Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

“You go to the field.” U.S. Borlaug Fellows in Global Food Security

When asked how you become a successful wheat breeder, Dr. Norman E. Borlaug replied, “Well, you go to the field. You go to the field again, and then you go to the field. When the wheat plants start to talk to you, you know you have made it.” The Nobel Peace Prize, the Congressional Gold Medal, and the Presidential Medal of Freedom were awarded to Dr. Borlaug for saving the lives of over one billion through his efforts. Borlaug’s legacy continues today through the U.S. Borlaug Fellows in Global Food Security Program at the Center for Global Food Security, Purdue University, providing graduate students the opportunity to “go to the field” and become successful scientists in their own right.

Funded by USAID, the Borlaug Fellowship provides graduate students the opportunity to collaborate with agricultural scientists in developing nations. The program fosters connections between scientists internationally, while furthering research and developing community around important agricultural themes, such as production, natural resource conservation, and development. With a focus on interdisciplinary and cross-cultural experiences, students benefit from the ability to practice their science on the ground in an international setting, preparing them to become important members of the global scientific community. Doctoral candidates Ariel N. Rivers of Pennsylvania State University and Sean M. Thompson of Texas A&M University were given the opportunity to “go to the field” during the 2013 field season in partnership with CIMMYT.

Of the dual-title program, Entomology and International Agriculture and Development at Pennsylvania State University, Rivers (pictured above) is mid-way through her six-month tenure at CIMMYT’s El Batán station. By studying the three practices of conservation agriculture —crop rotation, minimal soil disturbance, and retention of crop residues on the soil surface— Rivers hopes to better understand which of these practices augment beneficial insect communities and how. In high enough numbers, beneficial insects can contribute to pest control, nutrient cycling, and soil aeration, all of which are essential to agricultural production in low-input developing country agriculture.

Thompson (pictured right), of the Department of Soil and Crop Sciences at Texas A&M University, is working with Ground Penetrating Radar (GPR) to non-destructively assess wheat root biomass. This technology could allow for rapid, non-destructive assessment of populations and selection for traits undetectable by traditional methods. The primary objective of this research is to define the capability of GPR to phenotype below ground crop biomass, in the context of higher yield and quality stability in wheat during drought stress. GPR is one of the many field-based high-throughput phenotyping technologies being tested in CIMMYT’s Wheat Physiology program.

Both Rivers and Thompson plan to collaborate internationally after they complete their doctoral studies. “We have benefitted from the opportunity to practice that skill at CIMMYT,” they both agree. “Thanks to the example set by Borlaug, we are better prepared to take our science ‘to the field’.” Further information about the research or the U.S. Borlaug Fellowship in Global Food Security can be obtained by contacting the Purdue Center for Global Food Security.

CIMMYT’s work highly appreciated in Ethiopia

Bekeles-EthiopiaThe third Dialogue on Ethiopian Agricultural Development: Agricultural Research for National Development in the Face of Climate Change and Food Security was held during 4-5 July 2013 at the Haramaya University of Agriculture, Haramaya Harar. The Dialogue aimed to provide a platform for discussion on agricultural research for development and transformation of the sector for food security in Ethiopia.

The Dialogue was attended by World Food Prize Laureate and distinguished professor Gebissa Ejeta; two members of the agricultural standing committee of the Ethiopian parliament; alumni of the Haramaya University working at various national, regional, and international top-level positions, such as Berhane Gebrekidan, Sime Debela, Zemedu Worku, Ephirem Mamo, and Solomon Bekure; senior staff of Haramaya, Jimma, Hawassa, Dire Dawa, and Mekele universities; members of USAID’s Capacity to Improve Agriculture and Food Security (CIAFS); representatives of the Ethiopian Institute of Agricultural Research (EIAR); the Ethiopian Seed Enterprise; CIMMYT; and ILRI.

Panel discussions covered 60 years of agricultural research in Ethiopia; agricultural research at regional institutes and Ethiopian universities; perspectives of users of technologies generated by the national agricultural research system (NARS); linking research at international levels with NARS for greater impact; the Ethiopian experience; presentations on contributions of agricultural research in Ethiopia in terms of food security, foreign earnings, and climate change adaptation; reflections on dialogues and issues deserving special attention; and recommendations for enhancing efficiency and productivity of NARS.

