Skip to main content

Author: Rodrigo Ordóñez

Rodrigo Ordóñez was CIMMYT's Communications Manager. Since 2023 he is the Head of Communications & Knowledge Management at the International Water Management Institute (IWMI), also part of CGIAR. ℹ️ Rodrigo Ordonez on LinkedIn

CIMMYT scientists recognized for impact

Three scientists from the International Maize and Wheat Improvement Center (CIMMYT) have been included in the Highly Cited Researchers list for 2021, published by the Web of Science Group.

The list recognizes researchers who demonstrated significant influence in their field, or across fields, through the publication of multiple highly cited papers during the last decade. Their names are drawn from the publications that rank in the top 1% by citations for field and publication year in the Web of Science citation index.

Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information at Clarivate, the company which publishes the list.

This year, the three CIMMYT scientists listed are:

  • Jill Cairns: CIMMYT Maize physiologist.
  • Matthew Reynolds: CIMMYT Distinguished Scientist and Head of Wheat Physiology.
  • Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement.

For more information, you can view the full Highly Cited Researchers 2021 list and information on the methodology.

World-class laboratories and research fields to the service of Mexico and the world

CIMMYT senior scientist and cropping systems agronomist Nele Verhulst (left) shows the benefits of conservation agriculture to visitors at CIMMYT’s experimental station in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
CIMMYT senior scientist and cropping systems agronomist Nele Verhulst (left) shows the benefits of conservation agriculture to visitors at CIMMYT’s experimental station in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)

High-level representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) outside Mexico City on October 18, 2021, to learn about innovative research to promote sustainable production systems in Mexico and the world.

Carlos Slim Foundation and CNA representatives agreed that public and private sectors, civil society and international research organizations like CIMMYT must collaborate to address the challenges related to climate change, forced migration and rural insecurity.

“It is necessary to give more visibility to and make use of CIMMYT’s world-class laboratories and research fields, to enhance their impact on sustainable development and the 2030 agenda,” said Juan Cortina Gallardo, president of the CNA.

The tour included a visit to CIMMYT’s germplasm bank, where the world’s largest collections of maize and wheat biodiversity are conserved. Visitors also toured the laboratories, greenhouses and experimental fields where cutting-edge science is applied to improve yield potential, adaptability to climate change, resistance to pests and diseases, and nutritional and processing quality of maize and wheat.

Representatives of the Carlos Slim Foundation and Mexico's National Agriculture Council (CNA) stand for a group photo with CIMMYT representatives at the organization’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
Representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) stand for a group photo with CIMMYT representatives at the organization’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)

From Mexico to the world

“CIMMYT implements Crops for Mexico, a research and capacity building project building on the successes and lessons learned from MasAgro, where smallholder farmers increase their productivity to expand their market opportunities and can, for example, join the supply chain of large companies as providers and contribute to social development of Mexican farming,” Cortina Gallardo said.

CIMMYT carries out more than 150 integrated development projects related to maize and wheat systems in 50 countries. They are all supported by first-class research infrastructure in CIMMYT’s global headquarters, funded by the Carlos Slim Foundation.

“Our goal is to put CIMMYT’s laboratories, greenhouses and experimental fields at the service of farmers and both public and private sectors as needed,” said Bram Govaerts, director general of CIMMYT. “Accelerating the development of sustainable agricultural practices and more nutritious and resilient varieties contributes to transforming agricultural systems around the world, strengthening global food security and reducing the impact of agriculture on climate change.”

Ravi Singh earns Lifetime Achievement award from BGRI

CIMMYT distinguished scientist Ravi Singh conducts research on a wheat field while. (Photo: BGRI)
CIMMYT distinguished scientist Ravi Singh conducts research on a wheat field while. (Photo: BGRI)

World-renowned plant breeder Ravi Singh, whose elite wheat varieties reduced the risk of a global pandemic and now feed hundreds of millions of people around the world, has been announced as the 2021 Borlaug Global Rust Initiative (BGRI) Lifetime Achievement Award recipient.

Singh, distinguished scientist and head of Global Wheat Improvement at the International Maize and Wheat Improvement Center (CIMMYT), endowed hundreds of modern wheat varieties with durable resistance to fungal pathogens that cause leaf rust, stem rust, stripe rust and other diseases during his career. His scientific efforts protect wheat from new races of some of agriculture’s oldest and most devastating diseases, safeguard the livelihoods of smallholder farmers in the most vulnerable areas in the world, and enhance food security for the billions of people whose daily nutrition depends on wheat consumption.

“Ravi’s innovations as a scientific leader not only made the Cornell University-led Borlaug Global Rust Initiative possible, but his breeding innovations are chiefly responsible for the BGRI’s great success,” said Ronnie Coffman, vice chair of the BGRI and international professor of global development at Cornell’s College of Agriculture and Life Sciences. “Perhaps more than any other individual, Ravi has furthered Norman Borlaug’s and the BGRI’s goal that we maintain the global wheat scientific community and continue the crucial task of working together across international borders for wheat security.”

In the early 2000s, when a highly virulent rust race discovered in East Africa threatened most of the world’s wheat, Singh took a key leadership role in the formation of a global scientific coalition to combat the threat. Along with Borlaug, Coffman and other scientists, he served as a panel member on the pivotal report alerting the international community to the Ug99 outbreak and its potential impacts to global food security. That sounding of the alarm spurred the creation of the BGRI and the collaborative international effort to stop Ug99 before it could take hold on a global scale.

As a scientific objective leader for the BGRI’s Durable Rust Resistance in Wheat and Delivering Genetic Gain in Wheat projects, Singh led efforts to generate and share a series of elite wheat lines featuring durable resistance to all three rusts. The results since 2008 include resistance to the 12 races of the Ug99 lineage and new, high-temperature-tolerant races of stripe rust fungus that had been evolving and spreading worldwide since the beginning of the 21st century.

