Most agricultural production in the Global South takes place in mixed farming systems, which allow farmers to diversify risk from single crop production, use labor efficiently, access cash and add value to products. Key drivers — climate change, population pressure, urbanization, water scarcity, changing diets, volatile food prices — mean that flexible and accelerated changes in mixed farming systems will be needed to achieve global targets such as the Sustainable Development Goals. Sustainable intensification, or the production of more food on the same piece of land while reducing the negative environmental impact, is a viable avenue.
Two types of hurdles must be overcome to adequately meet the challenge at farming systems level. One hurdle is to ensure efficient coordination, integration and transfer of innovations, information, tools and standardized methodologies. A second hurdle is to integrate multiple biophysical and socio-economic thematic-level outputs and identify strategies that minimize trade-offs and maximize synergies, resulting in multiple impacts at scale.
Objective
This Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agro-ecologies and socio-economic settings.
Activities
This objective will be achieved through:
Analyzing status, trends and future dynamics of mixed farming systems to identify entry points for equitable sustainable intensification, to mitigate negative impacts of change and seize emerging opportunities for livelihoods.
Building methods and tools for sustainable intensification of mixed farming systems to support decisions on what kind of sustainable intensification might work where, and for whom, in specific contexts.
Participatory co-design of mixed farming systems with evidence-based, validated sustainable intensification innovation packages that are responsive to improving efficiency, equity and resilience, in regions where mixed farming systems dominate the landscape.
Advancing and supporting scaling of innovations, through strategic partnerships and building the capacity of relevant actors in scaling approaches — a gender-transformative approach will be central to all innovation and scaling design to enhance equity.
Capacity-building for mixed farming system design and analyses, to support long-term impact on university and college students, scientists, extension agents, farmers, private sector, policy makers and development actors.
Outcomes
Proposed 3-year outcomes include:
Smallholder farmers use resource-efficient and climate-smart technologies and practices to enhance their livelihoods, environmental health and biodiversity.
Research and scaling organizations enhance their capabilities to develop and disseminate innovations.
Smallholder farmers implement new practices that mitigate risks associated with extreme climate change and environmental conditions and achieve more resilient livelihoods.
Women are youth are empowered to be more active in decision-making in food, land and water systems.
National and local governments utilize enhanced capacity to assess and apply research evidence and data in policymaking processes.
Agriculture is central to South Asian economies, lives and livelihoods. However, the challenges of an increasing population and brisk economic growth are straining the agriculture sector as it struggles to meet the present and future demand for food, nutritional security, and economic development. Not only this, the three Cs – COVID, climate change and conflict – are fueling the growing fragility in food systems across the world.
To address these issues and find potential solutions, the Borlaug Institute for South Asia (BISA) organized a high-level meeting with top agriculture ministry officials from its neighboring countries – Sri Lanka, Nepal, Bangladesh, Bhutan, India and Pakistan – to collaborate and learn from each other.
BISA’s outreach to India’s neighbors in South Asia has already produced results. Data from the BISA farm in Ludhiana, India, on resistance to yellow rust that affects wheat crop has been used in Nepal, Afghanistan, and Pakistan. Genomic prediction evaluation for grain yield and other traits worked on at BISA through the help of the Global Wheat Program of the International Maize and Wheat Improvement Center (CIMMYT) has been extended to Pakistan, Bangladesh, and Nepal since 2020. Regular training is organized for students, scientists and farmers in India on breeding and climate resistant technologies, and BISA scientists organize courses in Nepal on climate-smart technologies.
Cover photo: Tara Miah (50) is a farmer from Rajguru in Rahamanbari union, Barisal, Bangladesh. He used seeder fertilizer drills to plant wheat on his fields. Previously, this was done manually. SFD has resulted in a better harvest for Miah. (Credit: Ranak Martin)
Solar Powered Irrigation System in Bihar, India. (Credit: Ayush Manik)
In the race to make food production and consumption more sustainable, South Asia is key.
Home to one quarter of humanity — one-fifth of whom are youth — the region has the world’s largest concentration of poverty and malnutrition. While South Asia produces one quarter of the world’s consumed food, its agrifood systems today face formidable poverty reduction, climate change adaptation and mitigation, environmental health, and biodiversity challenges. Significant hurdles remain to secure an adequate and affordable supply of diverse foods necessary for sustainable and healthy diets.
