Skip to main content

funder_partner: CGIAR Research Program on Maize (MAIZE)

The CGIAR Research Program on Maize (MAIZE) is an international collaboration between more than 300 partners that seeks to mobilize global resources in maize research and development to achieve a greater strategic impact on maize-based farming systems in Africa, Latin America and South Asia.

Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, Latin America and South Asia. MAIZE’s overarching goal is to double maize productivity and increase incomes and livelihood opportunities from sustainable maize-based farming systems.

MAIZE receives funding support from CGIAR Trust Fund contributors.

https://maize.org/

MAIZE Flagship Projects (FPs) and Cluster of Activities

FP1: Enhancing MAIZE’s R4D strategy for impact
• Foresight and targeting of R4D strategies
• Learning from M&E, adoption and impacts
• Enhancing gender and social inclusiveness
• Value chain analysis

FP2: Novel diversity and tools for improving genetic gains
• Informatics, database management and decision support tools
• Development of enabling tools for germplasm improvement
• Unlocking genetic diversity through trait exploration and gene discovery
• Pre-breeding: development of germplasm resources

FP3: Stress-tolerant and nutritious maize
• Climate resilient maize with abiotic and biotic stress tolerance
• Tackling emerging trans-boundary disease/pest challenges
• Nutritional quality and end-use traits in elite genetic backgrounds
• Precision phenotyping and mechanization of breeding operations
• Seed production research and recommendations
• Stronger maize seed systems

FP4: Sustainable intensification of maize-based systems
• Multi-scale farming system framework to better integrate and enhance adoption of sustainable intensification options
• Participatory adoption and integration of technological components
• Development and field-testing of crop management technologies
• Partnership and collaborations models for scaling

Investment in maize for Africa pays off

Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)
Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)

Between 1995-2015, nearly 60% of all maize varieties released in 18 African countries were CGIAR-related. At the end of this period, in 2015, almost half of the maize area in these countries grew CGIAR-related maize varieties. All that was accomplished through modest, maximum yearly investment of about $30 million, which showed high returns: in 2015, the aggregate yearly economic benefits for using CGIAR-related maize varieties released after 1994 were estimated to be between $660 million and $1.05 billion.

These are just some of the key findings of Impacts of CGIAR Maize Improvement in sub-Saharan Africa, 1995-2015 a new, comprehensive review of the two decades of longstanding, CGIAR-led work on improved maize for Africa.

A staple concern

Since its introduction to Africa in the 16th century, maize has become one of the most important food crops in the continent.

It accounts for almost a third of the calories consumed in sub-Saharan Africa. And it’s grown on over 38 million hectares in the region, mostly by rainfall-dependent smallholder farmers.

Climate change poses an existential threat to the millions who depend on the crop for their livelihood or for their next meal. Already 65% of the maize growing areas in sub-Saharan Africa face some level of drought stress.

Long-term commitment

Through the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), CGIAR has been working alongside countless regional partners since 1980s to develop and deploy climate-smart maize varieties in Africa.

This work builds on various investments including Drought-Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA). Support for this game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. Throughout, the determination to strengthen the climate resilience of maize agri-food systems in Africa has remained the same.

To understand the impact of their work — and how to build on it in the coming years — researchers at CIMMYT and IITA took a deep dive into two decades’ worth of this work across 18 countries in sub-Saharan Africa. These findings add to our understanding of the impact of work that today benefits an estimated 8.6 million farmers in the region.

Big challenges remain. But with the right partnerships, know-how and resources we can have an outsize impact on meeting those challenges head on.

What is nixtamalization?

For centuries, people across Mexico and Central America have been using a traditional method, known as nixtamalization, to process their maize.

Now carried out both at household and industrial levels, this technique offers a range of nutritional and processing benefits. It could easily be adopted by farmers and consumers in other parts of the world.

What is nixtamalization?

Nixtamalization is a traditional maize preparation process in which dried kernels are cooked and steeped in an alkaline solution, usually water and food-grade lime (calcium hydroxide).

After that, the maize is drained and rinsed to remove the outer kernel cover (pericarp) and milled to produce dough that forms the base of numerous food products, including tortillas and tamales.

How does it work?

Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)
Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)

What happens when maize kernels are nixtamalized?

The cooking (heat treatment) and steeping in the alkaline solution induce changes in the kernel structure, chemical composition, functional properties and nutritional value.

For example, the removal of the pericarp leads to a reduction in soluble fiber, while the lime cooking process leads to an increase in calcium content. The process also leads to partial starch gelatinization, partial protein denaturation — in which proteins present in the kernel become insoluble — and a partial decrease in phytic acid.

What are the benefits of processing maize in this way?

In addition to altering the smell, flavor and color of maize products, nixtamalization provides several nutritional benefits including:

  • Increased bioavailability of vitamin B3 niacin, which reduces the risk of pellagra disease
  • Increased calcium intake, due to its absorption by the kernels during the steeping process
  • Increased resistant starch content in food products, which serves as a source of dietary fiber
  • Significantly reduced presence of mycotoxins such as fumonisins and aflatoxins
  • Increased bioavailability of iron, which decreases the risk of anemia

These nutritional and health benefits are especially important in areas where maize is the dietary staple and the risk of aflatoxins is high, as removal of the pericarp is thought to help reduce aflatoxin contamination levels in maize kernels by up to 60% when a load is not highly contaminated.

Additionally, nixtamalization helps to control microbiological activity and thus increases the shelf life of processed maize food products, which generates income and market opportunities for agricultural communities in non-industrialized areas.

Where did the practice originate?

The word itself comes from the Aztec language Nahuatl, in which the word nextli means ashes and tamali means unformed maize dough.