“Thanks to Ravi Singh’s vision and applied science, the dire global threat of Ug99 and other rusts has been averted, fulfilling Dr. Borlaug’s fervent wishes to sustain wheat productivity growth, and contributing to the economic and environmental benefits from reduced fungicide use,” Coffman said. “Ravi’s innovative research team at CIMMYT offered crucial global resources to stop the spread of Ug99 and the avert the human catastrophe that would have resulted.”

An innovative wheat breeder known for his inexhaustible knowledge and attention to genetic detail, Singh helped establish the practice of “pyramiding” multiple rust-resistance genes into a single variety to confer immunity. This practice of adding complex resistance in a way that makes it difficult for evolving pathogens to overcome new varieties of wheat now forms the backbone of rust resistance breeding at CIMMYT and other national programs.

Ravi Singh (center) with Norman Borlaug (left) and Hans Braun in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Ravi Singh (center) with Norman Borlaug (left) and Hans Braun in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)

The global champion for durable resistance

Ravi joined CIMMYT in 1983 and was tasked by his supervisor, mentor and friend, the late World Food Prize Winner Sanjaya Rajaram, to develop wheat lines with durable resistance, said Hans Braun, former director of CIMMYT’s Global Wheat Program.

“Ravi did this painstaking work — to combine recessive resistance genes — for two decades as a rust geneticist and, as leader of CIMMYT’s Global Spring Wheat Program, he transferred them at large scale into elite lines that are now grown worldwide,” Braun said. “Thanks to Ravi and his colleagues, there has been no major rust epidemic in the Global South for years, a cornerstone for global wheat security.”

Alison Bentley, Director of CIMMYT’s Global Wheat Program, said that “Building on Ravi’s exceptional work throughout his career, deployment of durable rust resistance in widely adapted wheat germplasm continues to be a foundation of CIMMYT’s wheat breeding strategy.”

Revered for his determination and work ethic throughout his career, Singh has contributed to the development of 649 wheat varieties released in 48 countries, working closely with scientists at national wheat programs in the Global South. Those varieties today are sown on approximately 30 million hectares annually in nearly all wheat growing countries of southern and West Asia, Africa and Latin America. Of these varieties, 224 were developed directly under his leadership and are grown on an estimated 10 million hectares each year.

In his career Singh has authored 328 refereed journal articles and reviews, 32 book chapters and extension publications, and more than 80 symposia presentations. He is regularly ranked in the top 1% of cited researchers. The CIMMYT team that Singh leads identified and designated 22 genes in wheat for resistance or tolerance to stem rust, leaf rust, stripe rust, powdery mildew, barley yellow dwarf virus, spot blotch, and wheat blast, as well as characterizing various other important wheat genome locations contributing to durable resistance in wheat.

Singh’s impact as a plant breeder and steward of genetic resources over the past four decades has been extraordinary, according to Braun: “Ravi Singh can definitely be called the global champion for durable resistance.”

This piece by Matt Hayes was originally posted on the BGRI website.

World Food Day 2021: The future of food is in our hands

As the calendar turns to October 16, the International Maize and Wheat Improvement Center (CIMMYT) celebrates World Food Day. This year’s theme is “Our actions are our future.”

Our lives depend on agri-food systems.

They cover the journey of food (for example, cereals, vegetables, fish, fruits and livestock) from farm to table — including when it is grown, harvested, processed, packaged, transported, distributed, traded, bought, prepared, eaten and disposed of. It also encompasses non-food products (for example forestry, animal rearing, use of feedstock, biomass to produce biofuels, and fibers) that constitute livelihoods, and all the people, as well as the activities, investments and choices that play a part in getting us these food and agricultural products.

The food we choose and the way we produce, prepare, cook and store it make us an integral and active part of the way in which an agri-food system works.

A sustainable agri-food system is one in which a variety of sufficient, nutritious and safe foods is available at an affordable price to everyone, and nobody is hungry or suffers from any form of malnutrition. The shelves are stocked at the local market or food store, but less food is wasted and the food supply chain is more resilient to shocks such as extreme weather, price spikes or pandemics, all while limiting, rather than worsening, environmental degradation or climate change. In fact, sustainable agri-food systems deliver food security and nutrition for all, without compromising the economic, social and environmental bases, for generations to come. They lead to better production, better nutrition, a better environment and a better life for all.

Let’s fix the system

The contradictions could not be starker — millions of people are hungry or undernourished, while large numbers are chronically overweight due to a poor diet. Smallholder farmers produce more than one-third of the world’s food, yet are some of the worst affected by poverty, as agriculture continues to be an unpredictable sector. Agri-food systems are major contributors to climate change, which in turn threatens food production in some of the world’s poorest areas. Rampant food loss and waste, side by side with people relying on food banks or emergency food aid.

The evidence is there for all to see — there has never been a more urgent need to transform the way the world produces and consumes food.

This year, for World Food Day, we bring you four stories about CIMMYT’s work to support sustainable agri-food systems.

Better production

CGIAR centers present methodology for transforming resource-constrained, polluting and vulnerable farming into inclusive, sustainable and resilient food systems that deliver healthy and affordable diets for all within planetary boundaries.

New integrated methodology supports inclusive and resilient global food systems transformation

Better nutrition

CIMMYT scientists expect to sharply ramp up new wheat varieties enriched with zinc that can boost the essential mineral for millions of poor people with deficient diets. Newly-developed high-zinc wheat is expected to make up at least 80% of varieties distributed worldwide over the next ten years, up from about 9% currently.

New zinc-fortified wheat set for global expansion to combat malnutrition

A woman makes roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at her home in the Dinajpur district of Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

Better environment

Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations.

