Skip to main content

Author: Emma Orchardson

Beneficial bioactives

Popular starchy staples maize and wheat provide more than simple dietary energy, but they are often found at the center of debates around the excessive consumption of carbohydrates.

While the nutrient contribution of whole grains is commonly emphasized in dietary guidelines, the milling and subsequent processing of cereal products tends to reduce or remove much of the important protein, fat, vitamin and mineral content, and in recent years there has been increasing concern about the ultra-processing of cereal-based food products containing noxious dietary components that exacerbate the occurrence of non-communicable diseases.

For these reasons — and because of the focus on energy content — maize and wheat are not often considered to be among the categories of “nutrient-rich” foods that can contribute to reducing micronutrient malnutrition. Consequently, it is unsurprising that a popular perception that cereals make a limited contribution to nutritious diets persists. This view has not been successfully challenged by a necessarily nuanced understanding of the complex role of cereals, and particularly the carbohydrate fractions, in human nutrition.

“In addition to the hidden micronutrients, there is sound scientific and popular awareness of the importance of some dietary components such as dietary fiber,” says Nigel Poole, Emeritus Professor of International Development at the School of Oriental and African Studies (SOAS).

“Though there is as yet imperfect scientific understanding and public awareness of the carbohydrates which make up dietary fiber,” he explains, “biomedical research continues to highlight the importance of carbohydrates in health and well-being. Moreover, there is a need for further knowledge on the nature and roles of many other bioactive food components that are not usually considered to be nutrients.”

These bioactives are substances such as carotenoids, flavonoids, and polyphenols. Most of the beneficial effects of the consumption of whole grain cereals on non-communicable diseases are currently attributed to the bioactive components of dietary fiber and the wide variety of phytochemicals.

A growing body of evidence from cereal chemistry, food science and metabolic studies shows that the bioactives in cereals are important for nutrition, health and well-being. In a new working paper authored in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), Poole demonstrates that there is considerable potential for plant breeding strategies to improve these elements of grain composition. This could be done through exploiting natural variation, genetic and genomic selection methods, and mutagenesis and transgenesis in order to modify cell wall polysaccharides, and specifically to improve the starch composition and structure in breeding material through natural and induced mutations.

Rebalancing the agri-nutrition research agenda, Poole argues, is necessary in order to explore, explain and exploit the contribution to diets of hitherto less-researched nutrient-dense crops and other foods. Nevertheless, because of the quantities in which cereals are consumed, the nutritional contribution of cereals in addition to energy complements the consumption of micronutrient-rich fruits, vegetables, nuts and pulses in diverse diets.

To leverage the bioactive content of cereals — including dietary fiber — as well as the macro- and micronutrient content, a comprehensive approach to food and nutrition systems from farm to metabolism is needed, spanning research disciplines and food systems’ stakeholders throughout the agri-food industries, and embracing policy makers, nutrition advocacy, and consumer education and behavior change.

Read the full working paper: Food security, nutrition and health: Implications for maize and wheat research and development

Nigel Poole conducted research for this paper during a year-long Visiting Fellowship at CIMMYT, with support from scientists at the institution.

A challenge solved

Wheat stalks grow in a in India. (Photo: Saad Akhtar)
Wheat stalks grow in a field in India. (Photo: Saad Akhtar)

For scientists, determining how best to increase wheat yields to meet food demand is a persistent challenge, particularly as the trend toward sustainably intensifying production on agricultural lands grows.

The United Nations projects that the current global population of 7.6 billion will increase to more than 9.8 billion by 2050, making higher grain yield potential vital, particularly as climate instability increases due to global warming. International efforts are also focused on meeting the Zero Hunger target detailed in the UN Sustainable Development Goals before they expire in 2030.

Now, a new landmark research survey on the grain yield potential and climate-resilience of bread wheat (Triticum aestivum L.) has brought scientists a few strides closer to meeting their ambitions.

Grain yield has traditionally been an elusive trait in genomic wheat breeding because of its quantitative genetic control, which means that it is controlled by many genomic regions with small effects.

Challenges also include a lack of good understanding about the genetic basis of grain yield, inconsistent grain yield quantitative trait loci identified in different environments, low heritability of grain yield across environments and environment interactions of grain yield.

To dissect the genetic architecture of wheat grain yield for the purposes of the research, which appeared in Scientific Reports, researchers implemented a large-scale genome-wide association study based on 100 datasets and 105,000 grain yield observations from 55,568 wheat breeding lines developed by the International Maize and Wheat Improvement Center (CIMMYT).

They evaluated the lines between 2003 and 2019 in different sites, years, planting systems, irrigation systems and abiotic stresses at CIMMYT’s primary yield testing site, the Norman E. Borlaug Experimental Research Station, Ciudad Obregon, Mexico, and in an additional eight countries — including Afghanistan, India and Myanmar — through partnerships with national programs.

The researchers also generated the grain-yield associated marker profiles and analyzed the grain-yield favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million data points. The marker profiles indicated that the CIMMYT global wheat germplasm is rich in grain yield favorable alleles and is a trove for breeders to choose parents and design strategic crosses based on complementary grain yield alleles at desired loci.

“By dissecting the genetic basis of the elusive grain-yield trait, the resources presented in our study provide great opportunities to accelerate genomic breeding for high-yielding and climate-resilient wheat varieties, which is a major objective of the Accelerating Genetic Gain in Maize and Wheat project,” said CIMMYT wheat breeder Philomin Juliana.

“This study is unique and the largest-of-its-kind focusing on elucidating the genetic architecture of wheat grain yield,” she explained, “a highly complex and economically important trait that will have great implications on future diagnostic marker development, gene discovery, marker-assisted selection and genomic-breeding in wheat.”

Currently, crop breeding methods and agronomic management put annual productivity increases at 1.2% a year, but to ensure food security for future generations, productivity should be at 2.4% a year.

So, the extensive datasets and results presented in this study are expected to provide a framework for breeders to design effective strategies for mitigating the effects of climate change, while ensuring food-sustainability and security.

Digitization equipment set to accelerate Kenya’s breeding programs

Last month, the CGIAR Excellence in Breeding (EiB) platform handed over digitization equipment to the Kenya Agricultural and Livestock Research Organization (KALRO) as part of ongoing efforts to modernize the public agency’s crop breeding programs. The handover of the equipment, valued at roughly $85,000, took place at KALRO headquarters in Nairobi on March 8, 2021, with representatives from the International Maize and Wheat Improvement Center (CIMMYT), EiB and KALRO in attendance.

KALRO received 23 units of equipment including seed counters, label printers, handheld data collectors, tablets and package printers. These will help the organization speed up and enhance the accuracy of various breeding processes, including seed preparation, data collection and data analysis. They will also support inventory management within KALRO’s maize, wheat, rice, sorghum, bean, soybean and potato breeding programs at six of its research centers in Kenya.

(L-R) CIMMYT Regional Representative for Africa and Kenya Country Representatives Moses Siambi, CGIAR EiB NARS Coordinator Biswanath Das, KALRO Director General Eliud Kireger and KALRO Deputy Director General for Crops Felister Makini at the digitization equipment handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)

Dispensing with laborious systems 

A lack of digitization equipment hampers the research efforts of many national agricultural research systems (NARS) across Africa. This adverse situation is compounded by unreliable institutional memory, which constrains NARS efforts to breed an assortment of crop varieties efficiently.