Populations in Mexico and Central America have used this traditional maize processing method for centuries. Although heat treatments and soaking periods may vary between communities, the overall process remains largely unchanged.

Today nixtamalized flour is also produced industrially and it is estimated that more than 300 food products commonly consumed in Mexico alone are derived from nixtamalized maize.

Can farmers and consumers in other regions benefit from nixtamalization?

Nixtamalization can certainly be adapted and adopted by all consumers of maize, bringing nutritional benefits particularly to those living in areas with low dietary diversity.

Additionally, the partial removal of the pericarp can contribute to reduced intake of mycotoxins. Aflatoxin contamination is a problem in maize producing regions across the world, with countries as diverse as China, Guatemala and Kenya all suffering heavy maize production losses as a result. While training farmers in grain drying and storage techniques has a significant impact on reducing post-harvest losses, nixtamalization technology could also have the potential to prevent toxin contamination and significantly increase food safety when used appropriately.

If adapted, modern nixtamalization technology could also help increase the diversity of uses for maize in food products that combine other food sources like vegetables.

Cover photo: Guatemalan corn tortillas. (Photo: Marco Verch, CC BY 2.0 DE)

A knowledge revolution

Agricultural knowledge management framework for innovation (AKM4I) in agri-food systems. (Graphic: CIMMYT)
Agricultural knowledge management framework for innovation (AKM4I) in agri-food systems. (Graphic: CIMMYT)

The key to transforming food production systems globally lies in knowledge management processes, according to a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT).

The challenge is to combine traditional knowledge with state-of-the-art scientific research: to meet regional needs for improvement in farming systems with knowledge networks fostering innovative practices and technologies that increase yields and profits sustainably.

A group of CIMMYT researchers led by Andrea Gardeazábal, Information and Communications Technology for Agriculture Monitoring and Evaluation Manager, recently published a proposal for a new knowledge management framework for agri-food innovation systems: Agricultural Knowledge Management for Innovation (AKM4I).

“We are proposing a knowledge management framework for agricultural innovation that addresses the need for more inclusive and environmentally sustainable food production systems that are able to provide farmers and consumers with affordable and healthy diets within planetary boundaries,” Gardeazábal said.

The AKM4I framework was designed to help agricultural development practitioners understand how farming skills and abilities are developed, tested and disseminated to improve farming systems in real-life conditions.

Following systems theory principles, the model empirically describes how information is created, acquired, stored, analyzed, integrated and shared to advance farming knowledge and produce innovative outcomes that effectively contribute to: collaboratively building local capacities for developing joint problem-solving abilities and integrated-knowledge solutions; empowering farmers with site-specific knowledge; co-creating technology and conducting participatory community-based research; and bridging innovation barriers to drive institutional change.

Knowledge access for systems transformation

Schematic illustration of CIMMYT's knowledge and technology development networks, or hubs, for sustainable maize and wheat production systems. (Graphic: CIMMYT)
Schematic illustration of CIMMYT’s knowledge and technology development networks, or hubs, for sustainable maize and wheat production systems. (Graphic: CIMMYT)

The framework builds on CIMMYT’s learnings from MasAgro, a bilateral project with Mexico that relies on participatory research and knowledge and technology development networks for sustainable maize and wheat production systems.

This CIMMYT project was recently acknowledged with the 2020 Innovative Applications in Analytics Award for developing groundbreaking monitoring, evaluation, accountability and learning (MEAL) systems and tools for publicly funded researchers and field technicians who advise more than 150,000 farmers in Mexico.

“Through the outlined principles and processes, the AKM4I framework can assist in closing the cycle of continually re-creating knowledge, evaluating and iterating upon innovations, building coalitions to democratize knowledge access and utilization, and using MEAL to facilitate course-correction of all stages of knowledge management,” concludes the study.

Bram Govaerts, CIMMYT Chief Operating Officer, Deputy Director General for Research and Integrated Development Program Director, believes the AKM4I framework should be the cornerstone of agri-food systems transformation, including the current reformation of CGIAR’s partnerships, knowledge, assets, and global presence.

“The MasAgro hub and knowledge management model will become the operational model of many regional initiatives of CGIAR,” Govaerts said.

Read the study:
Knowledge management for innovation in agri-food systems: a conceptual framework

Bill Gates highlights CIMMYT’s innovation in latest climate book

Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.

With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.

Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”

“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”

Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.

Innovations in agriculture

When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. […] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.

One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[…] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.

We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.

For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.

The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.

Drought-tolerant maize project pioneers a winning strategy for a world facing climate change

Nancy Wawira stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)

Since the 1980s, the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) have spearheaded the development and deployment of climate-smart maize in Africa.

This game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. It also offers a blueprint for CGIAR’s new 2030 Research and Innovation Strategy, which proposes a systems transformation approach for food, land and water systems that puts climate change at the center of its mission.

Over the course of the 10-year run of the first iteration of this collaborative work on climate-adaptive maize, the Drought Tolerant Maize for Africa (DTMA) project, CIMMYT and IITA partnered with dozens of national, regional, and private sector partners throughout sub-Saharan Africa to release around 160 affordable maize varieties. This month, CGIAR recognizes climate-smart maize as one of the standout 50 innovations to have emerged from the institution’s first half-century of work.

Game changer

Maize’s importance as a food crop in sub-Saharan Africa is hard to overstate. So are the climate change-driven challenges it faces.

It accounts for almost one third of the region’s caloric intake. It is grown on over 38 million hectares, primarily under rainfed conditions. Around 40% of this area faces occasional drought stress. Another 25% suffers frequent drought and crop losses reaching 50%.