Protecting plants will protect people and the planet

Durum wheat field landscape at CIMMYT's experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat field landscape at CIMMYT’s experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Better life

Assessing value chain development’s potential and limitations for strengthening the livelihoods of the rural poor, a new book draws conclusions applicable across the development field.

Taking stock of value chain development

A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)
A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Subscribe to our email updates to stay in the loop about the latest research and news related to maize and wheat agriculture.

New CIMMYT maize hybrids available from Southern Africa breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in southern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is October, 24 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits Trial summary
Southern Africa Product Profile 1A

(SA-PP1A)

CIM19SAPP1A-23

(CZH16277)

Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW Appendix 2
CIM19SAPP1A-24 (CZH16278)
Southern Africa Product Profile 1B

(SA-PP1B)

CIM20SAPP1B-15

(CZH17098)

Late-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW Appendix 3
Southern Africa Product Profile 2

(SA-PP2)

CIM19SAPP2-35

(CZH16413)

Early-maturing, white, high-yielding, drought tolerant, NUE, resistant to GLS, MSV, TLB FAW, Striga, FAW, Downy mildew Appendix 4

 

CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization.

Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Taming wheat blast

As wheat blast continues to infect crops in  countries around the world, researchers are seeking ways to stop its spread. The disease — caused by the Magnaporthe oryzae pathotype Triticum — can dramatically reduce crop yields, and hinder food and economic security in the regions in which it has taken hold.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other international institutions looked into the potential for wheat blast to spread, and surveys existing tactics used to combat it. According to them, a combination of methods — including using and promoting resistant varieties, using fungicides, and deploying strategic agricultural practices — has the best chance to stem the disease.

The disease was originally identified in Brazil in 1985. Since then, it has spread to several other countries in South America, including Argentina, Bolivia and Paraguay. During the 1990s, wheat blast impacted as many as three million hectares in the region. It continues to pose a threat.

Through international grain trade, wheat blast was introduced to Bangladesh in 2016. The disease has impacted around 15,000 hectares of land in the country and reduced average yields by as much as 51% in infected fields.

Because the fungus’ spores can travel on the wind, it could spread to neighboring countries, such as China, India, Nepal and Pakistan — countries in which wheat provides food and jobs for billions of people. The disease can also spread to other locales via international trade, as was the case in Bangladesh.

“The disease, in the first three decades, was spreading slowly, but in the last four or five years its pace has picked up and made two intercontinental jumps,” said Pawan Singh, CIMMYT’s head of wheat pathology, and one of the authors of the recent paper.

In the last four decades, wheat blast has appeared in South America, Asia an Africa. (Video: Alfonso Cortés/CIMMYT)

The good fight

Infected seeds are the most likely vector when it comes to the disease spreading over long distances, like onto other continents. As such, one of the key wheat blast mitigation strategies is in the hands of the world’s governments. The paper recommends quarantining potentially infected grain and seeds before they enter a new jurisdiction.

Governments can also create wheat “holidays”, which functionally ban cultivation of wheat in farms near regions where the disease has taken hold. Ideally, this would keep infectable crops out of the reach of wheat blast’s airborne and wind-flung spores. In 2017, India banned wheat cultivation within five kilometers of Bangladesh’s border, for instance. The paper also recommends that other crops — such as legumes and oilseed — that cannot be infected by the wheat blast pathogen be grown in these areas instead, to protect the farmers’ livelihoods.

Other tactics involve partnerships between researchers and agricultural workers. For instance, early warning systems for wheat blast prediction have been developed and are being implemented in Bangladesh and Brazil. Using weather data, these systems alert farmers when the conditions are ideal for a wheat blast outbreak.

Researchers are also hunting for wheat varieties that are resistant to the disease. Currently, no varieties are fully immune, but a few do show promise and can partially resist the ailment depending upon the disease pressure. Many of these resistant varieties have the CIMMYT genotype Milan in their pedigree.

“But the resistance is still limited. It is still quite narrow, basically one single gene,” Xinyao He, one of the co-authors of the paper said, adding that identifying new resistant genes and incorporating them into breeding programs could help reduce wheat blast’s impact.

Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)
Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)

The more the merrier

Other methods outlined in the paper directly involve farmers. However, some of these might be more economically or practically feasible than others, particularly for small-scale farmers in developing countries. Wheat blast thrives in warm, humid climates, so farmers can adjust their planting date so the wheat flowers when the weather is drier and cooler. This method is relatively easy and low-cost.

The research also recommends that farmers rotate crops, alternating between wheat and other plants wheat blast cannot infect, so the disease will not carry over from one year to the next. Farmers should also destroy or remove crop residues, which may contain wheat blast spores. Adding various minerals to the soil, such as silicon, magnesium, and calcium, can also help the plants fend off the fungus. Another option is induced resistance, applying chemicals to the plants such as jasmonic acid and ethylene that trigger its natural resistance, much like a vaccine, Singh said.

Currently, fungicide use, including the treatment of seeds with the compounds, is common practice to protect crops from wheat blast. While this has proven to be somewhat effective, it adds additional costs which can be hard for small-scale farmers to swallow. Furthermore, the pathogen evolves to survive these fungicides. As the fungus changes, it can also gain the ability to overcome resistant crop varieties. The paper notes that rotating fungicides or developing new ones — as well as identifying and deploying more resistant genes within the wheat — can help address this issue.

However, combining some of these efforts in tandem could have a marked benefit in the fight against wheat blast. For instance, according to Singh, using resistant wheat varieties, fungicides, and quarantine measures together could be a time-, labor-, and cost-effective way for small-scale farmers in developing nations to safeguard their crops and livelihoods.

“Multiple approaches need to be taken to manage wheat blast,” he said.