“Currently, KALRO uses very laborious systems including manual layouts and collection, followed by manual data entry into computers. This old age process is prone to data entry errors and delays in analysis, publication and reporting,” says KALRO Director General Eliud Kireger.

“With the equipment we are receiving, information and data can be recalled by a click of a button. The equipment will also significantly reduce research costs related to labor, thus freeing our scientists to focus on core research activities.”

The equipment will also support KALRO’s ongoing efforts to digitize its historical data, especially for the maize and wheat programs using the Breeding Management System (BMS). So far, 20 years of maize historical data has been uploaded onto the BMS platform for ease of access.

Prepped for emerging challenges  

The CGIAR EiB platform was established in 2017 to help modernize public breeding programs in the CGIAR and NARS to increase their rates of genetic gain. In recent years, there has been an upsurge in challenges including climate change, population growth, rapid urbanization, changing dietary inclinations, transboundary movement of pests and diseases. These have exerted an enormous strain on food production systems and elicited the urgency to prioritize the adoption of new plant breeding techniques and technologies to address current and emerging threats. This calls for a holistic approach to tackle the issues including better agronomy and policy, according to EiB NARS Coordinator Biswanath Das.

“Modernizing our plant breeding programs to develop new, climate smart, market driven varieties will be at the heart of the solution,” says Das. “We must ensure that public plant breeding programs are not left behind because for many crops in Africa, there is limited private sector interest. Public breeding programs must shoulder the responsibility for ensuring the development and adoption of the next generation of crop varieties.”

CGIAR EiB NARS Coordinator Biswanath Das shares remarks at the digitization handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)

Already, KALRO breeding programs, in collaboration with international CGIAR centers, have played a leading role in supporting farmers in sub–Saharan Africa to address many emerging plant threats such as wheat rust (UG99), maize lethal necrosis (MLN) and fall armyworm.

As part of its commitment to supporting NARS partners, EiB provided over 10 million Kenyan shillings ($92,000) worth of material and in-kind support to various KALRO breeding operations in 2020. This included genotyping support for maize and wheat, support to adopt the BMS digital data management system, technical support and training of KALRO breeders.  Much of the digitization work is driven by EiB’s Operations and Phenoytyping module, led by Gustavo Teixeira. “We’ll continue to consider a whole range of devices and solutions,” says Teixeira. “It’s a part of our culture of continuous improvement, so breeding programs can focus on what really adds value to their clients.”

EiB will continue to support NARS across Africa and beyond to digitize their operations, and is working with partners to secure more equipment, training and resources. With this digitization project, EiB has targeted 24 breeding programs in 14 African countries. These include programs run by AfricaRice, CIMMYT, the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI).

“We want to do more to support centers to improve their operations so they can achieve the most effective and cost efficient phenotypic processes — agronomic practices, seed processing and other areas,” explains Teixeira. “We aim to expand to more programs and partners.”

EiB and partners are supported by CGIAR Trust Fund Contributors and the Crops to End Hunger initiative, via the Bill and Melinda Gates Foundation, GIZ, BMZ, USAID, UK Aid, ACIAR and other partners

Far-reaching impacts

Wheat training activities at Toluca station circa 1980. (Photo: CIMMYT)
Wheat training activities at Toluca station circa 1980. (Photo: CIMMYT)

In 1966, the International Maize and Wheat Improvement Center (CIMMYT) hosted a training event that was unlike any class the students had attended before. The students came from all over the world, the classroom moved between different environments in Mexico, and their teacher was Norman Borlaug. Over the course of 6 months, national agricultural partners, graduate students, and future research leaders from all over the world studied under Borlaug, one of the most famous and impactful agronomists in history.

Since its inception in 1966, the CIMMYT Global Wheat Program (GWP) annual training has hosted more than 1700 scientists from 99 countries. The aim of this program is to improve the breeding skills and research capacity of national partners, research staff and graduate students from countries where wheat is a major staple food crop. Along the way, the researchers expand their professional networks and share experiences in agronomy from around the world.

The CIMMYT GWP training program staff recently caught up with some graduates from the course to find out what their biggest takeaways were from the experience.

Countries of origin of the participants of the CIMMYT Wheat training program from 2013 to 2021 supported by the CGIAR Research Program on Wheat. In this period, 107 female and 224 male scientists have attended this program in Mexico. (Graphic: CIMMYT)

Meet the students

Muhammad Ishaq, a senior research officer working in wheat breeding at the Barani Agricultural Research Station (BARS) in Pakistan participated in the training program in 2019. The most important lesson he brought home was that the success of a wheat breeding program depends on problem-based breeding for target environments. He will always remember the interactions with CIMMYT scientists during his stay in Mexico. This is a clear example of working together in partnership for global impact,” said Ishaq.

Lezaan Hess, a young academic and plant breeder at Stellenbosch University in South Africa participated in the program in 2019. Lezaan emphasizes the importance of this training in starting her professional career and says she will always remember the hard work and dedication of the CIMMYT wheat breeding teams. It will keep inspiring me to work hard, stay committed and dedicated, and to collaborate to achieve greater success in the fight against world hunger,said Hess.

Leezan Hess (left) and Muhammad Ishaq (right) with wheat breeder Julio Huerta Espino during plant selection at the CIMMYT experimental station in Obregon. (Photo: CIMMYT)

Vijay Dalvi, a young professional at DCM Shriram LtD in India, attended the training program in 2013. His biggest takeaway from the training period was improving his knowledge on selecting individual plants in early generations, rust scoring and selecting grains. “The training not only helped us understand wheat breeding, but also showed us how to work in a team,” he said. “I am still replicating CIMMYT’s way of work at my current organization, and am sharing data from CIMMYT trials to discuss ideas.”

Saima Mir, a 2017 participant, currently works as a senior scientist with the Nuclear Institute of Agriculture (NIA) in Pakistan, where two new CIMMYT-derived wheat varieties with tolerance to water-stressed environments were released in 2020. Mir was very enthusiastic about her experience in the training program.

“I wish I would have received this training at the beginning of my research career,” she explained. “[It] was a combo of conventional and highly advanced breeding techniques, lectures and hands-on practice in the laboratories, green houses and in the field.”

Saima Mir poses next to a statue of Norman Borlaug at CIMMYT HQ in Mexico. (Photo: Saima Mir)

Dario Novoselovic, who is now a senior researcher at the Agricultural Institute Osijek in Croatia, attended the wheat training course in 2000. Novoselovic said he particularly enjoyed the immersive nature of the training, saying that it paved the way for his future professional career. “We were among the lucky generations [with] the opportunity to interact with and enjoy the lectures from Dr. Borlaug, you can imagine the kind of feeling and spirit [we had] after his lectures,” he said.

Sundas Waqar, who works as a scientific officer for the National Agriculture Research Centre in Islamabad, Pakistan, recalls the technical training in the CIMMYT program. “The training provided me the opportunity to connect with the world. I got promoted to my current position after completing training at CIMMYT.”

Naresh Kumar, a senior wheat breeding scientist in the Genetics Division at the Indian Agricultural Research Institute (ICAR) in New Delhi, India, took the course in 2019. “I am utilizing all the skills in my research and management activities. Collaboration with CIMMYT scientists is now quite direct and friendly,” he explained. “A key lesson was sharing knowledge and experience with partners across the world.

