Skip to main content

Scientists find genomic regions associated with wheat blast resistance in CIMMYT nurseries

Wheat spike damaged by wheat blast.
Wheat blast damages wheat spikes. (Photo: Xinyao He / CIMMYT)

In an article published in Nature Scientific Reports, a team of scientists led by wheat breeder Philomin Juliana from the International Wheat and Maize Improvement Center (CIMMYT) conducted a large genome-wide association study to look for genomic regions that could also be associated with resistance to wheat blast.

Juliana and fellow scientists found 36 significant markers on chromosome 2AS, 3BL, 4AL and 7BL that appeared to be consistently associated with blast resistance across different environments. Among these, 20 markers were found to be in the position of the 2NS translocation, a chromosomal segment transferred to wheat from a wild relative, Aegilops ventricosa, that has very strong and effective resistance to wheat blast.

The team also gained excellent insights into the blast resistance of the globally-distributed CIMMYT germplasm by genomic fingerprinting a panel over 4,000 wheat lines for the presence of the 2NS translocation, and found that it was present in 94.1% of lines from International Bread Wheat Screening Nurseries (IBWSNs) and 93.7% of lines from Semi-Arid Wheat Screening Nurseries (SAWSNs). Although it is reassuring that such a high percentage of CIMMYT wheat lines already have the 2NS translocation and implied blast resistance, finding other novel resistance genes will be instrumental in building widespread, global resilience to wheat blast outbreaks in the long-term.

The researchers used data collected over the last two years from CIMMYT’s IBWSNs and SAWSNs by collaborators at the Bangladesh Wheat and Maize Research Institute (BWMRI) and Bolivia’s Instituto Nacional de InnovaciĂłn Agropecuaria y Forestal (INIAF).

Devastating fungal disease

Wheat blast, caused by the fungus Magnaporthe oryzae pathotype Triticum, was first identified in 1985 in South America, but has been seen in Bangladesh in recent years. The expansion of the disease is a great concern for regions of similar environmental conditions in South Asia, and other regions globally.

Although management of the disease using fungicide is possible, it is not completely effective for multiple reasons, including inefficiency during high disease pressure, resistance of the fungal populations to some classes of fungicides, and the affordability of fungicide to resource-poor farmers. Scientists see the development and deployment of wheat with genetic resistance to blast as the most sustainable and farmer-friendly approach to preventing devastating outbreaks around the world.

This work was made possible by the generous support of the Delivering Genetic Gains in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation, the U.K. Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University, the U.S. Agency for International Development’s Feed the Future initiative, the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), The Swedish Research Council (VetenskapsrĂ„d), and the Australian Centre for International Agricultural Research (ACIAR).

Read the full article:
Genome‑wide association mapping for wheat blast resistance in CIMMYT’s international screening nurseries evaluated in Bolivia and Bangladesh

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Starting with Seeds

Seeds are the start and the first step in a solution for global hunger.

B.M. Prasanna, director of the Global Maize Program and of the CGIAR Research program on Maize at the International Maize and Wheat Improvement Center (CIMMYT), says smallholder farms in sub-Saharan Africa make up 80% of all farms there, and contribute significantly to food production in the region.

“Over the past 15 years, CIMMYT and partners in sub-Saharan Africa have been able to intensively work with seed companies to invest in deployment of climate-resilient and nutritionally enriched maize seed, and generate demand for such products,” Prasanna says.

Read more here: https://seedworld.com/starting-with-seeds/

Efforts in controlling maize disease boosting steady supply of certified seeds

Efforts towards managing the Maize Lethal Necrosis (MLN), a viral disease affecting maize, have contributed to reducing seed production losses from  33 per cent to 16 per cent in the last four years, bolstering  steady supply of maize seeds in the Eastern African region.

Read more here: https://www.kbc.co.ke/maize-disease-certified-seeds/

Cobs & Spikes podcast: What is conservation agriculture?

Farmers worldwide are increasingly adopting conservation agriculture. In the 2015/2016 season, conservation agriculture was practiced on about 180 mega hectares of cropland globally, 69% more than in the 2008/2009 season.