CIMMYT becomes partner of choice in PepsiCo and Grupo Trimex’s sustainability strategy

Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, Pénjamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)
Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, Pénjamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)

A new partnership announced today between the International Maize and Wheat Improvement Center (CIMMYT), PepsiCo and Grupo Trimex will greatly contribute to scale out sustainable farming practices in the central Mexican states of Guanajuato and Michoacán, which together form the country’s second wheat producing region.

The project Agriba Sustentable — a shortened reference for Bajío Sustainable Agriculture — will promote the adoption of conservation agriculture-based sustainable intensification practices among local farmers who will have access to PepsiCo’s wheat grain supply chain via Grupo Trimex.

“A part of the wheat that we use in Mexico for our products comes from the Bajío region,” said Luis Treviño, Director of Sustainability at PepsiCo Latin America. “However, agricultural production in the region has needs and areas of opportunity that we were able to identify thanks to the experience and deep knowledge that CIMMYT has developed over the years.”

Agriba Sustentable is the latest example of the new business models that CIMMYT is exploring as part of its integrated development approach to agri-food systems transformation, which seeks to engage multiple public, private and civil sector collaborators in cereals value chain development and enhancement efforts.

CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, Pénjamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)
CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, Pénjamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)

“The project’s specific goal is to improve the sustainability of the wheat production system in the Bajío region by enabling the adoption of technological innovations and sustainable production practices among at least 200 farmers in the Grupo Trimex supply chain during the first year of implementation, and to gradually scale out to reach many more farmers,” said Bram Govaerts, Director General of CIMMYT.

CIMMYT’s long-term field trials in Mexico have shown that conservation agriculture-based sustainable intensification practices raise wheat yields by up to 15% and cut greenhouse gas emissions by up to 40%.

“The farming practices that CIMMYT promotes reduce environmental impact,” said Mario Ruiz, Sourcing Manager of Grupo Trimex. “Conservation agriculture can cut CO2 emissions by up to 60% from reduced diesel consumption, lower fuel use by up to 70% and water consumption by 30%.”

According to PepsiCo Mexico, Agriba Sustentable is an important step for its global vision PepsiCo Positive (pep+), which seeks to offset its agricultural footprint by promoting sustainable farming on 2.8 million hectares globally. The plan also aims to improve the livelihoods of 250,000 people who are part of their global agricultural supply chain and to source sustainably 100% of the company’s key ingredients by 2030.


FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, PLEASE CONTACT:

Ricardo Curiel, Senior Communications Specialist for Mexico, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials

A CIMMYT researcher and a field worker lay out wheat seed for planting at the center's headquarters in Texcoco, Mexico. In experimental trials, hundreds or thousands of wheat lines are planted for evaluation, each in small quantities, and so they are carefully laid out and sown by hand. (Photo: CIMMYT)
A CIMMYT researcher and a field worker lay out wheat seed for planting at the center’s headquarters in Texcoco, Mexico. In experimental trials, hundreds or thousands of wheat lines are planted for evaluation, each in small quantities, and so they are carefully laid out and sown by hand. (Photo: CIMMYT)

To help feed a growing world population, wheat scientists have turned to innovative technologies like genomic selection to hasten selection for positive traits — such as high grain yield performance and good grain quality — in varieties that are still undergoing testing. Instead of being shackled by the long duration of traditional breeding cycles, genomic selection allows scientists to make predictions regarding which traits will present when crossing two varieties; allowing breeders greater guidance and lessening potential time lost when crossing varieties that do not display potential for genetic gain. To reap the benefits of genomic selection, it is vital that the predictive models employed are as accurate as possible.

Currently, wheat breeders select characteristics like grain yield performance early in the breeding process, while selecting traits like good grain quality at a later stage in the breeding process.

In an article in the journal G3 Genes, researchers from the International Maize and Wheat Improvement Center (CIMMYT), and partners, led by CIMMYT scientist José Crossa along with Leonardo A. Crespo, Maria Itria Ibba and Alison R. Bentley, endeavored to determine if genomic prediction models could select for both characteristics simultaneously in the breeding process. This would improve selection accuracy in both early and later breeding stages, resulting a reduction in time and expense in delivering improved wheat varieties. They also tested the accuracy of a set of specific mathematical corrections applied to genomic predictions. These correction models identify correlations between genomic predictions and observed breeding values, such as increased yield or grain quality.

Considering two or more traits, like grain yield and good grain quality, is an example of a multi-trait model. The team examined this multi-trait model against a single trait model that improves one specific trait. Overall, the researchers found that prediction performance was highest using the multi-trait model.

However, the team also demonstrated that when breeding programs arrive at their genetic predictions, applying a specific correction method will account for differences between the predicted breeding value and the actual observed breeding value. Current correction models tend to underestimate that difference, which results in breeding programs not running as efficiently as possible.

By partnering selections from different stages in the breeding process and examining the resulting genetic predictions through a more appropriate correction model, the team has shown that breeding programs can use this to their benefit in developing and ultimately releasing improved wheat varieties that meet growing yield needs worldwide and respond to abiotic and biotic stressors.

Understanding decision support

Given the very heterogeneous conditions in smallholder agriculture in sub-Saharan Africa, there is a growing policy interest in site-specific extension advice and the use of related digital tools. However, empirical ex ante studies on the design of this type of tools are scant and little is known about their impact on site-specific extension advice.

In partnership with Oyakhilomen Oyinbo and colleagues at KU Leuven, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have carried out research to clarify user preferences for tailored nutrient management advice and decision-support tools. The studies also evaluated the impact of targeted fertilizer recommendations enabled by such tools.

Understanding farmers’ adoption

A better understanding of farmers’ and extension agents’ preferences may help to optimize the design of digital decision-support tools.