Drought-tolerant maize stabilized production under drought-stress conditions. Recent studies show that farmers growing drought-tolerant maize varieties in dry years produced over a half ton more maize per hectare than those growing conventional varieties — enough maize to support a family of six for nine months.

Such drastic results fed increased demand for improved, climate-adaptive maize seed in sub-Saharan Africa, thus strengthening local commercial seed markets and helping drought-tolerant maize varieties reach an increasing share of climate-vulnerable farmers.

Today, approximately 8.6 million farmers have benefitted from CIMMYT- and IITA-derived climate-adaptive maize varieties in sub-Saharan Africa. Millions have risen above the poverty line.

In addition to drought-tolerance, CIMMYT- and IITA-derived climate-adaptive maize varieties have been developed to tolerate multiple climate-driven stresses and to provide improved nutritional outcomes through biofortification with essential nutrients such as provitamin A and zinc.

The task ahead

In his recently published book, How to Avoid a Climate Catastrophe, Bill Gates says “no other organization has done more than CGIAR to ensure that families — especially the poorest — have nutritious food to eat. And no other organization is in a better position to create the innovations that will help poor farmers adapt to climate change in the years ahead.”

CGIAR’s new strategic orientation is an important step towards making good on that potential. CIMMYT and IITA’s longstanding work on climate-smart maize offers an important blueprint for the kinds of bold, comprehensive, and collaborative research for development initiatives such a strategy could empower.

As CIMMYT and IITA directors general Martin Kropff and Nteranya Sanginga note in a recent op-ed, “The global battle against climate change and all its interconnected impacts requires a multisectoral approach to formulate comprehensive responses.”

Classic milpa maize intercrop can help feed communities forgotten by development

A farmer holds a maize ear. (Photo: Cristian Reyna)
A maize ear harvested from a “milpa,” the maize-based intercrop that is a critical source of food and nutritional security for smallholder farming communities in remote areas such as the Western Highlands of Guatemala. (Photo: Cristian Reyna)

The traditional milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — can furnish a vital supply of food and nutrients for marginalized, resource-poor communities in the Americas, according to a study published today in Nature Scientific Reports.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to the study. The research was based on data from nearly 1,000 households across 59 villages of the Western Highlands of Guatemala and is the first to relate milpa intercropping diversity with nutritional capacity, using multiple plots and crop combinations.

“The milpa was the backbone of pre-Columbian agriculture in North America, Mexico, and Central America,” said Santiago López-Ridaura, specialist in agricultural systems and climate change adaptation at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the article.

“Milpa production anchored around locally-adapted maize is still an essential food and nutritional lifeline for isolated, often indigenous communities throughout Mexico and Central America, and can be tailored to improve their food and nutritional security, along with that of small-scale farmers in similar settings,” he added.

Maize for feed or food and nutrition?

In modern times, some 1 billion tons of maize are harvested yearly from about 200 million hectares worldwide. Much of this output results from intensive monocropping of hybrids that yield an average 10 tons per hectare, in places like the U.S.

This massive world harvest goes chiefly for animal feed, corn starch, corn syrup, ethanol, and myriad industrial products, but in sub-Saharan Africa, Latin America, and parts of Asia, maize remains a critical food staple, often grown by smallholder farmers with yields averaging around 1.5 tons per hectare.

The Western Highlands of Guatemala is among the world’s poorest regions — a mountainous area ill-served by markets and where communities battered by food insecurity and malnutrition sow crops at altitudes of up to 3,200 meters, according to Cristian A. Reyna-Ramírez, a co-author of the study from the Universidad Autónoma Metropolitana-Xochimilco, Mexico.

“Fully two-thirds of farmers in this region grow milpas based on maize but varying the intercrops with potatoes, faba bean, and even fruit trees,” Reyna-Ramírez said. “Our study showed that combinations such as maize-common bean-faba bean, maize-potatoes, and maize-common bean-potatoes provided the most carbohydrates, proteins, zinc, iron, calcium, potassium, folate, thiamin, riboflavin, vitamin B6, niacin and vitamin C.”

The classic “milpa” intercrop comprises maize, beans, and squash. The bean plant climbs the maize stalk to reach sunlight and its roots add nitrogen to the soil; the squash leaves shade the soil, conserving moisture and inhibiting weed growth. Milpa systems are often grown on steep hillsides at a wide range of altitudes. (Photo: Cristian Reyna)
The classic “milpa” intercrop comprises maize, beans, and squash. The bean plant climbs the maize stalk to reach sunlight and its roots add nitrogen to the soil; the squash leaves shade the soil, conserving moisture and inhibiting weed growth. Milpa systems are often grown on steep hillsides at a wide range of altitudes. (Photo: Cristian Reyna)

Better diets and routes out of poverty?

With typical landholdings of less than a quarter hectare and households averaging six members, Guatemala’s Western Highlands inhabitants cannot depend on the milpa alone to satisfy their needs, López-Ridaura cautioned.

“As with many smallholder farm communities, lack of land and general marginalization traps them in a vicious circle of poverty and malnutrition, forcing them to experiment with risky cash crops or for working-age members to undertake dangerous and heartbreaking migrations to find work and send back remittances,” he explains.

According to López-Ridaura, this study points the way for tailoring milpa systems to help communities that still rely on that intercrop or others that could benefit from its use.

Looking forward

Natalia Palacios Rojas, CIMMYT maize quality and nutrition expert and a co-author of this article, notes that calculations of this and other milpa studies consider raw nutrients and that research is needed on the nutritional contributions of cooked food and non-milpa foods such as poultry, livestock, home-garden produce, and purchased food.