A different experience for 2021

This year, CIMMYT’s signature training program looks quite different as both students and trainers navigate challenging travel and safety restrictions due to the pandemic. Since on-site training this year was not possible, GWP decided to continue these capacity building activities as many other schools have: virtually. The 2021 Basic Wheat Improvement Course went online on January 18, and — echoing the spirit of its far-reaching legacy — 68 participants from 21 different countries will still receive training this year.

Esther Wangari Mwangi, a research officer working with the Kenya Agricultural and Livestock Research Organization (KALRO), participates in the the 2021 virtual training. (Photo: CIMMYT)

World Health Day 2021

Health has certainly been in the spotlight over the past year. And how could it not be?

The ongoing COVID-19 pandemic has thrown into sharp relief the fact that many groups across the world struggle to make ends meet with little daily income, have poorer housing conditions and education, fewer employment opportunities, and have little or no access to safe environments, clean water and air, food security and health services.

In light of this, the World Health Organization (WHO) is calling on leaders worldwide to ensure that everyone has living and working conditions that are conducive to good health. For many the focus will, understandably, be on access to quality health care services. But there are myriad other factors that influence our ability to lead healthy lives — from how we care for our soil, to what we eat and the air we breathe.

Joining this year’s World Health Day campaign, the International Maize and Wheat Improvement Center (CIMMYT) is highlighting five areas where it pays to think about health, and the solutions we can use to help build a healthier world for everyone.

It starts with soil

Crop yields fall dramatically when soil conditions aren’t right, but digital nutrient management tools providing tailored fertilizer recommendations can boost farmers’ profits and productivity while reducing emissions.

Douglas Mungai holds up soil on his farm in Murang’a county, Kenya. (Photo: Robert Neptune/TNC)
Douglas Mungai holds up soil on his farm in Murang’a county, Kenya. (Photo: Robert Neptune/TNC)

Robust germplasm

How do we ensure that germplasm reserves are not potential vectors of pest and disease transmission? The second instalment in the CGIAR International Year of Plant Health Webinar Series tackles the often-overlooked issue of germplasm health.

A CIMMYT gene bank worker photographs maize accessions for the database for future reference. (Photo: Alfonso Cortés/CIMMYT)

Quality feed

By growing maize simultaneously for both human consumption and quality animal feed, farmers can get the most out of their crops and conserve natural resources like land and water.

A Bangladeshi farmer scoops up maize flour, produced from his own maize crop, as he prepares feed for his livestock. (Photo: S. Mojumder/CIMMYT)

Feeding communities

The traditional milpa intercrop — in which maize is grown together with beans, squash or other vegetable crops — can furnish a vital supply of food and nutrients for marginalized, resource-poor communities in the Americas.

A farmer holds a maize ear. (Photo: Cristian Reyna)
A farmer holds a maize ear. (Photo: Cristian Reyna)

A healthy planet

Compared to conventional tillage practices, sowing wheat directly into just-harvested rice fields without burning or removing straw or other residues can reduce severe air pollution while lessening irrigation needs.

Air pollution related to crop residue burning imposes enormous public health and economic burdens in northwestern India. (Photo: CIMMYT)
Burning crop residue pollutes the air in northeastern India. (Photo: CIMMYT)

Interested in learning more about CIMMYT’s health-related work? Check out our archive of health and nutrition content.

Featured image: A farmer inspects a drought-tolerant bean plant on a trial site in Malawi. (Photo: Neil Palmer/CIAT)

What is nixtamalization?

For centuries, people across Mexico and Central America have been using a traditional method, known as nixtamalization, to process their maize.

Now carried out both at household and industrial levels, this technique offers a range of nutritional and processing benefits. It could easily be adopted by farmers and consumers in other parts of the world.

What is nixtamalization?

Nixtamalization is a traditional maize preparation process in which dried kernels are cooked and steeped in an alkaline solution, usually water and food-grade lime (calcium hydroxide).

After that, the maize is drained and rinsed to remove the outer kernel cover (pericarp) and milled to produce dough that forms the base of numerous food products, including tortillas and tamales.

How does it work?

Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)
Key steps of the traditional nixtamalization process. (Graphic: Nancy Valtierra/CIMMYT)

What happens when maize kernels are nixtamalized?

The cooking (heat treatment) and steeping in the alkaline solution induce changes in the kernel structure, chemical composition, functional properties and nutritional value.

For example, the removal of the pericarp leads to a reduction in soluble fiber, while the lime cooking process leads to an increase in calcium content. The process also leads to partial starch gelatinization, partial protein denaturation — in which proteins present in the kernel become insoluble — and a partial decrease in phytic acid.

What are the benefits of processing maize in this way?

In addition to altering the smell, flavor and color of maize products, nixtamalization provides several nutritional benefits including:

  • Increased bioavailability of vitamin B3 niacin, which reduces the risk of pellagra disease
  • Increased calcium intake, due to its absorption by the kernels during the steeping process
  • Increased resistant starch content in food products, which serves as a source of dietary fiber
  • Significantly reduced presence of mycotoxins such as fumonisins and aflatoxins
  • Increased bioavailability of iron, which decreases the risk of anemia

These nutritional and health benefits are especially important in areas where maize is the dietary staple and the risk of aflatoxins is high, as removal of the pericarp is thought to help reduce aflatoxin contamination levels in maize kernels by up to 60% when a load is not highly contaminated.

Additionally, nixtamalization helps to control microbiological activity and thus increases the shelf life of processed maize food products, which generates income and market opportunities for agricultural communities in non-industrialized areas.

Where did the practice originate?

The word itself comes from the Aztec language Nahuatl, in which the word nextli means ashes and tamali means unformed maize dough.

Populations in Mexico and Central America have used this traditional maize processing method for centuries. Although heat treatments and soaking periods may vary between communities, the overall process remains largely unchanged.

Today nixtamalized flour is also produced industrially and it is estimated that more than 300 food products commonly consumed in Mexico alone are derived from nixtamalized maize.

Can farmers and consumers in other regions benefit from nixtamalization?

Nixtamalization can certainly be adapted and adopted by all consumers of maize, bringing nutritional benefits particularly to those living in areas with low dietary diversity.

Additionally, the partial removal of the pericarp can contribute to reduced intake of mycotoxins. Aflatoxin contamination is a problem in maize producing regions across the world, with countries as diverse as China, Guatemala and Kenya all suffering heavy maize production losses as a result. While training farmers in grain drying and storage techniques has a significant impact on reducing post-harvest losses, nixtamalization technology could also have the potential to prevent toxin contamination and significantly increase food safety when used appropriately.

If adapted, modern nixtamalization technology could also help increase the diversity of uses for maize in food products that combine other food sources like vegetables.

Cover photo: Guatemalan corn tortillas. (Photo: Marco Verch, CC BY 2.0 DE)

New publications: Doubled haploids in maize — development, deployment and challenges

Haploids  which are produced naturally in maize  were first identified in the crop about a century ago. Today they are used widely in different breeding programs, particularly in the development of doubled haploids, which are highly uniform, genetically pure and stable. Doubled-haploid technology has simplified logistics to make the maize breeding process more efficient and intuitive, facilitated studies at the molecular and genomic level, and increased genetic gains in different breeding programs.  

In a recent review article, scientists from the International Maize and Wheat Improvement Center (CIMMYT) examine strategies for haploid induction and identification, chromosome doubling and production of doubled haploid seed through self-fertilization. They also discuss the potential applications and key challenges linked with doubled haploid technology in maize, and suggest future research directions for people involved in fast-track maize breeding, the seed industry, and academia.  

