure, she was still busy weaving social connections and furthering collaborations among maize fanatics of all stripes — from chefs and designers to scientists and policy advocates.
She is already considering taking a part time position at her old lab at Cornell and a return to Tripsacum research. At the same time, she will be a visiting scientist at Mexico’s National Center for Genetic Resources (CNRG), where officially she will be heading up part of an international switchgrass study. Costich is hoping to leverage her tenure at CIMMYT by getting involved in a push to help improve the Mexican national system for plant genetic resources. Additionally, she has recently accepted an invitation from Seed Savers Exchange to join their board and she is looking forward to volunteering her time and expertise to various seed-saving initiatives within that organization and their many collaborators.
Asked what she’s looking forward to tackling in her retirement that isn’t work related, Costich betrays her deep allegiance to the plant world. “I don’t know,” she says, “I’m thinking of starting a big vegetable garden.”
Cover photo: Denise Costich stands for a photo during the inauguration of the CIMMYT Genebank museum in 2019. (Photo: Alfonso Cortés/CIMMYT)
The Heat and Drought Wheat Improvement Consortium (HeDWIC) is a global research and capacity building network that takes wheat research from the theoretical to the practical by incorporating the best science into real-life breeding scenarios.
By harnessing the latest technologies in crop physiology, genetics and breeding, HeDWIC makes it easier for wheat scientists to work together on solutions to the complex problems of heat and drought adaptation, contributing to the development of new, climate-resilient wheat varieties for farmers. HeDWIC-associated scientists examine current breeding material and collections held in germplasm banks and apply genomic and phenomic tools to identify novel diversity for heat, drought adaptative traits. This results in novel pre-bred lines in terms of genetic diversity for key stress-adaptive traits suitable for use in breeding programs and/or re-selection as cultivars.
The consortium delivers these lines to public and private wheat programs worldwide via the International Wheat Improvement Network (IWIN) — coordinated for more than half a century by the International Maize and Wheat Improvement Center (CIMMYT) — as international public goods whose global impacts are well documented. Through PhD sponsorships and other opportunities for involvement in research, HeDWIC also provides hands-on training to young scientists, preparing a new generation of crop experts to tackle the pressing issues of crop adaptation under future climate scenarios.
HeDWIC adds value to developing more climate-resilient wheat varieties by:
Facilitating global coordination of wheat research related to heat and drought stress in partnership with the Wheat Initiative.
Developing research and breeding technologies in response to the priorities of stakeholders: researchers, breeders, farmers, seed companies, national programs, and funding organizations.
Connecting geographically and agro-climatically diverse sites for rigorous testing of promising concepts.
Curating data resources for use by the global wheat research community.
Accelerating the deployment of new knowledge and strategies for developing more climate resilient wheat.
Preparing a new generation of promising young scientists from climate-affected regions to tackle crop improvement challenges faced by their own countries.
Building additional scientific capacity of wheat researchers in a coordinated fashion that enables a faster response to productivity threats associated with climate change.
Enabling farmers to adapt to wheat production in a hotter and drier climate faster due to the coordinated effort and synergy lent by HeDWIC.
HeDWIC is directly funded by the Foundation for Food and Agriculture Research (FFAR) and is supported by in-kind contributions from IWIN, the Bill & Melinda Gates Foundation/UK Foreign, Commonwealth and Development Office (FCDO)-funded Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, the CGIAR Research Program on Wheat (WHEAT), the International Wheat Yield Partnership, the Wheat Initiative’s AHEAD, and many international partners who support research and capacity building activities through ongoing collaboration.
It also builds on decades of breeding and collaborative research under abiotic stress coordinated by CIMMYT, with support from agencies including Mexico’s Secretariat of Agriculture and Rural Development (SADER), the CGIAR Trust Fund —in particular the Australian Centre for International Agricultural Research (ACIAR), the UK Foreign, Commonwealth and Development Office (FCDO), and the US Agency for International Development (USAID) — Australia’s Grains Research Development Corporation (GRDC), Germany’s Ministry of Agriculture (BMEL), the Bill & Melinda Gates Foundation, the US Department of Agriculture (USDA), and others.
Norman Borlaug teaches a group of young trainees in the field in Sonora, Mexico. (Photo: CIMMYT)
50 years ago, the late Norman Borlaug received the 1970 Nobel Peace Prize for averting famine by increasing wheat yield potential and delivering improved varieties to farmers in South Asia. He was the first Nobel laureate in food production and is widely known as “the man who saved one billion lives.”
In the following decades, Borlaug continued his work from the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), a non-profit research-for-development organization funded by the Rockefeller Foundation and the governments of Mexico and the United States.
CIMMYT became a model for a future network of publicly-funded organizations with 14 research centers: CGIAR. Today, CGIAR is led by Marco Ferrroni, who describes it as a global research partnership that “continues to be about feeding the world sustainably with explicit emphasis on nutrition, the environment, resource conservation and regeneration, and equity and inclusion.”