“Further work should also address the effects of storing milpa produce on its nutrient stability and how the seasonal availability of milpa crops impacts diets and nutrition,” Palacios said.

The authors are grateful for funding from the United States Agency for International Development (USAID) as part of Feed the Future, the U.S. Government’s global hunger and food security initiative, under the Buena Milpa project, as well as the support of the CGIAR Research Program on Maize.

Read the full article:
Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala

New CIMMYT maize hybrids available from Eastern Africa breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners in eastern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to pursue national release of, and subsequently commercialize, these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is 9 February 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from Eastern Africa breeding program, application instructions and other relevant material is available below.

Download all documents

Or download individual files below:

CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 and 2020 Trials and Product Announcement (including Appendix 1: ACQUISITION AND USE OF CIMMYT MAIZE HYBRIDS FOR COMMERCIALIZATION)

Appendix 2: CIMMYT maize hybrids available under EA-PP1A

Appendix 3: CIMMYT maize hybrids available under EA-PP1B

Appendix 4: CIMMYT maize hybrids available under EA-PP2

Appendix 5: Eastern Africa Trial Sites Information

To apply, please fill out the CIMMYT Improved Maize Product Allocation Application Forms, available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)

FORM A – Application for CIMMYT Improved Maize Product Allocation

FORM B – Application for CIMMYT Improved Maize Product Allocation

Please send completed forms via email to GMP-CIMMYT@cgiar.org.

New publications: Scientists find genomic regions associated with better quality stover traits in maize for animal feed

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the International Livestock Research Institute (ILRI) have identified new genomic regions associated with maize stover quality, an important by-product of maize which can be used in animal feed.

The results of the study, published this month in Nature Scientific Reports, will allow maize breeders to select for stover quality traits more quickly and cost-effectively, and to develop new dual purpose maize varieties without sacrificing grain yield.

The researchers screened diverse Asia-adapted CIMMYT maize lines from breeders’ working germplasm for animal feed quality traits. They then used these as a reference set to predict the breeding values of over a thousand doubled haploid lines derived from abiotic stress breeding programs based on genetic information. Based on these breeding values, the scientists further selected 100 of these double haploid lines and validated the performance of stover quality traits through field-based phenotyping.

The results demonstrate the feasibility of incorporating genomic prediction as a tool to improve stover traits, circumventing the need for field or lab-based phenotyping. The findings significantly reduce the need for additional testing resources — a major hindrance in breeding dual-purpose maize varieties.

Interestingly, the researchers found that increased animal feed quality in maize stover had no impact on grain yield, a concern raised by scientists in the past.

“The main purpose of this study and overall purpose of this CIMMYT and ILRI collaboration was to optimize the potential of maize crops for farm families, increase income, improve livelihoods and sustainably manage the crop livestock system, within limited resources,” said P.H. Zaidi, a maize physiologist at CIMMYT and co-author of the study.

“More than 70% of the farmers in the tropics are smallholders so they don’t have a lot of land to grow crops for grain purposes and separate stover for animal feed, so this is a very sustainable model if they grow dual purpose maize.”

By growing maize simultaneously for both human consumption and animal feed, farmers can get the most out of their crops and conserve natural resources like land and water.

A farmer works in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. (Photo: M. DeFreese/CIMMYT)
A farmer works in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. (Photo: M. DeFreese/CIMMYT)

Fodder for thought

The findings from this study also validate the use of genomic prediction as an important breeding tool to accelerate the development and improvement of dual-purpose maize varieties, according to CIMMYT Maize Breeder and first author of the study, M.T. Vinayan.

With the demand for animal feed increasing around the world, crop scientists and breeders have been exploring more efficient ways to improve animal feed quality in cereals without compromising grain yields for human consumption.

“Not all maize varieties have good stover quality, which is what we realized when we started working on this project. However, we discovered that there are a few which offer just as good quality as sorghum stover — a major source of livestock fodder particularly in countries such as India,” said Zaidi.

The publication of the study is a fitting tribute to the late Michael Blummel, who was a principal scientist and deputy program leader in the feed and forage development program at ILRI and co-author of this study.

“A couple of years back Dr Blummel relocated from the Hyderabad office at ILRI to its headquarters at Addis Ababa, but he used to frequently visit Hyderabad, and without fail met with us on each visit to discuss updates, especially about dual-purpose maize work. He was very passionate about dual-purpose maize research with a strong belief that the additional income from maize stover at no additional cost will significantly improve the income of maize farmers,” Zaidi said. “Michael was following this publication very closely because it was the first of its kind in terms of molecular breeding for dual purpose maize. He would have been very excited to see this published.”

Read the full article:
Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.)

Cover photo: Dairy cattle eats processed maize stover in India. (Photo: P.H. Zaidi/CIMMYT)

Fast-tracked adoption of second-generation resistant maize varieties key to managing maize lethal necrosis in Africa

Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.

A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.

The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.

CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

Stemming the panic

The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLN’s spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.

In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varieties’ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYT’s pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.

Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3–4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

Widespread adoption critical

The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virus’s spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.

“Due to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,” said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as “reservoirs” for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.

“This is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,” Prasanna noted.

The report outlines other important prevention and control measures including: the production and exchange of “clean” commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

Noteworthy wins

In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.

“MLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,” Prasanna said.

Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the “food security, income and livelihoods of resource-poor smallholder farmers.

To keep up with the disease’s changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.