Extensive studies of haploids and doubled haploids have increased our understanding of the genetic basis and mechanisms involved in haploid induction, the factors that affect haploid induction, different markers to identify putative haploids, and different chemicals agents that can be used for chromosome doubling.  

The technology is useful because the resulting plants are free from different social issues and legal regulations associated with transgenic crops. It maximizes genetic gains in breeding programs, is one of the fastest tools available for developing large numbers of inbred lines quickly and reduces the cost of breeding programs. 

“Deployment of doubled haploid technology is much needed for commercial hybrid maize breeding programs to make them more efficient and economical,” says article co-author Abdurahman Beshir, a maize seed systems specialist based in Nepal. “The technology is also useful to have accelerated varietal turnover and a higher maize seed replacement rate in different market segments.”  

Many multinational seed companies have adopted doubled haploid technology for the wide-scale production of inbred lines. The development of novel techniques for haploid induction and the subsequent production of doubled haploid plants holds significant potential for the management of genetic resources, germplasm enhancement and the development of novel plant populations. Researchers at CIMMYT have also made significant efforts to help national breeding programs adopt this technology, especially in South Asia, where the organisation has shared haploid inducers with numerous partners in Pakistan 

But, while this technology can accelerate maize breeding, it still faces challenges at each step of doubled haploid line development and the authors argue there is a need to extensively explore the genetic potential of this technology to continue increasing the genetic gains associated with different breeding programs.  

Read the full article: Doubled haploids in maize: Development, deployment, and challenges

Cover image: A mixture of doubled haploid maize kernels seen in close-up at CIMMYT’s Agua Fria experimental station in Mexico. (PhotoAlfonso Cortés/CIMMYT)

Read more new publications from CIMMYT researchers: 

  1. Choudhary, M., Meena, V. S., Panday, S. C., Mondal, T., Yadav, R. P., Mishra, P. K., Bisht, J. K., & Pattanayak, A. (2021). Long-term effects of organic manure and inorganic fertilization on biological soil quality indicators of soybean-wheat rotation in the Indian mid-HimalayaAppl. Soil Ecol.157. 
  2. Costa-Neto, G., Fritsche-Neto, R., & Crossa, J. (2021). Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trialsHeredity126(1), 92-106.  
  3. Jat, H. S., Datta, A., Choudhary, M., Sharma, P. C., & Jat, M. L. (2021). Conservation Agriculture: Factors and drivers of adoption and scalable innovative practices in Indo-Gangetic plains of India – a reviewInternational Journal of Agricultural Sustainability19(1), 40-55.  
  4. Jena, P. R., De Groote, H., Nayak, B. P., & Hittmeyer, A. (2021). Evolution of Fertiliser Use and its Impact on Maize Productivity in Kenya: Evidence from Multiple SurveysFood Sec.13(1), 95-111.  
  5. Krishna, V. V., & Kubitza, C. (2021). Impact of oil palm expansion on the provision of private and community goods in rural IndonesiaEcol. Econ.179, 106829.  
  6. Novotny, I. P., Fuentes-Ponce, M. H., Tittonell, P., Lopez-Ridaura, S., & Rossing, W. A. H. (2021). Back to the people: The role of community-based responses in shaping landscape trajectories in Oaxaca, MexicoLand Use Policy100, 104912.  
  7. Romero-Salas, E. A., Navarro-Noya, Y. E., Luna-Guido, M., Verhulst, N., Crossa, J., Govaerts, B., & Dendooven, L. (2021). Changes in the bacterial community structure in soil under conventional and conservation practices throughout a complete maize (Zea mays L.) crop cycleAppl. Soil Ecol.157, 103733.  
  8. Simtowe, F., & De Groote, H. (2021). Seasonal participation in maize markets in Zambia: Do agricultural input subsidies and gender matter? Food Sec.13(1), 141-155.  
  9. Simtowe, F., Makumbi, D., Worku, M., Mawia, H., & Rahut, D. B. (2021). Scalability of Adaptation strategies to drought stress: The case of drought tolerant maize varieties in KenyaInternational Journal of Agricultural Sustainability19(1), 91-105.  
  10. Sserumaga, J. P., Makumbi, D., Oikeh, S. O., Otim, M., Machida, L., Anani, B. Y., Nhamucho, E., Beyene, Y., & Mugo, S. (2021). Evaluation of early-generation tropical maize testcrosses for grain-yield potential and weevil (Sitophilus zeamais Motschulsky) resistanceCrop Protection139, 105384.  

Announcing CIMMYT-derived fall armyworm tolerant elite maize hybrids for eastern and southern Africa

A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.
A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the successful development of three CIMMYT-derived fall armyworm-tolerant elite maize hybrids for eastern and southern Africa.

Fall armyworm (Spodoptera frugiperda) emerged as a serious threat to maize production in Africa in 2016 before spreading to Asia in 2018. Host plant resistance is an important component of integrated pest management (IPM). By leveraging tropical insect-resistant maize germplasm developed in Mexico, coupled with elite stress-resilient maize germplasm developed in sub-Saharan Africa, CIMMYT worked intensively over the past three years to identify and validate sources of native genetic resistance to fall armyworm in Africa. This included screening over 3,500 hybrids in 2018 and 2019.

Based on the results of on-station screenhouse trials for fall armyworm tolerance (under artificial infestation) conducted at Kiboko during 2017-2019, CIMMYT researchers evaluated in 2020 a set of eight test hybrids (four early-maturing and four intermediate-maturing) ) against four widely used commercial hybrids (two early- and two intermediate-maturing) as checks. The trials conducted were:

  • “No choice” trial under fall armyworm artificial infestation in screenhouses in Kiboko, Kenya: Each entry was planted in 40 rows in a separate screenhouse compartment (“no-choice”), and each plant infested with seven fall armyworm neonates 14 days after planting. Foliar damage was assessed 7, 14 and 21 days after infestation. Ear damage and percent ear damage were also recorded, in addition to grain yield and other agronomic parameters.
  • On-station trials in eastern Africa: The trials, including the eight test entries and four commercial checks, were conducted at six locations in Kenya during the maize cropping season in 2020. Entries were evaluated for their performance under managed drought stress, managed low nitrogen stress, and under artificial inoculation for Turcicum leaf blight (TLB) and Gray leaf spot (GLS) diseases. The three-way cross CIMMYT test hybrids and their parents were also characterized on-station for their seed producibility, including maximum flowering time difference between parents, and single-cross female parent seed yield.

The eight test entries with fall armyworm tolerance were also included in the regional on-station trials (comprising a total of 58 entries) evaluated at 28 locations in Kenya and Tanzania. The purpose of these regional trials was to collect data on agronomic performance.

  • On-farm trials in Kenya: The eight test hybrids and four commercial checks were evaluated under farmers’ management conditions (without any insecticide spray) at 16 on-farm sites in Kenya. Each entry was planted in 20-row plots, and data was recorded on natural fall armyworm infestation. Foliar damage was assessed 7, 14, 21, 28 and 35 days after germination together with insect incidence. Ear damage and percent ear damage were also recorded, besides grain yield and other agronomic parameters.
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).