Norman Borlaug’s fight against hunger has risen again to the global spotlight in the wake of the most severe health and food security crises of the 21st Century. “The Nobel Peace Prizes to Norman Borlaug and the World Food Programme are very much interlinked,” said Kjersti Flogstad, Executive Director of the Oslo-based Nobel Peace Center. “They are part of a long tradition of awarding [the prize] to humanitarian work, also in accordance with the purpose [Alfred] Nobel expressed in his last will: to promote fraternity among nations.”
During welcome remarks at the virtual 50-year commemoration of Norman Borlaug’s Nobel Peace Prize on December 8, 2020, Mexico’s Secretary of Agriculture and Rural Development Víctor Villalobos Arámbula, warned that “for the first time in many years since Borlaug defeated hunger in Southeast Asia, millions of people are at risk of starvation in several regions of Africa, Asia and Latin America.”
According to CIMMYT’s Director General Martin Kropff, celebrating Norman Borlaug’s legacy should also lead to renewed investments in the CGIAR system. “A report on the payoff of investing in CGIAR research published in October 2020 shows that CIMMYT’s return on investment (ROI) exceeds a benefit-cost ratio of 10 to 1, with median ROI rates for wheat research estimated at 19 and for maize research at 12.”
Mexico’s Foreign Affairs Department echoed the call to invest in Agriculture for Peace. “The Government of Mexico, together with the Nobel Peace Center and CIMMYT, issues a joint call to action to overcome the main challenges to human development in an international system under pressure from conflict, organized crime, forced migration and climate change,” said Martha Delgado, Mexico’s Under Secretary of Multilateral Affairs and Human Rights.
Norman Borlaug sits on a tractor next to field technicians in Sonora, Mexico. (Photo: CIMMYT)
The event called for action against the looming food crises through the transformation of food systems, this time with an emphasis on nutrition, environment and equality. Speakers included experts from CGIAR, CIMMYT, Conservation International, Mexico’s Agriculture and Livestock Council, United Nations Food and Agriculture Organization (FAO), United States Agency for International Development (USAID) and the World Food Programme (WFP), among others. Participants discussed the five action tracks of the 2021 United Nations Food Systems Summit: (1) ensure access to safe and nutritious food for all; (2) shift to sustainable consumption patterns; (3) boost nature-positive production; (4) advance equitable livelihoods; and, (5) build resilience to vulnerabilities, shocks and stresses.
“This event underlines the need for international solidarity and multilateral cooperation in the situation the world is facing today,” said Norway’s Ambassador to Mexico, Rut Krüger, who applauded CIMMYT’s contribution of 170,000 maize and wheat seeds to the Global Seed Vault in Svalbard, Norway. “This number reflects the global leadership position of CIMMYT in the development of maize and wheat strains.”
Norman Borlaug’s famous words — “take it to the farmer” — advocated for swift agricultural innovation transfers to the field; Julie Borlaug, president of the Borlaug Foundation, said the Agriculture for Peace event should inspire us to also “take it to the public.”
“Agriculture cannot save the world alone,” she said. “We also need sound government policies, economic programs and infrastructure.”
CIMMYT’s Deputy Director General for Research and Partnerships, and Integrated Development Program Director Bram Govaerts, called on leaders, donors, relief and research partners to form a global coalition to transform food systems. “We must do a lot more to avert a hunger pandemic, and even more to put the world back on track to meet the Sustainable Development Goals of the 2030 Agenda.”
CIMMYT’s host country has already taken steps in this direction with the Crops for Mexico project, which aims to improve the productivity of several crops essential to Mexico’s food security, including maize and wheat. “This model is a unique partnership between the private, public and social sectors that focuses on six crops,” said Mexico’s Private Sector Liaison Officer Alfonso Romo. “We are very proud of its purpose, which is to benefit over one million smallholder households.”
The call stresses the need for sustainable and inclusive rural development. “It is hard to imagine the distress, frustration and fear that women feel when they have no seeds to plant, no grain to store and no income to buy basic foodstuffs to feed their children,” said Nicole Birrell, Chair of CIMMYT’s Board of Trustees. “We must make every effort to restore food production capacities and to transform agriculture into productive, profitable, sustainable and, above all, equitable food systems worldwide.”
In 1970, Norman Borlaug was awarded the Nobel Peace Prize for his important scientific work that saved millions of people from famine. Today, humanity faces an equally complex challenge which requires the commitment of all nations, leaders, investors and strategic partners: avoiding the next food crisis.
The Government of Mexico, the Nobel Peace Center and the International Maize and Wheat Improvement Center (CIMMYT) will celebrate the 50th anniversary of Borlaug’s Nobel Prize with a call to action to develop a transformational response of agriculture for peace, with an emphasis on nutrition, environment and equity.