Read the full report on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

Taking stock of value chain development

In 1967 Albert O. Hirschman, the pioneering development economist, published Development Projects Observed. Based on an analysis of a handful of long-standing World Bank projects, the book was an effort, as Hirschman writes in the preface, “to ‘sing’ the epic adventure of development­ — its challenge, drama, and grandeur.” He sang this epic not in the register of high development theory,­ but rather through the ups and downs and unexpected twists of real-world development projects.

Today, a new group of researchers have taken up a similar challenge. Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale, a new book edited by Jason Donovan, Dietmar Stoian and Jon Hellin, surveys over two decades of academic and practical thinking on value chains and value chain development. While value chain development encompasses a broad variety of approaches, it has largely focused on improving the ability of small scale, downstream actors — such as smallholders in agri-food value chains — to capture more value for their products or to engage in value-adding activities. Value chain development approaches have also focused on improving the social and environmental impacts of specific value chains. Donovan, Stoian and Hellin’s book assesses these approaches through careful analysis of real-world cases. The book was published with support from the CGIAR Research Programs on Maize and on Policies, Institutions, and Markets.

Lessons learned

The book takes an unsparing look at what has and hasn’t worked in the field of value chain development. It begins by dissecting the drivers of the high degree of turnover in approaches that characterizes the field. The editors argue that “issue-attention cycles” among project stakeholders, coupled with monitoring and evaluation metrics that are more focused on tracking project implementation rather than producing robust measurements of their social impact, too often lead to the adoption — and abandonment — of approaches based on novelty and buzz.

The unfortunate consequences are that strengths and limitations of any given approach are never fully appreciated and that projects — and even entire approaches — are abandoned before they’ve had a chance to generate deep social impacts. Moreover, the opportunity to really learn from development projects — both in terms of refining and adapting a given approach to local conditions, and of abstracting scalable solutions from real development experiences — is lost.

A recurring theme throughout the book is the tension between the context-sensitivity needed for successful value chain development interventions and the need for approaches that can be scaled and replicated. Programs must develop tools for practitioners on one hand and demonstrate scalability to funders on the other. For example, a chapter on maize diversity and value chain development in Guatemala’s western highlands illustrates how an approach that was successful in Mexico — connecting producers of indigenous maize landraces with niche markets — is ill-suited to the Guatemalan context, where most producers are severely maize deficient. And a chapter reviewing guides for gender-equitable value chain development highlights how — for all their positive impact — such guides often overlook highly context- and culturally-specific gender dynamics. Intra-household bargaining dynamics and local masculinities, for example, can play critical roles in the success or failure of gender-focused value chain development interventions.

This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.
This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.

Finally, while lauding the valuable impact many value chain development initiatives have achieved, the editors warn against an exclusive reliance on market-based mechanisms, especially when trying to benefit the poorest and most marginalized of smallholders. In the case of Guatemala’s maize-deficient highland farmers, for example, the development of niche markets for native maize proved to be a poor mechanism for achieving the stated goal of preserving maize biodiversity and farmers’ livelihoods. Non-market solutions are called for. Based on this and similar experiences, the editors note that, while value chain development can be a valuable tool, to truly achieve impact at scale it must be coordinated with broader development efforts.

“The challenge of ensuring that value chain development contributes to a broad set of development goals requires transdisciplinary, multisector collaboration within broader frameworks, such as integrated rural-urban development, food system transformation, and green recovery of the economy in the post COVID-19 era,” write the editors.

This bracing and clear reflection on the promise and limitations of current development approaches is not only timely; it is perhaps more urgent today than in Hirschman’s time. While tremendous gains have been made since the middle of the 20th century, many stubborn challenges remain, and global climate change threatens to undo decades of progress. Projects like Value Chain Development and the Poor and the ongoing Ceres2030 initiative provide development practitioners, researchers, funders and other stakeholders a much needed assessment of what can be built upon and what needs to be rethought as they tackle these gargantuan challenges.

Embracing uncertainty

At the time Development Projects Observed was published, the study and practice of development was already entering a crisis of adolescence, as it were. Having achieved quasi-independence from its parent discipline of economics, it had to settle on an identity of its own.

Hirschman’s book represented one possible way forward — an understanding of development practice as a blend of art and science. The book’s most famous concept, that of the Hiding Hand, illustrates how planners’ optimism could fuel enormously complex and challenging projects — undertakings that might never have been attempted had all the challenges been known beforehand. At the same time, projects’ inevitable failures and shortcomings could spur creative local responses and solutions, thus ensuring their eventual success and rootedness in their specific context.

As Michele Alacevich points out in the Afterword to the book’s most recent reissue, the World Bank’s response to Hirschman’s book demonstrates the road that development research and practice ultimately took. The book was disregarded, and the Bank turned to the growing literature on cost-benefit analysis instead. “Whereas Hirschman’s analysis had placed uncertainty — an unmeasurable dimension — center stage, cost-benefit analysis assimilated it to risk, therefore turning it into something measurable and quantifiable,” Alacevich writes. Faced with a newfound awareness of the limits to the field’s powers and abilities — a rite of passage for all prodigies — development institutions appeared to try to outrun these limitations through ever-increasing technification.

The issue-attention cycles identified by Stoian and Donovan may represent a new, more frenetic and self-defeating iteration of this discomfort with uncertainty. If so, Value Chain Development and the Poor serves as an urgent call for development institutions and practitioners to make peace with the messiness of their vocation. As Hirschman observed decades ago, only by embracing the uncertainty and art inherent in development work can its students and practitioners further the enormously complex scientific understanding of the endeavor, and, crucially, generate broad and lasting social change.

The eBook is available for free (Open Access):
Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale

Cover image: A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Announcing CIMMYT-derived fall armyworm tolerant elite maize hybrids for eastern and southern Africa

A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.
A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the successful development of three CIMMYT-derived fall armyworm-tolerant elite maize hybrids for eastern and southern Africa.