Three CIMMYT scientists –Drought Tolerant Maize for Africa project leader Tsedeke Abate, Bekele Shiferaw from the Socioeconomics Program, and Bekele Abeyo from the Global Wheat Program– presented during the panel discussions. The presentations were followed by a Q&A session, during which CIMMYT was named as top-rated CG center in Ethiopia due to its contributions, along with other institutions and centers, to national agricultural education, research for development, and extension with outputs and impacts. CIMMYT was commended by the current and former EIAR directors general and deputy director general, as well as Haramaya University senior alumni and political representatives, for its long-standing relations and close collaborative work with the NARS in generating technologies, strengthening national capacities, and reaching farmers.

As the meeting assessed the gaps and constraints of agriculture for development, ways forward, and future continuity of the dialogue, Abeyo assured the participants that “CIMMYT is committed to continue and maintain its high-quality contributions to Ethiopia.”

Tackling toxins with aflasafe™

Introducing-aflasafe-to-farmers-300dpi-1“All the maize for my home consumption comes from my aflasafe™-treated field,” says farmer Alhaji Al-Hassan from Nigeria’s Kaduna State. “When I take my maize to the market, buyers rush for it because the quality looks better. The grains look clean.”

First developed by the USDA and adapted for use in Nigeria by the International Institute for Tropical Agriculture (IITA) and the African Agricultural Technology Foundation (AATF), aflasafe™ is fast gaining ground across Africa as a non-toxic and affordable solution to one of the continent’s most serious food safety issues.

Aflatoxins are invisible, tasteless poisons produced by Aspergillus flavus, a mould commonly found infecting crops such as maize and groundnut, both in the field and in storage. While acute exposure to aflatoxins can kill, prolonged exposure leads to impeded growth, liver disease, immune suppression and cancer with women, children and the poor and most vulnerable. Aflatoxins also impact international trade, with African economies losing US$450 million every year from barred exports.

Competitive exclusion

Aflasafe™ works by ‘pushing out’ harmful, toxin-producing strains of A. flavus from the field through the deliberate introduction of indigenous but non-toxic, harmless strains – a process known as ‘competitive exclusion’. Heat-killed sorghum grains are coated with the non-toxic fungal strains and scattered by hand in the field prior to crop flowering. Field tests in Nigeria between 2009 and 2012 showed that use of aflasafe™ consistently reduced aflatoxin contamination in maize and groundnut crops by 80-90%.

In 2012, these findings led to the adoption of the biocontrol product by several extension agencies in Nigeria. IITA is currently constructing a low-cost manufacturing facility at its Ibadan campus in order to optimize the production process for aflasafe™ so that it can be taken up by other developing countries. The facility, which will be able to produce up to five tons of aflasafe™ per hour will also test commercialization models. Market linkages between aflasafe™ users and quality conscious food processors are also being developed, in collaboration with the private sector. With aflatoxin-contaminated maize in poultry feed being a major risk to animal health, links are also being developed with poultry producers.

Spreading the science

The success of aflasafe™ has led to an expansion in biocontrol research in Burkina Faso, Ghana, Kenya, Mali, Senegal, Tanzania, and Zambia. In Kenya, IITA has identified four non-toxic strains of A. flavus in locally grown maize, which are now being used to make a Kenya-specific product called aflasafe™-KE01. Researchers from the Institute are currently gathering efficacy data to determine where the product will be deployed. “We are happy with the innovative scientific solution which has done well in Nigeria,” says Wilson Songa, Kenya’s agriculture secretary. “The ball is now in our court, and we shall move fast… We needed the technology yesterday!”

Senegal is also developing its own version – aflasafe™-SE01, and IITA is optimistic that both Kenya and Senegal will have their own fully registered versions of aflasafe™ in two years, with Burkina Faso reaching the same point in three years and Zambia in four. Meanwhile, at the 2012 G20 meeting in Mexico, G20 leaders announced that aflasafe™ will be one of three initial pilot projects to be supported under the ‘AgResults’ initiative which aims to incentivize the adoption of agricultural technologies by the poor.