Join us on December 8, 2020, from 9:00 to 10:30 a.m. (CST, GMT-6).
This special event is part of the run-up to the United Nations Summit of Agrifood Systems of 2021. It will feature international experts in each of the five action tracks of the summit: ensure access to safe and nutritious food for all; shift to sustainable consumption patterns; boost nature-positive production; advance equitable livelihoods; and build resilience to vulnerabilities, shocks and stress.
Guest speakers will include:
Marcelo Ebrard Casaubón – Mexico’s Secretary of Foreign Affairs
Kjersti Fløgstad – Executive Director, Nobel Peace Center
Victor Villalobos – Mexico’s Secretary of Agriculture and Rural Development
Martin Kropff – Director General, CIMMYT
Margaret Bath – Member of CIMMYT’s Board of Trustees
Alison Bentley – Director of CIMMYT’s Global Wheat Program
Robert Bertram – Chief Scientist, USAID’s Bureau for Resilience and Food Security
Nicole Birrell – Chair of CIMMYT’s Board of Trustees
Julie Borlaug – President of the Borlaug Foundation
Gina Casar – Assistant Secretary-General of the World Food Programme
Martha Delgado – Mexico’s Deputy Secretary for Multilateral Affairs and Human Rights
Marco Ferroni – Chair, CGIAR System Board
Federico González Celaya – President of Mexico’s Food Banks Association
Bram Govaerts – Deputy Director General for Research and Collaborations a.i. and Director of the Integrated Development Program, CIMMYT
Juana Hernández – Producer from the community of San Miguel, in Ocosingo, Chiapas, Mexico
Rut Krüger Giverin – Norwegian Ambassador to Mexico
Sylvanus Odjo – Postharvest Specialist, CIMMYT
Lina Pohl – FAO’s Mexico Representative
B.M. Prasanna – Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize
Tatiana Ramos – Executive Director, Conservation International Mexico
Alfonso Romo – Private Sector Liaison, Government of Mexico
Bosco de la Vega – President Mexico’s National Farmer’s Agricultural Council (CNA)
Four scientists working with the International Maize and Wheat Improvement Center (CIMMYT) have been recognized as 2020 recipients of the Clarivate™ Highly Cited Researchers list.
The honor recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.
Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate.
The 2020 CIMMYT honorees include:
José Luis Francisco Crossa: CIMMYT Distinguished Scientist.
Julio Huerta: CIMMYT-seconded wheat breeder and rust geneticist with Mexico’s Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
Matthew Reynolds: CIMMYT Distinguished Scientist, wheat physiologist and member, Mexican Academy of Sciences.
Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement.
“I congratulate my colleagues in the Global Wheat Program for this excellent recognition of their important work,” said incoming CIMMYT Global Wheat Program Director Alison Bentley.
In the early days of organizations like the International Maize and Wheat Improvement Center (CIMMYT), the answer to improving global food security was obvious. Help people grow more food. Today the situation is far more complex. Many exciting developments in breeding are either protective or corrective in nature. Stress-tolerant seed varieties are meant to help protect against the worst effects of global climate change. Efforts to develop widely cultivatable, high-yielding varieties based on local landraces seek to reintroduce some of the biodiversity lost through the runaway success of just a handful of commercial varieties.
Yet problems of food insecurity and poverty persist, not least among smallholders. The good news is that it is precisely among these farmers that important gains remain to be made, especially if we consider the many steps from planting to final consumption where technical and processual improvements can be made. “Just having a seed is not sufficient,” said CIMMYT postharvest specialist Sylvanus Odjo. “Of course having good seed is important, but you also need good agronomic practices.”
Globally, Odjo pointed out, one third of agricultural production is lost in the postharvest phase. In tropical Mexico, postharvest losses among smallholder maize farmers can reach up to 40%.
As the recently published findings of a two-year-long research project led by CIMMYT researchers show, such losses are entirely avoidable. The study, which was conducted in 2017 and 2018 across dozens of sites in Mexico representing a broad range of altitudes and ecologies, tested multiple storage technologies to determine which are most effective at avoiding postharvest losses using real-world smallholder practices and regardless of climatic and environmental factors.
Filling hermetic metal silo in Peto, Yucatán. (Photo: CIMMYT)
Researchers compared storage outcomes using conventional methods such as storing untreated maize in 50 kg polypropylene bags, storing maize in polypropylene bags and treating it with one of various agents — including aluminum phosphide, deodorized malathion or inert dusts — and hermetic storage options such as hermetic metal silos, two types of GrainPro hermetic plastic bags, and low-cost alternatives like plastic bottles and silage bags.