What are the benefits of this method of farming? How did it originate? In this episode, we answer common questions on conservation agriculture and talk to Simon Fonteyne, Research Platforms Coordinator with CIMMYT’s Integrated Development program and conservation agriculture expert.

You can listen to our podcast here, or subscribe on iTunes, Spotify, Stitcher, SoundCloud, or Google Play.

 

Seed Seekers, Seed Keepers, Seed Growers

Seed banks may be another resource for securing Indigenous seed, although these banks have other missions as well. The International Maize and Wheat Improvement Center (CIMMYT), maintains seed banks and programs to preserve seeds native to specific regions. The group also leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform to characterize genetic diversity so it can be used in conventional breeding programs to develop wheat and maize varieties that can address climate change, pest and disease resistance and yield to help manage food security.

“About 100 seed banks exist worldwide with seed used for cultural or heritage purposes and for production. CIMMYT has varieties that have been cultivated, conserved and cherished as grain and food crops for thousands of years,” says Tom Payne, head of the non-profit organization’s wheat germplasm collections and International Wheat Improvement Network. “Our seed bank conserves varieties that can be a source for finding old genes that will solve new problems. We have to have that diversity to address changing production environments.”

Read more here: https://seedworld.com/seed-seekers-seed-keepers-seed-growers/

Breaking Ground: Jordan Chamberlin avidly explores the changing landscapes of Africa

Sub-Saharan Africa is undergoing important transformations, including climate change, population growth, urbanization and migration flows, and growth in digital technologies. What can we say about the likely development trajectories that African rural economies are on, and the implications for poor farming households? These are central questions for Jordan Chamberlin, an economist at the International Maize and Wheat Improvement Center (CIMMYT) in Kenya.

Chamberlin’s desk is covered with screens teeming with numbers, complex mathematical equations, lines of code and aerial views of African landscapes. He combines traditional microeconomic analysis with geospatial modelling skills to study some of the ways in which rural transformations are occurring. In this era of big data, he examines the wealth of spatial and socioeconomic datasets to explore the relationships between drivers of change and smallholder welfare, sometimes revealing surprising insights on how rural communities in Africa are evolving.

“Are commercial farms good or bad for neighboring smallholder farmers? Which households can benefit from the rapidly evolving rural land markets in Africa? What drives migration between rural areas? These are some examples of the complex but increasingly important questions that inform how we understand the evolution of agri-food systems in developing countries,” Chamberlin explains. “Fortunately, we also increasingly have access to new data that helps us explore these issues.”

In addition to household survey datasets — the bread and butter of applied social scientists — today’s researchers are also able to draw on an ever-expanding set of geospatial data that helps us to better contextualize the decisions smallholder farmers make.

He cites current work, which seeks to understand input adoption behaviors through better measurement of the biophysical and marketing contexts in which small farms operate. “Evidence suggests that low use rates of inorganic fertilizer by smallholders is due in part to poor expected returns on such investments,” he explains, “which are the result of site-specific agronomic responses, rainfall uncertainty, variation in input-output price ratios, and other factors.”

We are increasingly able to control for such factors explicitly: one of Chamberlin’s recent papers shows the importance of soil organic carbon for location-specific economic returns to fertilizer investments in Tanzania. “After all, farmers do not care about yields for yields’ sake — they make agronomic investments on the basis of how those investments affect their economic welfare.”

Better data and models may help to explain why farmers sometimes do not adopt technologies that we generally think of as profitable. A related strand of his research seeks to better model the spatial distribution of rural market prices.

Jordan Chamberlin (left) talks to a farmer in Ethiopia’s Tigray region in 2019, while conducting research on youth outmigration from rural areas. (Photo: Jordan Chamberlin)
Jordan Chamberlin (left) talks to a farmer in Ethiopia’s Tigray region in 2019, while conducting research on youth outmigration from rural areas. (Photo: Jordan Chamberlin)

A spatial economist’s journey on Earth

Ever since his experience as a Peace Corps volunteer in Paraguay, where he worked as a beekeeping specialist, Chamberlin knew he wanted to spend his professional life working with smallholder farmers. He wanted to better understand how rural development takes place, and how policies and investments can help rural households to improve their welfare.