Oyinbo and co-authors conducted a study among 792 farming households in northern Nigeria, to examine farmers’ preferences for maize intensification in the context of site-specific extension advice using digital tools.

Overall, farmers were favorably disposed to switch from general fertilizer use recommendations to targeted nutrient management recommendations for maize intensification enabled by decision-support tools. This lends credence to the inclusion of digital tools in agricultural extension. The study also showed that farmers have heterogeneous preferences for targeted fertilizer recommendations, depending on their resources, sensitivity to risk and access to services.

The authors identified two groups of farmers with different preference patterns: a first group described as “strong potential adopters of site-specific extension recommendations for more intensified maize production” and a second group as “weak potential adopters.” While the two groups of farmers are willing to accept some yield variability for a higher average yield, the trade-off is on average larger for the first group, who have more resources and are less sensitive to risk.

The author recommended that decision-support tools include information on the riskiness of expected investment returns and flexibility in switching between low- and high-risk recommendations. This design improvement will help farmers to make better informed decisions.

Community leaders talk to researchers in one of the villages in norther Nigeria which took part in the study. (Photo: Oyakhilomen Oyinbo)
Community leaders talk to researchers in one of the villages in norther Nigeria which took part in the study. (Photo: Oyakhilomen Oyinbo)
Members of the survey team participate in a training session at Bayero University Kano, Nigeria. (Photo: Oyakhilomen Oyinbo)
Members of the survey team participate in a training session at Bayero University Kano, Nigeria. (Photo: Oyakhilomen Oyinbo)
One of the sites of nutrient omission trials, used during the development phase of the Nutrient Expert tool in Nigeria. (Photo: Oyakhilomen Oyinbo)
One of the sites of nutrient omission trials, used during the development phase of the Nutrient Expert tool in Nigeria. (Photo: Oyakhilomen Oyinbo)

Extension agents go digital

While farmers are the ultimate recipients of extension advice, extension agents are most often the actual users of decision-support tools. In another study, the authors provided ex ante insights on the potential uptake of nutrient management decision-support tools and the specific design features that are more (or less) appealing to extension agents in the maize belt of northern Nigeria.

Using data from a discrete choice experiment, the study showed that extension agents were generally willing to accept the use of digital decision-support tools for site‐specific fertilizer recommendations. While extension agents in the sample preferred tools with a more user‐friendly interface that required less time to generate an output, the authors also found substantial preference heterogeneity for other design features. Some extension agents cared more about the outputs, such as information accuracy and level of detail, while others prioritized practical features such as the tool’s platform, language or interface.

According to the authors, accounting for such variety of preferences into the design of decision-support tools may facilitate their adoption by extension agents and, in turn, enhance their impact in farmars’ agricultural production decisions.

Interface of the Nutrient Expert mobile app, locally calibrated for maize farmers in Nigeria.
Interface of the Nutrient Expert mobile app, locally calibrated for maize farmers in Nigeria.

Impact of digital tools

Traditional extension systems in sub-Saharan African countries, including Nigeria, often provide general fertilizer use recommendations which do not account for the substantial variation in production conditions. Such blanket recommendations are typically accompanied by point estimates of expected agronomic responses and associated economic returns, but they do not provide any information on the variability of the expected returns associated with output price risk.

Policymakers need a better understanding of how new digital agronomy tools for tailored recommendations affect the performance of smallholder farms in developing countries.

To contribute to the nascent empirical literature on this topic, Oyinbo and colleagues evaluated the impact of a nutrient management decision-support tool for maize – Nutrient Expert — on fertilizer use, management practices, yields and net revenues. The authors also evaluated the impacts of providing information about variability in expected investment returns.

To provide rigorous evidence, the authors conducted a three-year randomized controlled trial among 792 maize-producing households in northern Nigeria. The trial included two treatment groups who are exposed to site-specific fertilizer recommendations through decision-support tools — one with and another one without additional information on variability in expected returns — and a control group who received general fertilizer use recommendations.

Overall, the use of nutrient management decision-support tools resulted in greater fertilizer investments and better grain yields compared with controls. Maize grain yield increased by 19% and net revenue increased by 14% after two years of the interventions. Fertilizer investments only increased significantly among the farmers who received additional information on the variability in expected investment returns.

The findings suggest including site-specific decision support tools into extension programming and related policy interventions has potential benefits on maize yields and food security, particularly when such tools also supply information on the distribution of expected returns to given investment recommendations.

The research-for-development community has tried different approaches to optimize fertilizer recommendations. In Nigeria, there are several tools available to generate location-specific fertilizer recommendations, including Nutrient Expert. As part of the Taking Maize Agronomy to Scale in Africa (TAMASA) project, CIMMYT has been working on locally calibrated versions of this tool for maize farmers in Ethiopia, Nigeria and Tanzania. The development was led by a project team incorporating scientists from the African Plant Nutrition Institute (APNI), CIMMYT and local development partners in each country.

Next steps

Some studies have shown that dis-adoption of seemingly profitable technologies — such as fertilizer in sub-Saharan Africa — is quite common, especially when initial returns fall short of expectations or net utility is negative, producing a disappointment effect.

In the context of emerging digital decision-support tools for well-targeted fertilizer use recommendations, it remains unclear whether farmers’ initial input use responses and the associated economic returns affect their subsequent responses — and whether the disappointment effect can be attenuated through provision of information about uncertainty in expected returns.

Using our three-year randomized controlled trial and the associated panel dataset, researchers are now working on documenting the third-year responses of farmers to site-specific agronomic advice conditional on the second-year responses. Specifically, they seek to better document whether providing farmers with information about seasonal variability in expected investment returns can reduce possible disappointment effects associated with their initial uptake of site-specific agronomic advice and, in a way, limit dis-adoption of fertilizer.