South Asia’s predominantly rice-based farming systems are crucial to food security and political and economic stability, but parts of this region are threatened by unsustainable groundwater withdrawal — the region extracts one-quarter of global groundwater — due to food and energy policy distortions. South Asia’s farmers are both contributors to and victims of climate change and extreme weather that disproportionately affect resource-poor and women farmers.
The region needs food systems that generate profits and incentivize farmers to produce nutritious foods, while also reducing prices for consumers purchasing healthy products by shortening and reducing inefficiencies within value chains. A new CGIAR Research Initiative, Transforming Agrifood Systems in South Asia (TAFSSA), aims to address challenges.
Salin Acharya is an assistant research associate with CIMMYT in Nepal. He joined in 2012 to work on cropping system research and farm mechanization for conservation agriculture.
Currently Acharya works on COVID recovery and resilience activity through access to finance for resource poor and marginal farmers, with the aim to support new and existing businesses.
Punjab Chief Minister Bhagwant Mann met with experts from the International Maize and Wheat Improvement Center (CIMMYT) to promote crop diversification and use of Direct Sowing Rice (DSR) Basmati as part of the Borlaug Institute for South Asia (BISA) project.
In a meeting with CIMMYT Director General Bram Govaerts, water shortages were an integral part of the discussion. Mann encouraged use of BISA models across the state that require less water consumption than other methods, without impacting farmers’ income.
Mann also highlighted the potential of crops like maize, pulses, oilseeds, vegetables, bamboo, popular, and fruit such as guava and kinoo.
Subash Adhikari is an agricultural machinery engineer in CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) project in Nepal, which aims to strengthen cereal systems through using improved technology in seed variety, management and mechanization. The project is currently working on its Covid response, helping returned migrants and vulnerable and marginalized groups to access the financial and technical assistance necessary for their livelihood in agriculture production.
Adhikari started his career as a field research technician and conducted several research projects on the validation of agricultural machinery in Terai, Nepal. He later worked in the promotion and scaling of the machinery.
Adhikari is currently working to involve the private sector as a major partner in promoting technology and developing mechanics for repairing machinery with minimum help from the development project. He is interested in mapping machinery, photography and work management.
CSISA India core team discuss deliverables for CSISA Phase 4 at the planning meeting held in Vizag, India, in November 2021. (Credit: Wasim Iftikar/CIMMYT)
The eastern Indo-Gangetic plains (EIGP) have a higher density of rural poverty and food insecurity than any other region. The region’s intensive rice-wheat cropping system has large yield gaps, which are far higher than anywhere in South Asia, coupled with an increasing environmental footprint due to conventional agricultural practices.
To sustainably enhance cereal crop productivity and improve smallholder farmers’ livelihoods in Bangladesh, India, and Nepal, the Cereal Systems Initiative for South Asia (CSISA), a science-driven and impacts-oriented regional project led by the International Maize and Wheat Improvement Center (CIMMYT), was launched in 2009.
Over the years, working with public and private partners, CSISA has helped smallholder farmers increase their yield and supported widespread adoption of resource-conserving and climate-resilient farming technologies and practices. Through three phases from 2009 to 2021, the project impacted nearly 8.5 million farmers (mainly smallholders) through its research and agri-system innovation interventions.
A new three-and-a-half-year commitment in India by the Bill & Melinda Gates Foundation reinforces the project’s importance and value in reducing food insecurity and improving overall agri-food systems in the region.
“CSISA, over more than a decade, has built up a strong multi-institutional, interactive, and participatory team at all levels in the region,” said Peter Craufurd, project leader of CSISA in India. “It has developed competencies and skills that include problem-solving agronomy research, cross-cutting tools and analytics, policy reform, and capacity development to strengthen cropping systems for smallholder farmers in the region.”