In pursuit of these interests, his academic journey took him from anthropology to quantitative geography, before leading him to agricultural economics. “While my fundamental interest in rural development has not changed, the analytical tools I have preferred have evolved over the years, and my training reflects that evolution,” he says.

Along with his research interests, he has always been passionate about working with institutions within the countries where his research has focused. While working with the International Food Policy Research Institute (IFPRI) in Ethiopia, he helped establish a policy-oriented GIS lab at the Ethiopian Development Research Institute (EDRI). Years later, as part of his work with Michigan State University, he served as director of capacity building at the Indaba Agricultural Policy Research Institute (IAPRI), a not-for-profit Zambian research organization. He continues to serve as an external advisor on PhD committees, and considers mentorship a key part of his professional commitments.

He joined CIMMYT at the Ethiopia office in 2015 as spatial economist, part of the foresight and ex ante group of the Socioeconomics program.

As part of his research portfolio, he explores the role of new technologies, data sources and extension methods in the scaling of production technologies. Under the Taking Maize Agronomy to Scale in Africa (TAMASA) project, one area he has been working on is how we may better design location-specific agronomic advisory tools. Working with the Nutrient Expert tool, developed by the African Plant Nutrition Institute (APNI), he and his research team have conducted randomized control trials in Ethiopia and Nigeria to evaluate the impacts of such decision-support tools on farmer investments and productivity outcomes. They found that such tools appear to contribute to productivity gains, although tool design matters — for example, Nigerian farmers were more likely to take up site-specific agronomic recommendations when such information was accompanied by information about uncertainty of financial returns.

Jordan Chamberlin (center) talks to colleagues during a staff gathering in Nairobi. (Photo. Joshua Masinde/CIMMYT)
Jordan Chamberlin (center) talks to colleagues during a staff gathering in Nairobi. (Photo. Joshua Masinde/CIMMYT)

Creative rethinking

While Chamberlin’s research portfolio is diverse, one commonality is the drive to use new data and tools to better guide how development resources are allocated.

“Given the scarcity of resources available to governments and their partners, it is important to have sound empirical foundations for the allocation of these resources. Within CIMMYT, I see my role as part of a multidisciplinary team whose goal is to generate such empirical guidance,” he says.

This research also contributes to better design of agricultural development policies.

“Even though many of the research topics that my team addresses are not traditional areas of emphasis within CIMMYT’s socioeconomic work, I hope that we are demonstrating the value of broad thinking about development questions, which are of fundamental importance to one of our core constituencies: the small farmers of the region’s maize and wheat-based farming systems.”

Tangible agricultural solutions shine at first online AGRF

For ten years now, the African Green Revolution Forum (AGRF) has been an unmissable event. Every September, the premier forum for African agriculture has brought people together to share experiences about transforming agriculture, raising productivity for farmers and increasing incomes.

The theme of the 2020 summit — Feed the Cities, Grow the Continent: Leveraging Urban Food Markets to Achieve Sustainable Food Systems in Africa — was a call to action to rethink our food systems to make them more resilient and deliver better nourishment and prosperity for all.

This year, the summit went virtual. Delegates could not mingle, visit booths and network over lunch, but attendance reached new heights. Over 10,400 delegates from 113 countries participated in this edition of the AGRF, compared to 2,300 delegates last year.

As in the previous years, CGIAR centers, including the International Maize and Wheat Improvement Center (CIMMYT), maintained an active presence among speakers and attendees.

With over 50 projects and hundreds of staff based across nine countries, Africa holds a significant position in CIMMYT’s research agenda. CIMMYT’s work in Africa helps farmers access new maize and wheat system-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains.