Cover photo: A farmer shows maize growing in his field, in one of the communities in northern Nigeria where research took place. (Photo: Oyakhilomen Oyinbo)

Building resilient and sustainable irrigation for food security in Nepal

An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)
An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)

In Nepal, agriculture contributes to a third of gross domestic product and employs about 80% of the rural labor force. The rural population is comprised mostly of smallholder farmers whose level of income from agricultural production is low by international standards and the countrys agricultural sector has become vulnerable to erratic monsoon rains. Farmers often experience unreliable rainfall and droughts that threaten their crop yields and are not resilient to climate change and water-induced hazard. This requires a rapid update of the sustainable irrigation development in Nepal. The Cereal Systems Initiative for South Asia (CSISA) Nepal COVID Response and Resilience short-term project puts emphasis on identifying and prioritizing entry points to build more efficient, reliable and flexible water services to farmers by providing a fundamental irrigation development assessment and framework at local, district and provincial levels.

Digital groundwater monitoring system and assessment of water use options

Digital system of groundwater data collection, monitoring and representation will be piloted with the government of Nepal to facilitate multi-stakeholder cooperation to provide enabling environments for inclusive irrigation development and COVID-19 response. When boosting the irrigation development, monitoring is fundamental to ensure sustainability. In addition, spatially targeted, ex-ante assessments of the potential benefits of irrigation interventions provide insights by applying machine-learning analytics and constructing data-driven models for yield and profitability responses to irrigation. Furthermore, a customized set of integrated hydrological modeling and scenario analyses can further strengthen local, district and provincial level assessment of water resources and how to build resilient and sustainable water services most productively from them.

Toward a systemic framework for sustainable scaling of irrigation in Nepal

Through interview and surveys, the project further builds systemic understanding of the technical, socioeconomic and institutional challenges and opportunities in scaling water access and irrigation technologies. This will contribute to the construction of a comprehensive irrigation development framework, achieved by the collective efforts from multiple stakeholders across different line ministries, levels of government and local stakeholders and water users. Together with the technical assessments and monitoring systems, the end goal is to provide policy guidelines and engage prioritized investments that ensure and accelerate the process of sustainable intensification in irrigation in Nepal.

This blog was originally published in Agrilinks.

Nitrogen-efficient wheats can provide more food with fewer greenhouse gas emissions, new study shows

An international collaboration has discovered and transferred to elite wheat varieties a wild-grass chromosome segment that causes roots to secrete natural inhibitors of nitrification, offering a way to dial back on heavy fertilizer use for wheat and to reduce the crop’s nitrogen leakage into waterways and air, while maintaining or raising its productivity and grain quality, says a new report in the Proceedings of the National Academy of Sciences of the United States of America.

Growing wheat varieties endowed with the biological nitrification inhibition (BNI) trait could increase yields in both well-fertilized and nitrogen-poor soils, according to G.V. Subbarao, researcher at the Japan International Research Center for Agricultural Sciences (JIRCAS) and first author of the new report.

“Use of wheat varieties that feature BNI opens the possibility for a more balanced and productive mix of nitrogen nutrients for wheat fields, which are currently dominated by highly-reactive nitrogen compounds that derive in large part from synthetic fertilizers and can harm the environment,” Subbarao said.

The most widely grown food crop on the planet, wheat is consumed by over 2.5 billion people in 89 countries. Nearly a fifth of the world’s nitrogen-based fertilizer is deployed each year to grow wheat but, similar to other major cereals, vegetables, and fruits, the crop takes up less than half of the nitrogen applied.

Much of the remainder is either washed away, contaminating ground waters with nitrate and contributing to algae blooms in lakes and seas, or released into the air, often as nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide.

The study team first homed in on the chromosome region associated with the strong BNI capacity in the perennial grass species Leymus racemosus and moved it from the grass, using “wide crossing” techniques, into the cultivar Chinese Spring, a wheat landrace often used in genetic studies. From there, they transferred the BNI chromosome sequence into several elite, high-yielding wheat varieties, leading to a near doubling of their BNI capacity, as measured through lab analyses of soil near their roots.

The new wheats — elite varieties from the International Maize and Wheat Improvement Center (CIMMYT) into which the BNI trait was cross-bred — greatly reduced the action of soil microbes that usually convert fertilizer and organic nitrogen substances into ecologically-harmful compounds such as nitrous oxide gas, according to Hannes Karwat, a CIMMYT post-doctoral fellow and study co-author.

“The altered soil nitrogen cycle was even reflected in the plants’ metabolism,” Karwat said, “resulting in several responses indicative of a more balanced nitrogen uptake in the plants.”

The scientists involved said BNI-converted wheats in this study also showed greater overall biomass and grain yield, with no negative effects on grain protein levels or breadmaking quality.

“This points the way for farmers to feed future wheat consumers using lower fertilizer dosages and lowering nitrous oxide emissions,” said Masahiro Kishii, a CIMMYT wheat cytogeneticist who contributed to the research. “If we can find new BNI sources, we can develop a second generation of elite wheat varieties that require even less fertilizer and that better deter nitrous oxide emissions.”

A recent PNAS paper by Subbarao and Princeton University scientist Timothy D. Searchinger mentions BNI as a technology that can help foster soils featuring a more even mix of nitrogen sources, including more of the less-chemically-reactive compound ammonium, a condition that can raise crop yields and reduce nitrous oxide emissions.

CIMMYT researcher Masahiro Kishii examines wheat plants in a greenhouse. (Photo: CIMMYT)
CIMMYT researcher Masahiro Kishii examines wheat plants in a greenhouse. (Photo: CIMMYT)

Scale out to slow global warming?