Overview of CSISA Project investments with direct and indirect programs under each phase since its launch in 2009. (Credit: Timothy Krupnik/CIMMYT)
The overarching objective of CSISA 4.0 is to transform how agronomic research and extension are implemented and embedded in decision-making and policy processes, primarily in India, where CSISA has the most experience and influence. Phase 4.0 will leverage the investments made in India in the third phase and focus on institutionalizing interventions through partnerships with the national and state agricultural systems, including on-ground strategic partnerships with civil society and the private sectors. According to Craufurd, Phase 4.0 will further strengthen the pathways established and scale the impact, particularly the institutional research and development capacity and strategic partnerships thus far established in India, through its seven focussed work areas, including gender empowerment.
“We are confident of our strong partnership with the national systems led by the Indian Council of Agricultural Research (ICAR) to support Indian farmers with improved yield and productivity,” said R.K. Malik, CSISA India coordinator. “Over the last decade, CSISA has built a strong track record for agronomy at scale that can help transform agri-research delivery systems in the region. There is also the opportunity to make CSISA outputs and products portable or useable for other stakeholders addressing food insecurity in the region in the future.”
Implemented jointly with CGIAR partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI), the initiative has been a successful regional approach to impactful agronomy programming. The CSISA team hopes to continue supporting the smallholder farmers in the region to optimize yield and contribute to the region’s food security.
Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience aims to create resilient, inclusive and productive deltas — which maintain socio-ecological integrity, adapt to climatic and other stressors, and support human prosperity and wellbeing — by removing systemic barriers to the scaling of transformative technologies and practices at community, national and regional levels.
This objective will be achieved through:
Adapting deltaic production systems by identifying, synthesizing, evaluating, adapting and scaling interventions to ensure systems can adapt to and mitigate the effects of salinity, flooding, drought, terminal heat and sinking land.
Nutrition-sensitive deltaic agrifood systems, developed through the promotion of sustainable production and consumption of nutritious foods in Asian mega-deltas, by involving institutional stakeholders in the co-production of nutrition-sensitive interventions.
De-risking delta-oriented value chains by assessing the potential of digital climate advisory and complementing services to address climate risks among vulnerable groups, supporting development of improved and inclusive digital and bundled services, and identifying and developing financing models and partnerships to achieve scale.
Joined-up, gender equitable, inclusive deltaic systems governance, informed by transdisciplinary research evidence, local knowledge and political economy insights used to coordinate multi-stakeholder dialogues for more coherent water-agriculture-environment policies and strategies; collaborative, networked implementation practices; and gender-equitable and socially inclusive governance innovations.
Evidence-based delta development planning at the macro-level to ensure plans/policies incorporate inclusive and climate-proof approaches to food systems transformation.
Working across South Asia, the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative will deliver a coordinated program of research and engagement across the food production to consumption continuum to improve equitable access to sustainable healthy diets, improve farmer livelihoods and resilience, and conserve land, air, and groundwater resources.
TAFSSA aims to propel evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentally-sound South Asian agrifood systems that support equitable access to sustainable healthy diets.
This objective will be achieved through:
Facilitating agrifood systems transformation through inclusive learning platforms, public data systems and partnerships: building new and enhancing existing learning platforms; improving the evidence base; increasing quality data availability and accessibility; and demonstrating the value of integrated agrifood systems datasets.
Transforming agroecosystems and rural economies to boost income, generate jobs and support diversified food production within environmental boundaries: generating linkages between farmers, landscapes and markets to diversify agricultural production, increase farmers’ incomes and foster rural entrepreneurship within environmental boundaries.
Improving access to and affordability of sustainably produced healthy foods through evidence and actions across the food system: creating favorable environments for diversification; improving access to inputs for and marketability of sustainable nutritious food; and improving access to healthy food for the poor through changes in food retail environments.
Understanding behavioral and structural determinants of sustainable healthy diets: studying dietary practices of food consumers; identifying determinants of food choices; and testing innovations to support consumption of sustainable healthy diets.
Building resilience and mitigating environmental impact: examining how South Asia can produce healthy diets within an environmentally safe and socially equitable operating space, and in consideration of ongoing climate change and farmers’ resilience to shocks.
Sagar has been working at CIMMYT-Nepal since December 2015, contributing to various projects. His main focus has been on the CSISA initiative, which aims to research and scale up resource-saving technologies within Nepal’s cereal systems. Through his work, he has developed expertise in technology scaling within cereal systems, developing market systems, and strengthening governance in the agricultural research and extension services sector. This is in part due to his strong understanding of local contextual factors that influence the adoption of sustainable intensification technologies, including mechanization.