Striving for excellence

CGIAR leveraged AGRF 2020’s highly diversified and international audience to launch the Excellence in Agronomy 2030 initiative (EiA 2030) on September 7, 2020. EiA’s impressive group of experts plans to hit the ground running in 2020 and work toward speeding up progress in tailoring and delivering nutrients and other agronomic solutions to smallholder farmers in Africa and other regions.

“Across agricultural production systems, low crop yields and inadequate incomes from agriculture are the rule rather than the exception,” said Martin Kropff, Director General of CIMMYT and Chair of One CGIAR Transition Advisory Group (TAG) 2 on Research. “At the same time, the ‘asks’ of agriculture have evolved beyond food security. They now include a broader range of Sustainable Development Goals, such as sustainable land management, climate change mitigation, provision of heathy diets, and inclusive economic growth. None of these goals will be achieved without the large-scale adoption of improved and adapted agronomic practices. To this end, we have initiated the creation of a CGIAR-wide EiA 2030 initiative aiming at reducing yield and efficiency gaps for major crops at scale.”

EiA 2030 is funded by the Bill & Melinda Gates Foundation, supported by the Big Data Platform and co-created by AfricaRice, CIAT, CIMMYT, CIP, ICARDA, ICRAF, ICRISAT, IITA and IRRI.

Martin Kropff (first row, fourth from left), Bram Govaerts (second row, first from left) and Lennart Woltering (second row, third from left) spoke at the "Scaling and Food Systems Transformation in the PLUS-COVID-19 era" panel.
Martin Kropff (first row, fourth from left), Bram Govaerts (second row, first from left) and Lennart Woltering (second row, third from left) spoke at the “Scaling and Food Systems Transformation in the PLUS-COVID-19 era” panel.

Scaling agriculture beyond numbers

On September 7, 2020, a group of experts, including Lennart Woltering, Scaling Catalyst at CIMMYT and chair of the Agriculture and Rural Development (ARD) working group of the Community of Practice on Scaling, gathered to explore how organizations are supporting scaling food systems in a post-COVID-19 world.

As Martin Kropff mentioned in a video address, One CGIAR aims to deliver on its commitments by building on its experience with pioneering integrated development projects, such as CSISA, CIALCA and AVISA. “One CGIAR plans to be actively involved and help partners to scale by delivering on five One CGIAR impact areas at the regional level. How? By taking integrated regional programs from strategic planning to tactical implementation in three steps: strategic multi-stakeholder demand-driven planning process, tactical plan development based on the integration of production and demand, and implementation of multi-stakeholder innovation hubs. An integrated regional approach will deliver at scale,” Kropff said.

“CIMMYT has developed different scenarios regarding what agri-food systems will look like in 2025 with the COVID-19 shock. Whatever may unfold, integrated systems are key,” highlighted Bram Govaerts, Director of the Integrated Development Program and one of CIMMYT’s interim Deputy Directors General for Research, during the session.

“Diversity and proactive mindsets present at the #AGRF2020 High-Level Ministerial Roundtable. An example of how we can shape the future, listening to what’s needed, investing in agriculture and making resilient food systems to resist the impact of #COVID19 #AgricultureContinues,” tweeted Bram Govaerts (first row, second from left) along with a screenshot of his Zoom meeting screen.
“Diversity and proactive mindsets present at the #AGRF2020 High-Level Ministerial Roundtable. An example of how we can shape the future, listening to what’s needed, investing in agriculture and making resilient food systems to resist the impact of #COVID19 #AgricultureContinues,” tweeted Bram Govaerts (first row, second from left) along with a screenshot of his Zoom meeting screen.

Putting healthy diets on the roundtable

Later in the week, CIMMYT experts took part in two key events for the development of Africa’s agriculture. Govaerts stepped in for Kropff during the High-Level Ministerial Roundtable, where regional leaders and partners discussed reaching agricultural self-sufficiency to increase the region’s resilience toward shocks such as the ongoing pandemic.

At the Advancing Gender and Nutrition policy forum, Natalia Palacios, Maize Quality Specialist, spoke about engaging nutritionally vulnerable urban consumers. Palacios echoed the other speakers’ calls for transforming agri-food systems and pointed out that cereals and effective public-private partnerships are the backbone of nutritionally vulnerable and poor urban customers’ diets.