The present study comes just as the Intergovernmental Panel on Climate Change (IPCC) has released its Sixth Assessment Report, which among other things states that “… limiting human-induced global warming … requires limiting cumulative CO2 emissions … along with strong reductions in other greenhouse gas emissions.”

Globally, 30% of greenhouse gas emissions come from agriculture. BNI-enabled wheat cultivars can play an important role to reduce that footprint. Wheat-growing nations that have committed to the Paris Climate Accord, whose provisions include reducing greenhouse gas emissions 30% by 2050, could be early adopters of the BNI technology, together with China and India, the world’s top two wheat producers, according to Subbarao.

“This work has demonstrated the feasibility of introducing BNI-controlling chromosome segments into modern wheats, without disrupting their yields or quality,” said Subbarao. “To realize the technology’s full potential, we need to transfer the BNI feature into many elite varieties adapted to diverse wheat growing areas and to assess their yield in many farm settings and with varying levels of soil pH, fertilization and water use.”

A project to establish nitrogen-efficient wheat production systems in the Indo-Gangetic Plains using BNI has recently been approved by Japan and is under way, with the collaboration of JIRCAS, the Indian Council of Agricultural Research (ICAR), and the Borlaug Institute of South Asia (BISA). Under the project, BNI-converted wheat lines developed from JIRCAS-CIMMYT partnerships will be tested in India and the BNI trait transferred to popular national wheat varieties.

“The BNI-technology is also featured in Green Technology, a Japanese government policy document for moving towards a zero-carbon economy,” said Osamu Koyama, President of JIRCAS, which has also posted a note about the new PNAS study. JIRCAS and CGIAR BNI research is co-funded by the Ministry of Agriculture, Forestry and Fisheries of Japan.

“Adaptation and mitigation solutions such as BNI, which help lessen the footprint of food production systems, will play a large role in CGIAR research-for-development, as part of One CGIAR Initiatives starting in 2022,” said Bram Govaerts, CIMMYT Director General.


RELATED RESEARCH PUBLICATIONS:

Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution

INTERVIEW OPPORTUNITIES:

Hannes Karwat – Postdoctoral Fellow, Nitrogen Use Efficiency, International Maize and Wheat Improvement Center (CIMMYT)

Masahiro Kishii – Wheat Cytogenetics, Wide Crossing, International Maize and Wheat Improvement Center (CIMMYT)

Victor Kommerell – Program Manager, CGIAR Research Program Wheat (WHEAT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

New CIMMYT maize hybrids available from Latin America breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in the tropical lowlands of Latin America and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities. In some countries, depending on the applicable regulatory framework for commercial maize seed, successful applicants may first need to sponsor the products through the national registration / release process prior to commercialization.

The deadline to submit applications to be considered during the first round of allocations is September 17, 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits Trial summary
Latin America Product Profile 1A

(LatAM-PP1A)

CIM19LAPP1A-11 Early-maturing, white, high-yielding, drought tolerant, resistant to MLB, TSC and ear rots FSR, GLS Appendix 1
CIM19LAPP1A-13

 

CIMMYT Latin America Stage 4 and Stage 5 Trials: Results of the 2019 and 2020 Trials and Product Announcement

Appendix 1: CIMMYT maize hybrids available under LatAM-PP1A

Appendix 2: Information on Latin America trial locations and management

Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal in English or Spanish.

APPLY FOR A LICENSE

Alternatively, applications may be submitted via email to GMP-CIMMYT@cgiar.org using the PDF forms available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)

FORM A – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO A – Solicitud para asignación de productos mejorados de maíz del CIMMYT)

FORM B – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO B – Solicitud para asignación de productos mejorados de maíz del CIMMYT)

 

Seed giants must collaborate or be dwarfed by threat of climate change

Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT) For more information, see CIMMYT's Wheat Doctor: http://wheatdoctor.cimmyt.org/index.php?option=com_content&task=view&id=84&Itemid=43&lang=en. Photo credit: CIMMYT.
Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)
For more information, see CIMMYT’s Wheat Doctor: http://wheatdoctor.cimmyt.org/index.php?option=com_content&task=view&id=84&Itemid=43&lang=en.
Photo credit: CIMMYT.

The COVID-19 pandemic has exposed vast inequalities when it comes to food security. But there is an even larger and more concerning crisis waiting for us: global food shortages caused by climate change.

According to the latest report from the Intergovernmental Panel on Climate Change, total global warming is likely to rise around 1.5 degrees Celsius within the next two decades.

Nobody knows when or how hard it will hit, but we inch closer each year with new temperature records, the spread of pests, and emerging crop diseases. We are already seeing the beginning of this future crisis. Climate-induced food price hikes have caused political turmoil in the Middle East, while climate-related disasters have been linked with mass human migration in South Asia.

Every seed company and crop research center worldwide is preoccupied with the race to breed hardier crops to keep pace with the demands of a growing population as circumstances become increasingly challenging. But the truth is, this is a relay race, and yet the crop research field is running 100-meter sprints in different places at different times.

For every scientific advance, other areas of crop research go under-resourced and are technology poor, with asymmetries in research investment creating islands of knowledge that are disparate and disconnected.  These research asymmetries hold back crop improvement as a whole, contributing to climate-induced crop failure and the political turmoil that ensues when staple foods become scarce.

While it is common for academic crop scientists to share ideas and collaborate with industry, it is far less typical for major seed companies to cooperate with each other.

If the public and private sectors are to have any chance of outrunning climate change, industry must shift toward investing in mutually beneficial research and development to pool resources and build on every gain, in the interests of the whole.

In an unprecedented first step that reveals just how much pressure the sector feels about the daunting task ahead, some of the crop industry’s main players and competitors — including Syngenta, BASF, Corteva and KWS — recently shared their insights into the gaps in existing crop science.