Fall armyworm (Spodoptera frugiperda) emerged as a serious threat to maize production in Africa in 2016 before spreading to Asia in 2018. Host plant resistance is an important component of integrated pest management (IPM). By leveraging tropical insect-resistant maize germplasm developed in Mexico, coupled with elite stress-resilient maize germplasm developed in sub-Saharan Africa, CIMMYT worked intensively over the past three years to identify and validate sources of native genetic resistance to fall armyworm in Africa. This included screening over 3,500 hybrids in 2018 and 2019.

Based on the results of on-station screenhouse trials for fall armyworm tolerance (under artificial infestation) conducted at Kiboko during 2017-2019, CIMMYT researchers evaluated in 2020 a set of eight test hybrids (four early-maturing and four intermediate-maturing) ) against four widely used commercial hybrids (two early- and two intermediate-maturing) as checks. The trials conducted were:

  • “No choice” trial under fall armyworm artificial infestation in screenhouses in Kiboko, Kenya: Each entry was planted in 40 rows in a separate screenhouse compartment (“no-choice”), and each plant infested with seven fall armyworm neonates 14 days after planting. Foliar damage was assessed 7, 14 and 21 days after infestation. Ear damage and percent ear damage were also recorded, in addition to grain yield and other agronomic parameters.
  • On-station trials in eastern Africa: The trials, including the eight test entries and four commercial checks, were conducted at six locations in Kenya during the maize cropping season in 2020. Entries were evaluated for their performance under managed drought stress, managed low nitrogen stress, and under artificial inoculation for Turcicum leaf blight (TLB) and Gray leaf spot (GLS) diseases. The three-way cross CIMMYT test hybrids and their parents were also characterized on-station for their seed producibility, including maximum flowering time difference between parents, and single-cross female parent seed yield.

The eight test entries with fall armyworm tolerance were also included in the regional on-station trials (comprising a total of 58 entries) evaluated at 28 locations in Kenya and Tanzania. The purpose of these regional trials was to collect data on agronomic performance.

  • On-farm trials in Kenya: The eight test hybrids and four commercial checks were evaluated under farmers’ management conditions (without any insecticide spray) at 16 on-farm sites in Kenya. Each entry was planted in 20-row plots, and data was recorded on natural fall armyworm infestation. Foliar damage was assessed 7, 14, 21, 28 and 35 days after germination together with insect incidence. Ear damage and percent ear damage were also recorded, besides grain yield and other agronomic parameters.
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).

Summary of the data

  • “No-choice” trials in screenhouses at Kiboko: Significant differences were observed between the three selected fall armyworm tolerant hybrids (FAWTH2001-2003) and the commercial benchmark hybrid checks at the vegetative and grain filling stages and at harvest (Figure 1). In the fall armyworm artificial infestation trial, the three selected FAWTH hybrids yielded 7.05 to 8.59 t/ha while the commercial checks yielded 0.94-1.03 t/ha (Table 1).
  • On-station trials: No significant differences were observed between the three selected FAWTH hybrids and the commercial checks for grain yield and other important traits evaluated under optimum, managed drought stress, low nitrogen stress, TLB and GLS diseases (Table 1). The three FAWTH hybrids recorded excellent synchrony in terms of flowering between the female and male parents, and very good female parent seed yield (Table 1).
  • On-farm trials: There were significant differences in terms of foliar damage ratings between the FAWTH hybrids and the commercial checks. For ear damage, the differences were not statistically significant. The grain yields did not vary significantly under natural infestation in the on-farm trials because of the very low incidence of fall armyworm at most sites.

Native genetic resistance to fall armyworm in maize is partial, though quite significant in terms of yield protection under severe fall armyworm infestation, as compared to the susceptible commercial checks. Sustainable control of fall armyworm is best achieved when farmers use host plant resistance in combination with other components of integrated pest management, including good agronomic management, biological control and environmentally safer pesticides.

Next Steps

Together with national agricultural research system (NARS) partners, CIMMYT will nominate these FAWTH hybrids for varietal release in target countries in sub-Saharan Africa, especially in eastern and southern Africa.  After national performance trials (NPTs) and varietal release and registration, the hybrids will be sublicensed to seed company partners on a non-exclusive, royalty-free basis for accelerated seed scaling and deployment for the benefit of farming communities.

Acknowledgements

This work was implemented with funding support from the CGIAR Research Program on Maize (MAIZE), the U.S. Agency for International Development (USAID) Feed the Future initiative, and the Bill & Melinda Gates Foundation. MAIZE receives Windows 1&2 funding support from the World Bank and the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, UK and USA. The support extended by the Kenya Agriculture & Livestock Research Organization (KALRO) for implementation of this work through the fall armyworm mass rearing facility at Katumani and the maize research facilities managed by CIMMYT at Kiboko is gratefully acknowledged.

For further information, please contact:

B.M. Prasanna, Director of the Global Maize Program, CIMMYT and the CGIAR Research Program on Maize. b.m.prasanna@cgiar.org

Shining a brighter light on adoption and diffusion

Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)

With almost all CGIAR centers represented in Addis Ababa, Ethiopia is considered to be a hub for CGIAR research, and the organization has been a long-term partner to the Ethiopian government when it comes to agriculture. The partnership between CGIAR and the national partners is said to be an exemplary one, with CGIAR serving as the source of new technologies and innovations and national partners contextualizing these products within their own country context. This is believed to have brought impacts that serve the people on the ground.