According to the Food and Agriculture Organization of the UN, in 30 years, the population of Africa is projected to double to a number as high as 2.7 billion, from 1.34 billion in 2020. Considering only the projected population, by 2050 Africa will have to supply 112.4 to 133.1 million tons of wheat and 106.5 to 126.1 million tons of maize to ensure food security of the burgeoning population. “We are living in a very challenging time because we need to provide affordable, nutritious diets — within planetary boundaries,” Palacios said.

Cover photo: Over 10,400 delegates from 113 countries participated in the 2020 edition of the African Green Revolution Forum. (Photo: AGRA)

The search is on for nontoxic solutions to fall armyworm across Africa

Last year, AgBiTech launched a partnership between the United States Agency for International Development, FAO, International Maize and Wheat Improvement Center, and Centre for Agriculture and Bioscience International in South Sudan to train farmers in using Fawlingen. These farmers have shown a 63% increase in yield compared to untreated plots and the pilot is being scaled to reach thousands of farmers this season.

Read more: https://www.devex.com/news/the-search-is-on-for-nontoxic-solutions-to-fall-armyworm-across-africa-98150

Wheat blast has made the intercontinental jump to Africa

Scientists observe wheat blast in Zambia's Mpika district. (Photo: Batiseba Tembo/ZARI)
Scientists observe wheat blast in Zambia’s Mpika district. (Photo: Batiseba Tembo/ZARI)

Wheat blast, a fast-acting and devastating fungal disease, has been reported for the first time on the African continent. In an article published in the scientific journal PLoS One, a team of scientists confirmed that symptoms of wheat blast first appeared in Zambia during the 2018 rainy season, in experimental plots and small-scale farms in the Mpika district, Muchinga province.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT), the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS) and the Zambian Agricultural Research Institute (ZARI) participated in this study.

Wheat blast poses a serious threat to rain-fed wheat production in Zambia and raises the alarm for surrounding regions and countries on the African continent with similar environmental conditions. Worldwide, 2.5 billion consumers depend on wheat as a staple food and, in recent years, several African countries have been actively working towards reducing dependence on wheat imports.

“This presents yet another challenging biotic constraint to rain-fed wheat production in Zambia,” said Batiseba Tembo, wheat breeder at ZARI and lead scientist on the study.

A difficult diagnosis

Researchers from ZARI check for wheat blast in experimental plots. (Photo: Batiseba Tembo/ZARI)
Researchers from ZARI check for wheat blast in experimental plots. (Photo: Batiseba Tembo/ZARI)

“The first occurrence of the disease was very distressing. This happened at the spike stage, and caused significant losses,” Tembo said. “Nothing of this nature has happened before in Zambia.”

Researchers were initially confused when symptoms of the disease were first reported in the fields of Mpika. Zambia has unique agro-climatic conditions, particularly in the rainfed wheat production system, and diseases such as spot blotch and Fusarium head blight are common.

“The crop had silvery white spikes and a green canopy, resulting in shriveled grains or no grains at all
 Within the span of seven days, a whole field can be attacked,” Tembo explained. Samples were collected and analyzed in the ZARI laboratory, and suspicions grew among researchers that this may be a new disease entirely.

Tembo participated in the Basic Wheat Improvement Course at CIMMYT’s global headquarters in Mexico, where she discussed the new disease with Pawan Singh, head of Wheat Pathology at CIMMYT. Singh worked with Tembo to provide guidance and the molecular markers needed for the sample analysis in Zambia, and coordinated the analysis of the wheat disease samples at the USDA-ARS facility in Fort Detrick, Maryland, United States.

All experiments confirmed the presence of the fungus Magnaporthe oryzae pathotype Triticum (MoT), which causes the disease.

“This is a disaster which needs immediate attention,” Tembo said. “Otherwise, wheat blast has the potential to marginalize the growth of rain-fed wheat production in Zambia and may threaten wheat production in neighboring countries as well.”