The shortcomings identified that hold back the crop industry from addressing the looming food crisis have three features in common. They are all under-represented in scientific literature, are likely to boost productivity across a wide range of crops and environments, and crucially, the research is fundamental enough to be “pre-competitive,” or valuable without jeopardizing individual business outcomes.

For example, although scientists have made progress towards improving the potential of crucial processes in crop development, like photosynthesis, other gaps in knowledge must be filled to ensure that this translates into improved yield, especially under unstable environments.

Such research is critical to ensuring reliable harvests across a range of crops, and can be conducted without infringing the intellectual property or proprietary technology of any single company.

However, accessing research funding can be surprisingly difficult. Public research budgets are shrinking, their funds are at risk of being re-appropriated, and collaboration is not the industry standard.

New funding models, such as public-private partnerships, can collectively address knowledge gaps to avoid potential catastrophes for society at large.

This approach has already proven fruitful. The public-private consortium “Crops of the Future Collaborative” brings competitors together to jointly fund research into the characteristics crops need to adapt to a changing future.

Industry matched the Collaborative’s initial $10 million investment by the Foundation for Food & Agriculture Research to work on corn that survives in drought conditions and leafy greens that are resistant to pests.

Conducting this research jointly drastically improves crop efficiency and the technological toolbox available to breeders and other crop scientists, passing the baton in the race towards a food secure future.

Increasing the global food supply through research and development is the most achievable and sure approach to avoid a global food crisis, and comes with historically high returns on investment. Furthermore, scientists can tap into a global infrastructure of researchers across public and private sectors, international organizations, and the millions of farmers worldwide who have willingly collaborated over the last half century to provide enough food for all.

Failure to collaborate will ultimately result in unsustainable food systems, which not only renders seed companies obsolete but threatens a prerequisite of civilization: food security.

The private sector has the knowledge and resources to redefine the race. Rather than competing against one another, the crop industry must join forces to compete instead with climate change. And it is a contest we can only win if all players work together.

This op-ed was originally published on the Des Moines Register.

Matthew Reynolds is a distinguished scientist with the International Maize and Wheat Improvement Center. Jeffrey L. Rosichan is a director with Foundation for Food & Agriculture Research. Leon Broers is a board member with KWS SAAT SE & Co. KGaA.

CIMMYT announces new Director General ad interim

Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with José Francisco Gutiérrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico's Guanajuato state.
Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with José Francisco Gutiérrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico’s Guanajuato state.

Today the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) announced leadership changes.

The Board approved the appointment of Martin Kropff, current Director General of CIMMYT, as Global Director of Resilient Agrifood Systems of CGIAR. He will play a critical role in enabling an effective transition to the new structure of CGIAR and implementing the CGIAR 2030 Research and Innovation Strategy. In this role, Kropff will be hosted by the CGIAR System Management Organization and will be based in Montpellier, France.

“We congratulate Dr. Kropff on his new position. We are convinced that he will bring to CGIAR the same excellence in science, innovation and effective management that he brought to CIMMYT,” said Board of Trustees Outgoing Chair Nicole Birrell, who completes her term in October this year.

“Through my tenure as CIMMYT Director General, we built a strong and committed team. I am sure that — with the support of the Management Committee, the Executive Committee, the Board, and the three CGIAR Science Group directors — the work of CIMMYT will find a good place in CGIAR,” said Martin Kropff.

New Director General ad interim

Effective July 1, 2021, in accordance with CIMMYT’s Constitution, the Board of Trustees appointed Bram Govaerts as CIMMYT’s Director General ad interim.

Govaerts has been part of the CIMMYT family since 2007. He is Chief Operating Officer and Deputy Director General for Research (Sustainable Production Systems and Integrated Programs) ad interim. He is also the director of CIMMYT’s Integrated Development Program.

Govaerts is renowned for pioneering, implementing and inspiring transformational changes for farmers and consumers in meeting sustainable development challenges. He brings together multi-disciplinary science and development teams to integrate sustainable, multi-stakeholder and sector strategies that generate innovation and change in agri-food systems.

“On behalf of the full Board, we want to thank Dr. Govaerts for his leadership and willingness to ensure that the Center, our research and our operations continue to run smoothly to serve our mandate and mission, as well as the broader One CGIAR vision,” said Board of Trustees Incoming Chair Margaret Bath.

“The world needs CIMMYT and our mission now more than ever, to respond to the challenges that are ahead. We are ready to take up this role, as CIMMYT has done ever since Norman Borlaug and his talented team started their work in the service of the poorest. Let us continue celebrating his legacy by generating further impact through our science,” Govaerts said.

Govaerts is the ninth Director General to serve since CIMMYT was founded in 1966.

Waging war against the fall armyworm

The fall armyworm is an invasive pest that eats more than 80 different crops, but has a particular preference for maize.

It is native to the Americas. It was first reported in Africa in 2016, and quickly spread throughout the continent. It reached India in 2018. It has since been reported in many other countries across Asia and the Pacific, and it reached Australia in 2020.

Millions of families in these regions are highly dependent on maize for their income and their livelihoods. If the fall armyworm keeps spreading, it will have disastrous consequences for them.

Scientists at CIMMYT have been working hard to find solutions to help farmers fight fall armyworm. Researchers have developed manuals for farmers, with guidelines on how to manage this pest. They have also formed an international research consortium, where experts from diverse institutions are sharing knowledge and best practices. Consortium members share updates on progress in finding new ways to tackle this global challenge. Scientists are now working on developing new maize varieties that are resistant to fall armyworm.

The fall armyworm can’t be eradicated — it is here to stay. CIMMYT and its partners worldwide will continue to work on this complex challenge, so millions of smallholder farmers can protect their crops and feed their families.

For more information on the fall armyworm and CIMMYT’s work, please visit staging.cimmyt.org/fallarmyworm.