Summary of the data

  • “No-choice” trials in screenhouses at Kiboko: Significant differences were observed between the three selected fall armyworm tolerant hybrids (FAWTH2001-2003) and the commercial benchmark hybrid checks at the vegetative and grain filling stages and at harvest (Figure 1). In the fall armyworm artificial infestation trial, the three selected FAWTH hybrids yielded 7.05 to 8.59 t/ha while the commercial checks yielded 0.94-1.03 t/ha (Table 1).
  • On-station trials: No significant differences were observed between the three selected FAWTH hybrids and the commercial checks for grain yield and other important traits evaluated under optimum, managed drought stress, low nitrogen stress, TLB and GLS diseases (Table 1). The three FAWTH hybrids recorded excellent synchrony in terms of flowering between the female and male parents, and very good female parent seed yield (Table 1).
  • On-farm trials: There were significant differences in terms of foliar damage ratings between the FAWTH hybrids and the commercial checks. For ear damage, the differences were not statistically significant. The grain yields did not vary significantly under natural infestation in the on-farm trials because of the very low incidence of fall armyworm at most sites.

Native genetic resistance to fall armyworm in maize is partial, though quite significant in terms of yield protection under severe fall armyworm infestation, as compared to the susceptible commercial checks. Sustainable control of fall armyworm is best achieved when farmers use host plant resistance in combination with other components of integrated pest management, including good agronomic management, biological control and environmentally safer pesticides.

Next Steps

Together with national agricultural research system (NARS) partners, CIMMYT will nominate these FAWTH hybrids for varietal release in target countries in sub-Saharan Africa, especially in eastern and southern Africa.  After national performance trials (NPTs) and varietal release and registration, the hybrids will be sublicensed to seed company partners on a non-exclusive, royalty-free basis for accelerated seed scaling and deployment for the benefit of farming communities.

Acknowledgements

This work was implemented with funding support from the CGIAR Research Program on Maize (MAIZE), the U.S. Agency for International Development (USAID) Feed the Future initiative, and the Bill & Melinda Gates Foundation. MAIZE receives Windows 1&2 funding support from the World Bank and the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, UK and USA. The support extended by the Kenya Agriculture & Livestock Research Organization (KALRO) for implementation of this work through the fall armyworm mass rearing facility at Katumani and the maize research facilities managed by CIMMYT at Kiboko is gratefully acknowledged.

For further information, please contact:

B.M. Prasanna, Director of the Global Maize Program, CIMMYT and the CGIAR Research Program on Maize. b.m.prasanna@cgiar.org

Delivering improved maize seed against all odds

As one of the pioneer homegrown seed companies in Uganda, Farm Inputs Care Centre (FICA) has become one of the leading players in the seed sector value chain. Since its inception in 1999, it has played a significant role in variety development and maintenance, seed production, and processing, packaging and marketing.

The close linkages it has maintained with partners such as National Agriculture Research Organization (NARO)’s National Crops Resources Research Institute (NaCCRI) and the International Maize and Wheat Improvement Center (CIMMYT) have seen it acquire new hybrids for commercialization and production of early generation seed.

A FICA representative stands in front of a demonstration plot for one of the organization’s stress-tolerant maize varieties in Uganda. (Photo: Mosisa Worku/CIMMYT)
A FICA representative stands in front of a demonstration plot for one of the organization’s stress-tolerant maize varieties in Uganda. (Photo: Mosisa Worku/CIMMYT)

A unique opportunity for collaboration

Recurrent plant threats such as drought, pests and diseases — alongside the perpetual need to develop and foster better performing varieties in changing climatic conditions — has required partners to intensify efforts to tackle these challenges to bolster smallholders’ resilience. The Drought Tolerant Maize for Africa (DTMA) project, for instance, ushered in the partnership between CIMMYT, FICA, national agriculture research systems, and other partners to develop and scale up well-adapted, drought-tolerant maize varieties among farmers in Uganda and elsewhere in sub-Saharan Africa.

“One of the unique features of the collaboration is that besides CIMMYT, there was a multi-stakeholder platform that would convene key seed sector players to discuss issues affecting the industry. Ultimately, this benefitted the farmers,” says FICA’s Chief Executive Officer Narcis Tumushabe.

This partnership continued during the Stress Tolerant Maize for Africa (STMA) initiative —  which ran from 2016 to2020 — and now, in the Accelerating Genetic Gains in Maize and Wheat (AGG) project, which launched in July 2020 with the ambition of fast-tracking the development of climate-resilient, higher-yielding, demand-driven, gender-responsive and nutritious maize and wheat varieties.

Tumushabe is happy that the hybrids delivered in the DTMA and STMA projects proved worthwhile against multiple stresses in farmers’ fields, offering reliable yields even in challenging conditions like drought or other stresses. Because of the diverse ecological zones in Uganda, it was essential to test the hybrids FICA accessed through the CIMMYT-NARO partnership across different ecological zones, ahead of commercialization. This has given farmers opportunities to choose the varieties that are suitable in their environment. The five varieties FICA chose to promote include Longe 9H — which produces about 700 metric tons annually — and WE 2114, WE 2115, WE 3106 and UH 5355, which cumulatively produce about 1,300 tons annually.

The WE 3106 variety has a strong stem and produces big cobs and Tumushabe notes that some livestock farmers prefer this variety as a good forage source for their livestock. Large-scale commercial farmers prefer WE 2114 due to the positioning of the ears at a uniform height, which makes it easy for harvesting using combine harvesters.

Additionally, FICA breeders have also developed impactful combination hybrids using CIMMYT and FICA lines and the company looks to double its annual production of certified stress-tolerant maize seed to 4,000 metric tons in the next five years. Currently, it enlists about 800 contract seed growers to support its seed multiplication efforts.

A FICA employee walks through a seed production field growing hybrid maize variety WE2114 in Masindi, Uganda. (Photo: Joshua Masinde/CIMMYT)
A FICA employee walks through a seed production field growing hybrid maize variety WE2114 in Masindi, Uganda. (Photo: Mosisa Worku/CIMMYT)

Surmounting monumental challenges for varietal turnover

Promoting new seed varieties, especially in a highly competitive market, is no mean task. With the seed delivery systems in sub-Saharan Africa mainly driven by the supply side, seed companies end up multiplying only the popular varieties that are already in high demand, explains Mosisa Worku Regasa, a seed systems specialist at CIMMYT.

“Consequently, these companies become reluctant to multiply new seed varieties due to deficient demand, thereby slowing down the rate of varietal turnover,” says Mosisa. “There is, however, a growing push for a demand-driven system.”

“Some avenues for cultivating a demand-led environment include investing a great deal of resources to better understand farmers’ preferences or product profiles, setting up numerous demonstration plots for newer, better-performing varieties closer to the farmers locations in addition to investing in other marketing and promotional activities.”

Still, the seed sector must confront other dynamics such as farmers that are captive of old albeit popular varieties.

“There are cases where, depending on the stage of a seed company’s development, the number of products that one can deliver in the right quality and appropriate maintenance level has to be limited or realistically managed,” Tumushabe explains.

“The seed company also ought to be sure that the new variety will be superior to existing varieties under farmers’ conditions. That is why one may find little excitement if the genetic gain of a new crop variety is not significantly high compared to the already known and available crop variety. This may make one wonder why an old variety continues to persist in the market.”

To create awareness and sustain the demand for its seed, FICA has established demonstration farms to showcase the performance of its stress-resilient maize varieties among farmers and engaged agro-dealers as last mile seed merchants. It is also during field days held at demonstration farms where the company obtains feedback on how to improve its breeding program, particularly from women smallholder farmers. Such efforts have helped raise the company’s share of stress-tolerant maize seed production to 70% of the total maize seed it produces, which indicates good progress in variety replacement.