Wheat blast spreads through infected seeds and crop residues, as well as by spores that can travel long distances in the air. The spread of blast within Zambia is indicated by both mechanisms of expansion.

Wheat blast has expanded rapidly since it was initially discovered in Brazil in 1985. (Map: Kai Sonder/CIMMYT)
Wheat blast has expanded rapidly since it was initially discovered in Brazil in 1985. (Map: Kai Sonder/CIMMYT)

A cause for innovation and collaboration

CIMMYT and the CGIAR Research Program on Wheat (WHEAT) are taking action on several fronts to combat wheat blast. Trainings and international courses invite participants to gain new technical skills and knowledge in blast diagnostics, treatment and mitigation strategies. WHEAT scientists and partners are also studying the genetic factors that increase resistance to the disease and developing early warning systems.

“A set of research outcomes, including the development of resistant varieties, identification of effective fungicides, agronomic measures, and new findings in the epidemiology of disease development will be helpful in mitigating wheat blast in Zambia,” Singh said.

“It is imperative that the regional and global scientific communities join hands to determine effective measures to halt further spread of this worrisome disease in Zambia and beyond,” Tembo expressed.


Read the study:

Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia

Interview opportunities:

Pawan Kumar Singh, Senior Scientist and Head of Wheat Pathology, International Maize and Wheat Improvement Center (CIMMYT)

Batiseba Tembo, Wheat Breeder, Zambian Agricultural Research Institute (ZARI)

For more information, or to arrange interviews, contact the media team:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements

Financial support for this research was provided by the Zambia Agriculture Research Institute (ZARI), the CGIAR Research Program on Wheat (WHEAT), the Australian Centre for International Agricultural Research (ACIAR), and the US Department of Agriculture’s Agricultural Research Service (USDA-ARS). 

The Basic Wheat Training Program and Wheat Blast Training is made possible by support from investors including the Australian Centre for International Agricultural Research (ACIAR), WHEAT, the Indian Council of Agricultural Research (ICAR), Krishi Gobeshona Foundation (KGF), the Swedish Research Council (SRC) and the United States Agency for International Development (USAID).

The Accelerating Genetic Gains in Maize and Wheat (AGG) project is funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

About CIMMYT

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

Partners in nutrition

It is no secret that Africa is urbanizing at breakneck speed. Consider Lagos. In 1950 the Nigerian city boasted a population of a few hundred thousand. Today that number has soared to around 14 million. It is estimated that by 2025 half of Africa’s population will live in urban areas.

This demographic transformation has had dramatic consequences for human health and nutrition. Urban dwellers are far more likely to rely on cheap highly-processed foods, which are shelf-stable but poor on nutrients.

These statistics, presented by moderator Betty Kibaara, Director of the Food Initiative at The Rockefeller Foundation, framed the 2020 African Green Revolution Forum’s policy symposium on “Advancing Gender and Nutrition.” The forum comprised two tracks. One focused on addressing the needs of nutritionally vulnerable urban consumers, particularly women; the other on gender-based financing in the African agri-food system

Speaking in the first track, Natalia Palacios, maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT), underlined the enormity of the challenge. “We need to provide affordable, nutritious diets … within planetary boundaries,” she said.

Many of the panelists pointed out further dimensions of the challenge — from evidence deficits around the continent’s urban populations to the amplifying effects of the COVID-19 crisis. Palacios stressed that the bedrock of any response must be effective partnerships between governments, companies and non-profit actors working in this area.

“The really important thing is to start working together,” she said, “to start developing the strategies together instead of providing things or demanding things.” Speaking to the role of organizations like CIMMYT, Palacios highlighted the need to work closely with the private sector to understand the demand for agricultural raw materials that can be converted into nutritious diets.

Rich nutrition within reach

Palacios’ most recent research efforts focus on precisely this question. She and a team of researchers, including CIMMYT senior scientist Santiago Lopez-Ridaura, explored how various innovations in maize production have improved the macro- and micro-nutrient content of the grain and led to healthier maize-based agri-food systems.