A new report by CGIAR’s Standing Panel on Impact Assessment (SPIA) indicates that CGIAR innovations have reached between 4.1 and 11 million Ethiopian households. The report — which assesses 52 agricultural innovations and 26 claims of policy influence — documents the reach of CGIAR-related agricultural innovations across the core domains of CGIAR research activity: animal agriculture; crop germplasm improvement; natural resource management; and policy research.

The study compiles comprehensive information on the past two decades of CGIAR research activities in Ethiopia. Using information from interviews with CGIAR research leaders, scientists, government officials, published studies and project documents, this ‘stocktaking’ exercise was used to identify the innovations which are potentially disseminated at scale. The study also employs novel data collection protocols and methods like visual aid protocols for identification of natural resource management innovations or DNA fingerprinting for crop variety identification for barley, maize and sorghum.

The study results show that although many innovations are being adopted by some farmers, only a few are reaching large numbers of households. The three innovations with the largest reach are soil and water conservation practices, improved maize varieties and crossbred poultry. The study also found out that there are synergies between innovations where households adopt two or more. For instance, a household which adopts CGIAR maize varieties is likely to also adopt recommended natural resource management practices.

This, according to the study, is the result of different categories of CGIAR research efforts — natural resource management and policy, crop breeding and livestock research, respectively. The scaling of these innovations can also be linked to supportive government policies, which in turn have been influenced by policy research, as indicated in the report.

A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)
A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)

CIMMYT’s footprint

The International Maize and Wheat Improvement Center (CIMMYT) has maintained a presence in Ethiopia for over 30 years and is committed to supporting long-term agricultural development in the country. As part of this effort, CIMMYT has contributed to an increase in maize and wheat production in Ethiopia, working with national partners to test and release improved varieties.

The maize breeding program started in 1988 through CIMMYT and EIAR collaboration and in 1993 BH-660 was released — the first hybrid maize variety derived from CIMMYT germplasm. According to the report, specific maize traits were researched through the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects, and since 2012 the Nutritious Maize for Ethiopia (NuME) project has aimed to develop varieties with higher protein content. Overall, 54 maize varieties have been released in Ethiopia since 1990, and 34 of these are thought to contain CIMMYT-related germplasm. It is also noted that, in the past 20 years ten drought-tolerant varieties and eight quality protein maize (QPM) varieties have been released.

In terms of geographical spread, the study highlights that improved maize varieties derived from CGIAR germplasm were highly adopted in the regions of Harar and Dire Dawa, which account for 81% of adopters overall. Adoption rates were also high in Tigray (79.3% of households), Amhara and the Southern Nations, Nationalities, and Peoples’ Region (63% of households), and Oromia (58.4% of households).

The other important crop in Ethiopia is wheat, which is grown by up to 4.8 million farmers in the country, according to the 2019 Central Statistics Authority (CSA) report. The SPIA document indicates that CGIAR innovations have played great role in the release and uptake of improved wheat varieties. The work of the CGIAR Research Program on Wheat (WHEAT), for instance, has resulted in the release of eight rust-resistant varieties derived from CIMMYT germplasm that are still under production. Of the 133 varieties released since 1974, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) played a role in developing at least 80.

The report concludes that agricultural research carried out by CGIAR scientists and their national partners generates many new ideas for innovations that might help address pressing policy concerns. CGIAR’s contribution to Ethiopia’s agricultural development is complex and wide-ranging, and while some aspects cannot be accurately captured by survey data, this new source of adoption and diffusion data helps identify the scale and scope of CGIAR’s reach in Ethiopia.

Read the full report: Shining a brighter light: Comprehensive evidence on adoption and diffusion of CGIAR-related innovations in Ethiopia

About the Standing Panel on Impact Assessment

The Standing Panel on Impact Assessment (SPIA) is an external, impartial panel of experts in impact assessment appointed by the System Council and accountable to it. SPIA is responsible for providing rigorous, evidence-based, and independent strategic advice to the broader CGIAR System on efficient and effective impact assessment methods and practices, including those measuring impacts beyond contributions to science and economic performance, and on innovative ways to improve knowledge and capacity on how research contributes to development outcomes

Improved metrics for better decisions

By adopting best practices and established modern tools, national agricultural research systems (NARS) are making data-driven decisions to boost genetic improvement. And they are measuring this progress through tracking and setting goals around “genetic gain.”

Genetic gain means improving seed varieties so that they have a better combination of genes that contribute to desired traits such as higher yields, drought resistance or improved nutrition. Or, more technically, genetic gain measures, “the expected or realized change in average breeding value of a population over at least one cycle of selection for a particular trait of index of traits,” according to the CGIAR Excellence in Breeding (EiB)’s breeding process assessment manual.

CGIAR breeders and their national partners are committed to increasing this rate of improvement to at least 1.5% per year. So, it has become a vital and universal high-level key performance indicator (KPI) for breeding programs.

“We are moving towards a more data-driven culture where decisions are not taken any more based on gut feeling,” EiB’s Eduardo Covarrubias told nearly 200 NARS breeders in a recent webinar on Enhancing and Measuring Genetic Gain. “Decisions that can affect the sustainability and the development of organization need to be based on facts and data.”

Improved metrics. Better decisions. More and better food. But how are NARS positioned to better measure and boost the metric?

EiB researchers have been working with both CGIAR breeding programs and NARS to broaden the understanding of genetic gain and to supply partners with methods and tools to measure it.

The recent webinar, co-sponsored by EiB and the CIMMYT-led Accelerating Genetic Gains in Maize and Wheat (AGG) project, highlighted tools and services that NARS are accessing, such as genotyping, data analysis and mechanization.