2020 Bӓnziger Award winners announced

Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)
Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)

The International Maize and Wheat Improvement Center (CIMMYT) congratulates the winners of the inaugural 2020 Bӓnziger Award.

The award is named for former CIMMYT Deputy Director General Marianne Bӓnziger, who retired in 2019 after 23 years in maize science and leadership, including as CIMMYT’s first woman to reach the Deputy Director General position. It recognizes the contribution of women to CIMMYT’s work and mission. Nominees must exemplify one or more of the core values of CIMMYT: teamwork, integrity, excellence and respect.

“Gender diversity is critical to the development of robust and impactful science,” said CIMMYT Director General Martin Kropff, speaking at the virtual award ceremony during an all-staff CIMMYT end-of-year celebration on December 15.

“Research and administration have been demonstrated time and time again to be more effective and efficient when gender is considered, because women bring unique perspectives to conversations and decisions.”

The inaugural Bӓnziger Award received more than 50 nominations from across the organization’s offices in Africa, Asia and Latin America. Because of the high number of excellent candidates, the 2020 award committee selected two winners: Rahel Assefa and Kate Dreher.

Rahel Assefa is a project manager based in Ethiopia who has spent nearly five years supporting CIMMYT programs in eastern and southern Africa. In their nomination, her colleagues emphasized her “can-do” attitude and problem-solving skills as well as her positivity, maintained even when “deadlines are tight and tensions are high.”

Rahel Assefa receives her certificate during the virtual award ceremony. (Photo: CIMMYT)
Rahel Assefa receives her certificate during the virtual award ceremony. (Photo: CIMMYT)

“The nominations for Rahel covered all bases — teamwork, integrity, excellence and respect,” explained Sarah Hearne, a maize molecular geneticist at CIMMYT and chair of the 2020 award committee. “She was praised for her openness, collaboration and support of colleagues, both in and outside of her immediate environment and program.”

“I am grateful to my colleagues for the recognition of my contributions to CIMMYT,” said Rahel Assefa. “It is nice to be awarded — even though it is not why we do what we do. I like my work and I enjoy my colleagues in Africa and at HQ, and more than anything I believe in teamwork and collaboration.”

Kate Dreher is a senior germplasm curator based at CIMMYT HQ in Mexico. Her award focused not only on her official duties but also on her charity and community-building work in larger the El Batan and Texcoco area — including leading the Charity Initiative and organizing countless gatherings and activities for staff, newcomers and visitors to CIMMYT HQ.

“Nominees told us that Kate goes extra mile to help others succeed, selflessly focusing on ‘we’ rather than ‘I’ and ensuring that the voices and needs of all in a team are heard — a fantastic example of empowering teams,” said Hearne.

“Her hard work, kindness and dedication not only apply to CIMMYT’s mission enhance the CIMMYT community as a whole, touching the lives of colleagues and those less fortunate within the communities where we work.”

Kate Dreher receives her certificate during the virtual award ceremony. (Photo: CIMMYT)
Kate Dreher receives her certificate during the virtual award ceremony. (Photo: CIMMYT)

Dreher expressed that this recognition would encourage her to redouble her efforts to follow Bӓnziger’s example.

“I feel inspired when I see people trying to improve the well-being of others — at work and in life in general — and I feel uplifted by the countless daily examples that I see in the CIMMYT community of people trying to make a positive impact in the world,” she said. “I admire everyone who is motivated by this goal whether their actions have an immediate impact or will lead to positive outcomes many years in the future.”

Marianne Bӓnziger shared her appreciation for the fact that CIMMYT has installed the award in her name. Speaking at the ceremony, she reiterated the words inscribed on the plaques, and offered advice for all CIMMYT staff.

“The header of the award says ‘Diversity enriches every team. Women make CIMMYT stronger,’” she told ceremony attendees. “Let’s open our eyes to the contribution that diverse team members make: women and men, young and more experienced, staff in research and administration, staff from different nations.”

“This award celebrates excellence among women staff. It’s a call to everybody to find, celebrate and foster diversity; to find, celebrate and foster excellence. Diversity in views and contributions make us stronger, and life much more colorful.”

Crop variety guide for farmers

As part of a rural resilience project in Zimbabwe, the International Maize and Wheat Improvement Center (CIMMYT) has published a new guide to stress-tolerant crop varieties for smallholder farmers in Zimbabwe.

The guide is a critical output of a project led by CIMMYT and the international humanitarian response agency GOAL, in collaboration with the United Nations World Food Programme (WFP), the Government of Zimbabwe and other partners. With financial support from the Swiss Agency for Development and Cooperation (SDC) and the U.S. Agency for International Development (USAID), the project aims to reach 5000 smallholder farmers in target areas in the country.

Among the project components is the promotion of stress-tolerant seed and climate-smart agriculture practices to rural smallholders. With increasing threats of climate change and a decline in soil fertility, using these improved varieties and climate-smart practices is critical to help farmers adapt to external stresses.

To support variety adoption, a team of CIMMYT experts have identified suitable drought-tolerant and nutritious maize, sorghum and millet varieties. These will be promoted through “mother and baby” trials, designed to facilitate conversations among farmers, extension, and researchers, in these areas.

The new crop variety guide aims to help smallholder farmers in target areas make informed choices by providing critical information about the prioritized products and their maturity length, drought-tolerance, nutritional value, and pest and disease resistance. Direct linkages with private sector seed companies will ensure that farmers have access to this seed at affordable prices.

Implementing crop rotation between these best-suited, stress-tolerant varieties and climate-resilient cowpeas and groundnuts in a conservation agriculture system can improve food and nutrition security even under a variable climate.

Starting with good seed, and enhanced with improved agronomic practices, smallholder farmers have a greater chance of reliable yields and improved income.

Download the manual: Variety description: maize, sorghum, millet, cowpeas and groundnuts

Shining a brighter light on adoption and diffusion

Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)

With almost all CGIAR centers represented in Addis Ababa, Ethiopia is considered to be a hub for CGIAR research, and the organization has been a long-term partner to the Ethiopian government when it comes to agriculture. The partnership between CGIAR and the national partners is said to be an exemplary one, with CGIAR serving as the source of new technologies and innovations and national partners contextualizing these products within their own country context. This is believed to have brought impacts that serve the people on the ground.

A new report by CGIAR’s Standing Panel on Impact Assessment (SPIA) indicates that CGIAR innovations have reached between 4.1 and 11 million Ethiopian households. The report — which assesses 52 agricultural innovations and 26 claims of policy influence — documents the reach of CGIAR-related agricultural innovations across the core domains of CGIAR research activity: animal agriculture; crop germplasm improvement; natural resource management; and policy research.

The study compiles comprehensive information on the past two decades of CGIAR research activities in Ethiopia. Using information from interviews with CGIAR research leaders, scientists, government officials, published studies and project documents, this ‘stocktaking’ exercise was used to identify the innovations which are potentially disseminated at scale. The study also employs novel data collection protocols and methods like visual aid protocols for identification of natural resource management innovations or DNA fingerprinting for crop variety identification for barley, maize and sorghum.

The study results show that although many innovations are being adopted by some farmers, only a few are reaching large numbers of households. The three innovations with the largest reach are soil and water conservation practices, improved maize varieties and crossbred poultry. The study also found out that there are synergies between innovations where households adopt two or more. For instance, a household which adopts CGIAR maize varieties is likely to also adopt recommended natural resource management practices.