Since 2024, Sagar has turned his attention to generating innovations, tools and scaling pathways in the mixed farming systems of the mid-hills of Nepal as part of the CGIAR Mixed Farming Systems (MFS) Initiative.
Eva Marina Valencia Leñero is a Scaling Coordinator. She is an interdisciplinary professional focused on systems thinking and sustainability.
She has an Undergraduate degree in Law from the National Autonomous University of Mexico, and a MSc in Environmental Sciences, Policy and Management from the MESPOM Consortium with Lund University. She is interested in promoting sustainability in projects and policies, and has experience in the sectors of water, food, energy and climate change. She is interested in finding ways to scale impactful projects for food security.
Moreover, she has experience working at different levels in public organizations including the Mexican Energy Regulatory Commission, the Mexican Institute of Ecology and Climate Change, and the United Nations Economic Commission for Europe. She is the Founder of the Tricolor Coalition, a platform for sustainability transition in Mexico City.
Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)
It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.
Over the past seven years, the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.
Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.
Training the trainers
As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.
The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.
The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.
Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)
What will scale up in Ethiopia?
In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.
To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.
The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.
Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.
An unexpected outcome
What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.
About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.
The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.
This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.
The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.
Scaling up the future
Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.
And there’s more to come from the Scaling Scan as well.
Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.
“I am happy with this wheat variety and all the support from the project,” said Agere Worku, a female farmer in Ethiopia working with the International Maize and Wheat Improvement Center (CIMMYT). “It is a lot of money that I will earn as a female farmer in my life.”
Participants were given Kingbird seeds, a new wheat variety, to plant in their smallholdings. The project then supported them through capacity building and advice on smart soil, water management, plant protection and agronomic packages.
“We prepared six hectares of land and sowed 1.1 tons of Kingbird seed,” said Yeshiwas Worku, chair of the Melke Yegna Tefsa Association. “There were other wheat varieties, such as Danda’a, adjacent to our experimental plot and the difference in yields was very visible. The other members of the association were eager to get Kingbird seeds, which are very different in terms of quality, yields, maturity, and disease tolerance.”
“CIMMYT is a life changer for me,” said Buzayehu Getahun, a farmer in Jeju, in the Oromia region. “I produced 3.7 tons on 0.75 hectares. Interestingly, I earned around 132,000 Ethiopian Birr (US$2,500) from this yield. I plan to build a new house for my mother in my village and will be blessed by her at her old age,” said Getahun.
Female smallholder farmer with a bag of Kingbird seed, which she will use as part of a CIMMYT project pilot. (Credit: Enawgaw Shibeshi/CIMMYT)
The impact on female farmers
After involvement in the pilot, the female farmers produced higher yields than they had experienced before.
“I used to harvest wheat three times in the previous years and earned only 0.66 tons of wheat per 0.75 hectare using seeds of other wheat varieties,” explained Worku. “But now thanks to support from CIMMYT, the yield has increased four times than the previous years; I produced 2.4 tons per 0.75 hectares. I am very happy with the high yield and feel encouraged to reinvest in other agricultural activities.”
A second female farmer, Melishew Tedela, said, “I am happy with this seed and all the support from the project. I can be witness that the other farmers who didn’t get this variety were not happy with their low yields of wheat.”
Female farmers in Ethiopia share their experiences of cultivating Kingbird wheat crops. (Credit: Enawgaw Shibeshi/CIMMYT)
The future of lowland wheat farming
Bekele Geleta Abeyo, wheat breeder and Ethiopia Country Representative at CIMMYT, said, “The Government of Ethiopia is emphasizing increasing irrigated wheat production and productivity in the lowlands to complement the intensification of rainfed wheat production in the highlands in order to achieve self-sufficiency by 2023 and feed the ever-growing population.”
With world wheat prices skyrocketing due to the Ukraine conflict, wheat technology generation and dissemination are key for sustainable agricultural practices.
CIMMYT is working to replace obsolete wheat varieties in Ethiopia that are susceptible to wheat rust, particularly yellow and stem rust, with disease-resistant products. Newer varieties like Kingbird are rust-resistant and therefore produce higher yields.