Through program assessments, customized expert advice, training and provision of services and resources, EiB researchers are helping national partners arrive at the best processes for driving and measuring genetic gains in their programs.

For example, the EiB team, through Crops to End Hunger (CtEH), is providing guidelines to breeders to help them maximize the accuracy and precision, while reducing the cost of calculating genetic gains. The guidelines make recommendations such as better design of trials and implementing an appropriate check strategy that permits regular and accurate calculation of genetic gain.

A comprehensive example at the project level is EiB’s High-Impact Rice Breeding in East and West Africa (Hi-Rice), which is supporting the modernization of national rice programs in eight key rice-producing countries in Africa. Hi-Rice delivers training and support to modernize programs through tools such as the use of formalized, validated product profiles to better define market needs, genotyping tools for quality control, and digitizing experiment data to better track and improve breeding results. This is helping partners replace old varieties of rice with new ones that have higher yields and protect against elements that attack rice production, such as drought and disease. Over the coming years, EiB researchers expect to see significant improvements in genetic gain from the eight NARS program partners.

And in the domain of wheat and maize, AGG is working in 13 target countries to help breeders adopt best practices and technologies to boost genetic gain. Here, the EiB team is contributing its expertise in helping programs develop their improvement plans — to map out where, when and how programs will invest in making changes.

NARS and CGIAR breeding programs also have access to tools and expertise on adopting a continuous improvement process — one that leads to cultural change and buy-in from leadership so that programs can identify problems and solve them as they come up. Nearly 150 national breeding partners attended another EiB/AGG webinar highlighting continuous improvement key concepts and case studies.

National programs are starting to see the results of these partnerships. The Kenya Agricultural & Livestock Research Organization (KALRO)’s highland maize breeding program has undertaken significant changes to its pipelines. KALRO carried out its first-ever full program costing, and based on this are modifying their pipeline to expand early stage testing. They are also switching to a double haploid breeding scheme with support from the CGIAR Research Program on Maize (MAIZE), in addition to ring fencing their elite germplasm for future crosses.

KALRO has also adopted EiB-supported data management tools, and are working with the team to calculate past rates of genetic gains for their previous 20 years of breeding. These actions — and the resulting data — will help them decide on which tools and methods to adopt in order to improve the rate of genetic gain for highland maize.

“By analyzing historical genetic gain over the last 20 years, it would be interesting to determine if we are still making gains or have reached a plateau,” said KALRO’s Dickson LIgeyo, who presented a Story of Excellence at EiB’s Virtual Meeting 2020. “The assessment will help us select the right breeding methods and tools to improve the program.”

Other NARS programs are on a similar path to effectively measure and increase genetic gain. In Ghana, the rice breeding program at Council for Scientific and Industrial Research (CSIR) have developed product profiles, identified their target market segments, costed out their program, digitized their operations, and have even deployed molecular markers for selection.

With this increased expertise and access to tools and services, national breeding programs are set to make great strides on achieving genetic gain goals.

“NARS in Africa and beyond have been aggressively adopting new ideas and tools,” says EiB’s NARS engagement lead Bish Das. “It will pay a lot of dividends, first through the development of state-of-the-art, and ultimately through improving genetic gains in farmers’ fields. And that’s what it’s all about.”

International Whole Grain Day 2020

The International Maize and Wheat Improvement Center (CIMMYT) is proud to partner with the Whole Grain Initiative in celebrating International Whole Grain Day on November 19, 2020.

In terms of diet and nutrition, ours is an age of contradiction. While populations in wealthy countries are faced with unprecedented levels of diet-related disease, close to 2 billion people globally remain food insecure. At the same time, global agriculture has an enormous role to play in the transition towards an environmentally sustainable future.

International Whole Grain Day 2020 is a good day to step back and consider the continued role of whole grains in the healthy, sustainable diets of today and tomorrow. Explore our content to learn what whole grains are, how we’re working to make whole grain wheat and maize even more nutritious, and discover some our favorite recipes.

The Cereal Serial, Episode 1

In the first installment of The Cereal Serial, CIMMYT’s maize and wheat quality experts explain what whole grains are and why they are an important part of a healthy diet.

Explainer: What are whole grains?

For a deeper dive into the subject, check out our explainer on whole grains: What they are, why they are important for your health, and how to identify them.

The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)

Whole grains around the world

What do wholegrain foods look like around the world? We’ve curated photos of some delicious staples. View gallery.

Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)

“A Grain a Day” Cookbook

CIMMYT’s “A Grain a Day” cookbook highlights the big role maize and wheat play in diets around the world, and brings global cuisine to your own kitchen. (Note: not all recipes call for whole grains.) Learn more.

International Whole Grain Day webinar

Join members of the Whole Grain Initiative, the FAO and global leaders on November 19 as they discuss the role of whole grains in meeting the “triple challenge” of ensuring global food security and improving the livelihoods of agri-food workers in an environmentally sustainable manner. Join the webinar: Building Healthy, Sustainable and Resilient Food Systems.

Interested in learning more about how CIMMYT is working to make grain-based diets healthier and more nutritious? Check out our archive of health and nutrition content.

Featured image: Little girl eating roti, Bangladesh (S. Mojumder/Drik/CIMMYT)

The Cereal Serial: What are whole grains and why do they matter?

In the first installment of The Cereal Serial, CIMMYT’s maize and wheat quality experts Natalia Palacios and Itria Ibba explain what whole grains are and why they are an important part of a healthy diet. For a deeper dive into the subject, check out our whole grains explainer.

Share recipes and photos of your favorite whole grain foods by tagging @CIMMYT and using #choosewholegrains in your social media posts.