This, according to the study, is the result of different categories of CGIAR research efforts — natural resource management and policy, crop breeding and livestock research, respectively. The scaling of these innovations can also be linked to supportive government policies, which in turn have been influenced by policy research, as indicated in the report.

A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)
A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)

CIMMYT’s footprint

The International Maize and Wheat Improvement Center (CIMMYT) has maintained a presence in Ethiopia for over 30 years and is committed to supporting long-term agricultural development in the country. As part of this effort, CIMMYT has contributed to an increase in maize and wheat production in Ethiopia, working with national partners to test and release improved varieties.

The maize breeding program started in 1988 through CIMMYT and EIAR collaboration and in 1993 BH-660 was released — the first hybrid maize variety derived from CIMMYT germplasm. According to the report, specific maize traits were researched through the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects, and since 2012 the Nutritious Maize for Ethiopia (NuME) project has aimed to develop varieties with higher protein content. Overall, 54 maize varieties have been released in Ethiopia since 1990, and 34 of these are thought to contain CIMMYT-related germplasm. It is also noted that, in the past 20 years ten drought-tolerant varieties and eight quality protein maize (QPM) varieties have been released.

In terms of geographical spread, the study highlights that improved maize varieties derived from CGIAR germplasm were highly adopted in the regions of Harar and Dire Dawa, which account for 81% of adopters overall. Adoption rates were also high in Tigray (79.3% of households), Amhara and the Southern Nations, Nationalities, and Peoples’ Region (63% of households), and Oromia (58.4% of households).

The other important crop in Ethiopia is wheat, which is grown by up to 4.8 million farmers in the country, according to the 2019 Central Statistics Authority (CSA) report. The SPIA document indicates that CGIAR innovations have played great role in the release and uptake of improved wheat varieties. The work of the CGIAR Research Program on Wheat (WHEAT), for instance, has resulted in the release of eight rust-resistant varieties derived from CIMMYT germplasm that are still under production. Of the 133 varieties released since 1974, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) played a role in developing at least 80.

The report concludes that agricultural research carried out by CGIAR scientists and their national partners generates many new ideas for innovations that might help address pressing policy concerns. CGIAR’s contribution to Ethiopia’s agricultural development is complex and wide-ranging, and while some aspects cannot be accurately captured by survey data, this new source of adoption and diffusion data helps identify the scale and scope of CGIAR’s reach in Ethiopia.

Read the full report: Shining a brighter light: Comprehensive evidence on adoption and diffusion of CGIAR-related innovations in Ethiopia

About the Standing Panel on Impact Assessment

The Standing Panel on Impact Assessment (SPIA) is an external, impartial panel of experts in impact assessment appointed by the System Council and accountable to it. SPIA is responsible for providing rigorous, evidence-based, and independent strategic advice to the broader CGIAR System on efficient and effective impact assessment methods and practices, including those measuring impacts beyond contributions to science and economic performance, and on innovative ways to improve knowledge and capacity on how research contributes to development outcomes

Improved metrics for better decisions

By adopting best practices and established modern tools, national agricultural research systems (NARS) are making data-driven decisions to boost genetic improvement. And they are measuring this progress through tracking and setting goals around “genetic gain.”

Genetic gain means improving seed varieties so that they have a better combination of genes that contribute to desired traits such as higher yields, drought resistance or improved nutrition. Or, more technically, genetic gain measures, “the expected or realized change in average breeding value of a population over at least one cycle of selection for a particular trait of index of traits,” according to the CGIAR Excellence in Breeding (EiB)’s breeding process assessment manual.

CGIAR breeders and their national partners are committed to increasing this rate of improvement to at least 1.5% per year. So, it has become a vital and universal high-level key performance indicator (KPI) for breeding programs.

“We are moving towards a more data-driven culture where decisions are not taken any more based on gut feeling,” EiB’s Eduardo Covarrubias told nearly 200 NARS breeders in a recent webinar on Enhancing and Measuring Genetic Gain. “Decisions that can affect the sustainability and the development of organization need to be based on facts and data.”

Improved metrics. Better decisions. More and better food. But how are NARS positioned to better measure and boost the metric?

EiB researchers have been working with both CGIAR breeding programs and NARS to broaden the understanding of genetic gain and to supply partners with methods and tools to measure it.

The recent webinar, co-sponsored by EiB and the CIMMYT-led Accelerating Genetic Gains in Maize and Wheat (AGG) project, highlighted tools and services that NARS are accessing, such as genotyping, data analysis and mechanization.

Through program assessments, customized expert advice, training and provision of services and resources, EiB researchers are helping national partners arrive at the best processes for driving and measuring genetic gains in their programs.

For example, the EiB team, through Crops to End Hunger (CtEH), is providing guidelines to breeders to help them maximize the accuracy and precision, while reducing the cost of calculating genetic gains. The guidelines make recommendations such as better design of trials and implementing an appropriate check strategy that permits regular and accurate calculation of genetic gain.

A comprehensive example at the project level is EiB’s High-Impact Rice Breeding in East and West Africa (Hi-Rice), which is supporting the modernization of national rice programs in eight key rice-producing countries in Africa. Hi-Rice delivers training and support to modernize programs through tools such as the use of formalized, validated product profiles to better define market needs, genotyping tools for quality control, and digitizing experiment data to better track and improve breeding results. This is helping partners replace old varieties of rice with new ones that have higher yields and protect against elements that attack rice production, such as drought and disease. Over the coming years, EiB researchers expect to see significant improvements in genetic gain from the eight NARS program partners.

And in the domain of wheat and maize, AGG is working in 13 target countries to help breeders adopt best practices and technologies to boost genetic gain. Here, the EiB team is contributing its expertise in helping programs develop their improvement plans — to map out where, when and how programs will invest in making changes.

NARS and CGIAR breeding programs also have access to tools and expertise on adopting a continuous improvement process — one that leads to cultural change and buy-in from leadership so that programs can identify problems and solve them as they come up. Nearly 150 national breeding partners attended another EiB/AGG webinar highlighting continuous improvement key concepts and case studies.

National programs are starting to see the results of these partnerships. The Kenya Agricultural & Livestock Research Organization (KALRO)’s highland maize breeding program has undertaken significant changes to its pipelines. KALRO carried out its first-ever full program costing, and based on this are modifying their pipeline to expand early stage testing. They are also switching to a double haploid breeding scheme with support from the CGIAR Research Program on Maize (MAIZE), in addition to ring fencing their elite germplasm for future crosses.

KALRO has also adopted EiB-supported data management tools, and are working with the team to calculate past rates of genetic gains for their previous 20 years of breeding. These actions — and the resulting data — will help them decide on which tools and methods to adopt in order to improve the rate of genetic gain for highland maize.

“By analyzing historical genetic gain over the last 20 years, it would be interesting to determine if we are still making gains or have reached a plateau,” said KALRO’s Dickson LIgeyo, who presented a Story of Excellence at EiB’s Virtual Meeting 2020. “The assessment will help us select the right breeding methods and tools to improve the program.”

Other NARS programs are on a similar path to effectively measure and increase genetic gain. In Ghana, the rice breeding program at Council for Scientific and Industrial Research (CSIR) have developed product profiles, identified their target market segments, costed out their program, digitized their operations, and have even deployed molecular markers for selection.

With this increased expertise and access to tools and services, national breeding programs are set to make great strides on achieving genetic gain goals.