Under controlled conditions, they found that loss outcomes were highly variable for conventionally stored maize, with or without treatment agents. While untreated grain stored in polypropylene bags in temperate conditions at Texcoco only exhibited only 2.2% insect-damaged maize, grain treated with aluminum phosphide and stored in conventional bags in tropical conditions at Cotzocón suffered 46.3% insect damage.
In contrast, maize stored in low-cost hermetic alternatives such as plastic bottles and silage bags exhibited a maximum of 1.2% insect-damaged grain across all sites. Hermetic metal silos and GrainPro bags performed similarly well across climates, with a couple of important exceptions. The percentage of insect-damaged grain for maize stored in hermetic metal silos at Zacaultipán was 13.5%. Maize stored in GrainPro bags at this site suffered 8.1% insect damage.
Overall, the study convincingly demonstrated the effectiveness of hermetic storage technologies at minimizing insect and mycotic damage as well as weight loss of stored maize regardless of climate or altitude. However, important obstacles to the effective adoption of the technologies remains. In the case of the hermetic metal silos, it was determined that despite the existence of a stringent national norm for their construction in Mexico, silos occasionally did not meet the national standard and had to retrofitted to ensure hermeticity. And, as the example of Zacaultipán demonstrated, poor pre-storage processing of grain can compromise the effectiveness of hermetic storage technologies.
CIMMYT researchers tested multiple storage technologies to determine which are most effective at avoiding postharvest losses. (Photo: CIMMYT)
Over the course of carrying out the experiment, the researchers discovered other challenges. In Mexico, as is often true among smallholders globally, women are largely in charge of postharvest activities. “But we noticed that it was largely men who showed up to the trainings,” Odjo said. Researchers had to think of strategies—from being more careful about meeting timings to enlisting the support of local women leaders—to ensure that the trainings were reaching the women who actually carry out this work.
As Odjo pointed out, resolving these kinds of implementation and advocacy challenges—from ensuring adequate training and familiarity with the technologies on the ground to encouraging public and private sector partners to make the technologies more broadly available—is the next step for the project. “The less complex part of this work is the technical part,” he said. “Our job now at CIMMYT is to bring these innovations to farmers… We need to get all the relevant stakeholders involved in the game.”
The project was carried out in partnership with the Mexican government via MasAgro, and received funding from the CGIAR Research Program on Maize (MAIZE). Its implementation involved collaboration with dozens of local partners throughout Mexico and was carried out in response to the suggestions of smallholder farmers.
CIMMYT researcher Bram Govaerts participates in the World Food Prize and Borlaug Dialogue.
The director of the Integrated Development program and Representative for the Americas at the International Maize and Wheat Improvement Center (CIMMYT), Bram Govaerts, has been elected as Fellow by the leading professional organization of agronomists in the United States.
The American Society of Agronomy (ASA) presented this award to Govaerts for his outstanding contributions to the field of agronomy.
“His initiatives, excellence in science for impact and the partnerships he inspired have resulted in improved nutrition, nature conservation, and national and international resilience and food security”, announced the ASA in a news release.
Being an ASA Fellow is the highest honor offered by the organization, with only 0.3% of active and emeritus members holding this distinction.
The awarding body recognized Govaerts as an international authority in maize and wheat cropping systems who works for a successful transition to sustainable intensification of small-scale farming in Africa, Asia and Latin America.
Bram Govaerts (third from right) with the members of management committee of the Río Fuerte Sur Farmer Association (AARFS) (Photo: José Saucedo)
“Bram engages from the field in a remote village all the way up to the office of the president, and from livelihoods and social inclusion to science and business development, in a tireless effort to generate systems change creating sustainable agri-food systems for nutrition, nature conservation and peace,” said Sanjay Rajaram, ASA Fellow, 2014 World Food Prize Laureate, distinguished scientist and retired CIMMYT Wheat Program director, who nominated Govaerts to the ASA’s Fellows Committee.
“I am honored and grateful for receiving this award which shows, above all, that CIMMYT stands for impact and sound science that saves millions of lives, a duty to humanity that we must never compromise,” Govaerts said.
Born in Belgium, Govaerts studied Bioscience Engineering at K.U. Leuven, where he earned a master’s degree in the same subject with specialization in Soil Conservation and Tropical Agriculture. Research stays in Ethiopia and Mexico sparked his interest in sustainable intensification of small-scale farming systems. He achieved a doctoral degree in Bioscience Engineering – Soil Science, also from K.U. Leuven.
Govaerts cut his teeth as cropping systems expert at CIMMYT, where he progressed from post-doctoral fellow to his current position. He received the Norman Borlaug Field Award in 2014 from the World Food Prize Foundation. Govaerts has co-authored over 90 peer-reviewed publications. He is a member of the Sustainable Development Solutions Network on Data and Statistics (TReNDS) for the Sustainable Development Goals and A.D. White Professor-at-Large at Cornell University.