Farmer in his field of Kingbird wheat in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)
As the Russia-Ukraine war continues to degrade global food security, the Australian who leads the global effort on improving wheat production has set out the concrete actions needed by governments and investors to mitigate the food crisis, stabilise supply and transition to greater agrifood system resilience.
Alison Bentley leads the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), the renowned research organisation from which more than 90 per cent of the wheat varieties grown in Australia can be traced. She will be addressing the Crawford Fund’s international conference Celebrating Agriculture for Development – Outcomes, Impacts and the Way Ahead this week in Parliament House, Canberra. The conference will also be addressed by the Minister for Agriculture, Fisheries and Forestry, Senator The Hon, Murray Watt.
“The broad food security impacts of the Russia-Ukraine war highlight the fragility of the global food supply, but the war is only one of a multitude of problems that we’ll be facing for many years to come. Few will remain unaffected,” said Alison Bentley, who was the lead author in a recently published related article in Nature Food.
“More than 2.5 billion people worldwide consume wheat-based foods. We need to move beyond defining the problem to implementing practical actions to ensure stable food supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system, and we will all benefit,” she said.
“The first priority is to mitigate the immediate crisis by boosting wheat production by bundling existing agronomic and breeding improvements and sustainable farming practices, just as Australia and other wealthy countries are doing. This will reduce dependence on imported grain and fertilizer in poorer countries.”
“We have learned since the Green Revolution that this must be done within agro-ecological boundaries, with high-yielding disease-resistant wheat and by mainstreaming capacity for pest and disease monitoring. Importantly, we also need to address climate change, gender disparities, nutrition insufficiency and increase investment in agricultural research,” she concluded.
The Fund’s annual conference will bring together international and Australian specialists to look at the mutual benefit and impacts of investment in global food security and poverty alleviation, and consider the effects of emerging threats including climate change and changing geo-political conditions on agricultural production, food chains and the environment.
Other speakers include international affairs specialist Allan Gyngell, climate change and security specialist Robert Glasser and renowned international economist Phil Pardey.
Maize grain aggregator invests in developing storage for coping with increased grain production. (Credit: Aayush Niroula/CIMMYT)
Him Lal Neupane has been in the business of agriculture for more than a decade. His company Annupurna Suppliers, in Banke District, Nepal, trades in agri products and has an annual turnover of around $626,000, up from $195,000 eight years ago.
Recently, Neupane has been heavily investing in maize. He says involvement from the International Maize and Wheat Improvement Center (CIMMYT) in market strengthening has given him the confidence to go big on the crop. He encountered CIMMYT through the meetings led by the organization in the district, as part of its Nepal Seed and Fertilizer (NSAF) project. In the meetings, he was able to hear perspectives on maize production from leading market experts, as well as government officials. Getting direct access to high level government representatives and agricultural scientists was incredibly fruitful and raised his confidence to invest in maize. He also got to air his own grievances about the industry and learn more from other farmers.
“I learnt that the project was invested in training farmers to produce better quality maize,” said Neupane. “If we get quality products from farmers, I immediately deduced that there is a great chance that the product will keep doing well in the market.”
Neupane’s confidence in investing in maize has increased thanks to market strengthening from CIMMYT. (Credit: Aayush Niroula/CIMMYT)
In 2022, Neupane bought a truck and has been constructing a massive storage facility that can store up to 4 million kilograms of produce. He has plans for proper grading and drying of maize in the facility to sell to industrial buyers.
The majority maize in Nepal is used as feed for the poultry industry, so there is high value for the crop in the market. “Since Nepal is a big consumer of poultry products and will remain so, it is inevitable that locally produced maize will sell,” explained Neupane.
Neupane went into agriculture because he could not secure employment after completing higher education. He grew up learning and practicing farming, so he understood farmers’ plights and wanted to start a company that would improve their lives. He also wants to grow the industry to curb the country’s maize import dependence, which has been affected by recent disruptions like the Ukraine conflict and the pandemic. Annually, Nepal imports around $120 million worth of maize, which depletes the country’s foreign currency reserves.
CIMMYT’s efforts in developing the maize market through value chain coordination and private public partnerships intend to help stakeholders at every level of the industry, from farmers to suppliers like Neupane, whose company’s growth represents a strong reinforcement of confidence in domestic maize production.