“NARS in Africa and beyond have been aggressively adopting new ideas and tools,” says EiB’s NARS engagement lead Bish Das. “It will pay a lot of dividends, first through the development of state-of-the-art, and ultimately through improving genetic gains in farmers’ fields. And that’s what it’s all about.”

Who benefits?

Maize post-harvest losses in smallholder farming systems in sub-Saharan Africa have been shown to result in significant costs at household and national level, making it difficult to move towards achievement of SDG2 – Zero Hunger.

Within smallholder farming systems, new grain storage technologies such as metal silos can help reduce these losses during storage. However, technologies are often introduced into systems with complex sets of relationships, which may differentially affect the ability of women and men to secure the expected benefits. This, in turn, can have a knock-on effect on adoption rates and expected outcomes.

A recent study by an international team of researchers investigated whether modern storage structures such as metal silos provide equal benefits to women and men farmers in sub-Saharan Africa, using a mixed methods approach to explore the relationships governing maize production and storage in Kenya, Malawi, Zambia and Zimbabwe, where 1717 metal silos have been introduced through the Effective Grain Storage Project (EGSP).

The authors used random sampling to carry out quantitative surveys on metal silo owners in Kenya (124 respondents) and Malawi (100 respondents). Qualitative surveys using purposive sampling were also conducted in all four countries covering 14 ethnic groups using focus group discussions (360 respondents), key informant interviews (62 respondents), and household case studies (62 respondents). “Our aim was to understand gendered post-harvest management and storage strategies in traditional systems and to map changes when metal silos were introduced,” explain the authors.

“We hypothesized that existing gender norms might differentially influence women’s ability to benefit from the introduction of metal silos and our findings seem to indicate that this is correct. In most instances when metal silos are introduced, ownership of the grain storage facility and any benefits attached to that ownership typically switch from women to men, or men’s existing control over stored maize is deepened.”

A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)
A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)

Their findings highlight that roles and responsibilities regarding the ownership and management of storage structures are strongly gendered. Though there are differences between ethnic groups and countries, overall men benefit more than women from the introduction of metal silos. Ownership of a grain storage facility and the benefits attached to this ownership can switch from women to men, with women having less scope for bargaining over their rights to use the stores for their own needs and the benefit of all household members.

Many of the women interviewed suggested that this compromised their ability to access sufficient maize because men might insist on taking any grain set aside to meet their personal needs. “We did not measure how much grain is taken and whether food security is indeed negatively affected, but our research registers that women are concerned about this issue.”

The qualitative research explored whether ownership over the granary — and control over the maize stored within — changed when metal silos were purchased. In all four countries, cultural norms tend to result in men typically owning all large household assets such as land, water pumps, ox-ploughs and carts, etc. They generally make key decisions about how these assets are to be used as well. Furthermore, the income differential between women and men in male-headed households means that it is considerably more difficult for women than men to make a large purchase like a metal silo. “As a consequence of these factors, we found men were more likely to own metal silos in each country.”

There is some differentiation between ethnic groups. In Zimbabwe, for example, Zezuru women who had previously owned and managed a dura — a traditional granary — lost control over maize grain reserves when metal silos were introduced. But for Korekore women nothing changed: men had always controlled traditional storage technologies and the maize within, and they continued to do so when metal silos were introduced. These examples highlight the fact that despite the cultural differences between ethnic groups, Zimbabwean women lost out across the board when metal silos were introduced, either through losing control over storage structures, or because male ownership was not challenged.

In light of these findings, the authors argue that understanding social context is key to designing and disseminating post-harvest technologies that meet the needs and preferences of both men and women farmers in various cultural contexts.

Their results make a strong case for ensuring that agricultural policy-makers prioritize the provision of equal access to improved technologies, as this is crucial not only for supporting women to meet their individual production goals, but also for ensuring that household-level food security needs are met.

Read the full study “Do metal grain silos benefit women in Kenya, Malawi, Zambia and Zimbabwe?” in the Journal of Stored Products Research.

Digital groundwater monitoring

A farmer in Nepal operates a water pump for drip irrigation. (Photo: Sharad Maharjan/IMWI)
A farmer in Nepal operates a water pump for drip irrigation. (Photo: Sharad Maharjan/IWMI)

Taken together, digital monitoring and readily available data on the status of groundwater resources provide a critical foundation for sustainable irrigation development. While much is known about surface water resources and hydrological and meteorological linkages between the Terai, Mid-Hills and Himalaya regions of the country, Nepal currently lacks a comprehensive system for groundwater resource monitoring.

To respond to this crucial information gap, the International Maize and Wheat Improvement Center (CIMMYT) and International Water Management Institute (IWMI) are partnering with the Government of Nepal’s Groundwater Resources Development Board to conduct a pilot which will develop and test a potential groundwater monitoring system with the goal of identifying an approach which can be gradually scaled out after project completion.

To this end, the project team organized an Inception and Consultation Workshop, which took place virtually on October 14, 2020. This was the first in a series under the Cereal Systems Initiative for South Asia (CSISA) Nepal COVID-19 and Resilience project, funded by the United States Agency for International Development (USAID) Nepal, which supports farmers and rural economies in their response to COVID-19 and addresses, among others, various issues and ways forward for sustainable irrigation development.

The session aimed to introduce the digital groundwater monitoring pilot to local stakeholders, identify monitoring objectives and information needs, facilitate multi-stakeholder and inter-ministerial dialogue, and generate feedback and endorsement of the project plan. Participants were from a wide range of backgrounds and disciplines, and included members of local and national authorities, research centers and universities.

Participants meet virtually at the multi-stakeholder dialogue for Nepal’s Digital Groundwater Monitoring pilot (Photo: Tim Krupnik/CIMMYT)
Participants meet virtually at the multi-stakeholder dialogue for Nepal’s Digital Groundwater Monitoring pilot (Photo: Tim Krupnik/CIMMYT)

Madhukar Rajbhandari, director general of the Government of Nepal’s Department of Water Resources and Irrigation, opened the event and during his address highlighted the importance of groundwater irrigation for Nepal’s farming systems and livelihoods. He also captured the challenges which the country faces when developing groundwater irrigation, from polluted water resources through urbanization to lack of market access and the high maintenance costs of irrigation infrastructure. Rajbhandari noted that “agricultural and irrigation projects lack coordination” and expressed his hope that “through this pilot, the way is paved for a collaborative approach to develop practical groundwater solutions for farmers.”

The session introduced participants to the project and its background, leading breakout sessions for two groups: the first containing local, state and national government representatives; the second comprising farmers, researchers and members of industry. Each group was asked to identify the groundwater monitoring objectives and information needs that they would have as different types of users, and to provide feedback and recommendations to improve the project work plan.

The feedback showed that while government representatives are largely interested in developing a better understanding of the groundwater development potential, researchers and farmers are more concerned with possible discharge and water quality. Monitoring frequency was also identified as useful for daily to monthly timescales.

The group discussion revealed participants’ keen interest in consolidating and monitoring groundwater information, which highlights the importance of stakeholder engagement when developing pilots such as these, to ensure that when scaling is achieved, it caters to specific needs. Participants also expressed a strong interest in bringing the results of the project within the ambit of national policy, which would achieve the streamlining of data collection protocols for standardized, publicly accessible, data collection mechanisms.

“It is very encouraging to see such active participation and engagement from all the participants throughout the workshop,” noted Timothy Krupnik, project leader and a senior scientist at CIMMYT. “We look forward to maintaining this momentum, to support Nepal’s efforts in strengthening its capacity for sustainable irrigation.”