This is significant because for millions of the estimated 2 billion people globally who suffer from “hidden hunger” a more diversified diet rich in costly, perishable, nutrient-dense foods is not economically feasible. In low- and middle-income countries across Africa, Asia and Latin America, it estimated that rice, maize and wheat account for 55 to 70% of calories.

CIMMYT, HarvestPlus and the International Institute of Tropical Agriculture (IITA), together with several stakeholders, have been deeply involved in work to improve the nutritional quality of staple-dependent food systems. In partnership with a broad network of national and private-sector partners, they have released over 60 improved maize and wheat varieties fortified with zinc or provitamin A in 19 countries.

Cover photo: Unlike white maize varieties, vitamin A maize is rich in beta-carotene, giving it a distinctive orange color. This biofortified variety provides consumers with up to 40% of their daily vitamin A needs. (Photo: HarvestPlus/Joslin Isaacson)

‘Seeds for Needs’ approach to develop climate resilient crop varieties

“This is a very relevant approach in the Indian context also. Contingent plannings are prescription based and when the time comes the seeds are unavailable for the farmers. This approach will answer the questions like which seeds are made to be available where and in what quantity. As we have our own indigenous biodiversity, our farmers face monsoon delays and monsoon failures so Seed for Needs is the key to fight such problems and to maintain our biodiversity” said Dr M L Jat, Principal Scientist, International Maize and Wheat Improvement Center.

Read more: https://vigyanprasar.gov.in/isw/Seeds-for-Needs-approach-to-develop-climate-resilient-crop-varieties.html

50 years building peace through agriculture

On December 10, 1970, the former chair of the Nobel Committee, Aase Lionaes, called Norman Borlaug to receive the Nobel Peace Prize arguing, “He has given us a well-founded hope, an alternative of peace and of life — the Green Revolution.”

From that moment, Borlaug became known as “the man who saved one billion lives” from famine and as “the father of the Green Revolution.” Borlaug started a pivotal process in the 20th century, characterized by the development of high-yielding new wheat and maize varieties from the International Maize and Wheat Improvement Center (CIMMYT).

“Food is the moral right of all who are born into this world,” Borlaug said during his acceptance speech or Nobel Lecture almost 50 years ago. The scientist, credited for coining the phrase “You can’t build peace on empty stomachs,” became the world’s most acknowledged advocate of the right to food.

The Nobel Peace Center, the government of Mexico — through its Embassy in Oslo, Norway — and CIMMYT remembered Norman Borlaug’s legacy to commemorate the International Day of Peace on September 21. Established in 1981 by the United Nations General Assembly, this day calls to halt all forms of violence for 24 hours and to strengthen the ideals of peace, including Sustainable Development Goal number 2, ‘zero hunger.’

“Dr. Borlaug’s impact is an example of international cooperation for us to learn from and build the future,” said Ulises Canchola GutiĂ©rrez, Mexico’s Ambassador to Norway, in the video Borlaug’s legacy: Agriculture for Peace #PeaceDay 2020.

According to the Nobel Peace Center, “Dr. Norman Borlaug’s work is one of the greatest achievements for humankind.” On a similar note, CIMMYT’s director general, Martin Kropff, noted that “Peace lies in the hands of those who cultivate the land. We can build peace through agriculture.”

CIMMYT carries on Borlaug’s legacy by implementing integrated strategic development projects that aim to transform food production units into sustainable, resilient and healthy agri-food systems. For that reason, CIMMYT issued a call to form an international coalition to tackle the current crisis and avert a new food crisis.

“Norman Borlaug led the charge in the war against hunger more than 50 years ago; let us learn from this experience, let us do it again together by listening to the current crisis and by developing a matching transformative answer to overcome today’s challenges and shortcomings,” said Bram Govaerts, director of CIMMYT’s Integrated Development program and representative for the Americas.

CIMMYT and IITA collaborate to increase adoption of conservation agriculture in southern Africa

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.

The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.

The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.

The project was officially launched online on September 16, 2020. Zambia’s Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.

“It is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,” Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. “Conservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.”

Proven benefits

Conservation agriculture — a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species — can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.

Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.

“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.

“Although adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,” said  Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.

Christian Thierfelder, Principal  Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.

Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).

The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.


Interview opportunities:

Arega Alene, Agricultural Economist, IITA.

Christian Thierfelder, Principal  Cropping Systems Agronomist, CIMMYT

For more information, or to arrange interviews, contact the media team:

Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org

Katherine Lopez, Head of Communication, IITA. k.lopez@cgiar.org

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

About IITA:

The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africa’s most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.

A track record of delivering local solutions with a global perspective

The CGIAR Research Program on Wheat (WHEAT) has “a track record of delivering local solutions with a global perspective — and is well positioned to continue this trajectory in the next decade.”

This was a key finding of a recent review of the program aimed to assess WHEAT’s 2017-2019 delivery of quality science and effectiveness, as well as to provide insights and lessons to inform the program’s future.

“Wheat as a crop is bound to be central to global food security in the foreseeable future,” the reviewers stated.

The crop currently contributes 20% of the world population’s calories and protein — and global demand is estimated to increase by 44% between 2005-07 and 2050.

WHEAT — led by the International Maize and Wheat Improvement Center (CIMMYT) with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a key research partner — has two pillars that are essential to meeting this demand: raising potential yield through breeding and closing the yield gap through sustainable intensification at field, farm and landscape scales.

Key recommendations included supporting strategic investment in research partner network development and maintenance and continuing WHEAT’s trajectory towards modernizing breeding processes and integrating sustainable intensification approaches, including mechanization.

The reviewers warned of challenges for the way ahead, pointing out that partnerships — and WHEAT’s reputation as a reliable partner — are vulnerable to funding volatility. The review also raised concerns about the potential fragmentation of the global breeding program, restrictions to the international exchange of germplasm and ideas, “misguided” emphasis on minor crops, and CGIAR’s “focus on process at the expense of results.”

“This review cuts to the core of what’s so critical — and at risk — not only with our program but wheat research in general,” said Hans Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “Global collaboration and the exchange of improved seeds, data, and especially information.”

“The reviewers rightly point out that limited resources will lead to competition and dampen this collaboration — even between scientists in the same program. We must address this potential risk to improve integration and continue our life saving work,” Braun explained.

“In most of the developing world, the alliance of public sector and CGIAR wheat breeding programs, as well as some national public breeding programs on their own, will remain dominant providers of wheat varieties, until either functioning seed royalty collection systems are established and/or hybrid wheat becomes a reality,” he said.

WHEAT’s strength is its robust global network of research for development partners and scientists linked to global breeding in a ‘wide adaptation’ approach,” said Victor Kommerell, program manager for the CGIAR Research Programs on Maize and Wheat.

“This review underscores that breaking up the breeding program could cause lasting damage to this network,” Kommerell said.

More key findings of the review include:

  • WHEAT is effective and well-managed: In 2017-2019, WHEAT mainly achieved its planned outputs and outcomes and in addition achieved unplanned outcomes. For the three years reviewed, WHEAT did not drop any research line.
  • WHEAT’s strength is its partnerships: WHEAT has catalyzed a global network of research and development (R&D) that has delivered and continues to deliver a disproportionate wealth of outputs in relation to investment.
  • WHEAT creates, and thrives on, collaboration: The predominantly public nature of wheat R&D (In the period 1994-2014, the public sector accounted for 63% of global wheat varietal releases and more than 95% of releases in developing countries) favors collaboration, compared with other industries.
  • WHEAT facilitates shared success: The long history of collaboration between CIMMYT, ICARDA and national partners has fostered a sense of belonging to the International Wheat Improvement Network that permits free exchange of information and germplasm, allowing the best varieties to be released, irrespective of origin. International nursery testing delivers elite lines for national program use; data shared by national programs informs WHEAT’s next crossing cycle.

Read more in a 2-page brief summarizing key findings, conclusions and recommendations and on the CGIAR Advisory Services page.

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Cover photo: Wheat trainees and CIMMYT staff examine wheat plants in the field at the experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)