Affordable technology

IITA’s experience in Nigeria suggests that the cost of aflasafe™ – at US$1.5 per kg, with a recommended usage of 10 kg per hectare – is affordable for most farmers in the country. The Institute calculates that adoption of biocontrol with other management practices will reduce aflatoxin contamination by more than 70% in maize and groundnut and increase crop value by at least 25%, as well as improving the health of women and children.

With mass production and commercialization of the technology now imminent in Nigeria, the country’s Minister of Agriculture and Rural Development, Hon. Akinwumi Adesina, has been enthusiastic in his support. “For too many years we have neglected to regulate aflatoxin in the production of food,” Adesina says. “IITA has worked tirelessly to control aflatoxin and educate farmers on the harmful effects of this toxin. When we consider the potential benefits of aflasafe™, it is ultimately smallholders who stand to gain the most,” he concludes.

The CRP MAIZE will be discussing the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

Curbing maize postharvest losses key to attaining food security in Kenya

Kenya1-900x674Kenya has experienced tremendous improvements in maize productivity, rising from 1,530,000 metric tons in 2002 to 3,420,000 in 2011. However, postharvest losses of up to 40% of the harvested grain pose great challenges to attaining food security, as about 80% of Kenyans live in rural areas and derive their livelihoods mostly from agricultural activities. With maize being the main staple crop and agriculture the cornerstone of Kenya’s economy accounting for 27% of GDP and producing over 75% of industrial raw materials, postharvest losses also pose a challenge to the economic development of the country. To address these issues, CIMMYT and the Kenya Agricultural Research Institute (KARI) organized the Improved Postharvest Management Training Course for Extension & Media Personnel in Nakuru, Kenya, during 26-27 June 2013.

“It is pointless to heavily invest in good agricultural practices, attain high yields, and lose 40% of it. Feeding the nation does not only require increased production but also a safeguard of all that is produced,” stated Leonard Ochieng’, Nakuru County director of agriculture, Ministry of Agriculture, presiding over the official opening of the course. The training aimed to build technical capacity in hermetic grain storage technologies, such as metal silos and hermetic bags, among Kenyan extension and media staff.

According to Tadele Tefera, CIMMYT entomologist and coordinator of the Effective Grain Storage for Sustainable Livelihoods of African Farmers Project, the course also intended to create awareness on the importance of grain postharvest management, help extension and media staff gain insights into different factors affecting postharvest management, and explain traditional and improved postharvest technologies and their use in grain loss reduction. According to Nakuru County Crops Protection Officer Hannah Oduor, there is always a surplus of maize in Trans Nzoia, Uasin Gishu, and Nakuru (the Rift Valley counties referred to as the granaries of Kenya), but the country is forced to import more nonetheless. “We cannot afford to continue importing maize, for this is a very expensive and unsustainable affair. Money for development is used to import food that we could have easily safeguarded with appropriate technologies like metal silos,” stated Ochieng’. The problem lies in high incidence of maize weevils and the larger grain borer combined with lack of effective storage technologies. “We need technologies like the metal silos for effective storage of this surplus to cater for periods of scarcity and for redistribution to other parts of the country where production is below consumption,” said Oduor.
Grace Kirui, the Nakuru deputy county director of agriculture in charge of extension and training, lauded CIMMYT and KARI for organizing the course. “It was in line with the Ministry of Agriculture’s renewed efforts in intensifying training and dissemination of appropriate pre- and post- harvest technologies to reduce both quantitative and qualitative losses,” she noted and then called on the trainees to use their newly-acquired knowledge to educate and create awareness among the wider public. “The technologies that reduce postharvest losses, to which you have been exposed during the training, will go a long way in improving food security, creating employment, increasing farm incomes, saving on foreign exchange, and alleviating poverty,” said Kirui. “I call upon you, agricultural extension officers, to work hand in hand with artisans to promote the technology during your normal extension activities, field days, exhibitions, and shows.”

Dealing with a deadly maize disease in eastern Africa: an update

deadly-maize-disease“Maize is Africa’s most important cereal crop, with more than 300 million of Africa’s most vulnerable people depending on it for their food security and livelihoods,” says B.M. Prasanna, director of CIMMYT’s Global Maize Program. “The emergence of maize lethal necrosis in eastern Africa has dealt a big blow to farming communities and maize-based seed companies.” Maize lethal necrosis (MLN) infection rates and damage can be very high, seriously affecting yields and sometimes causing a complete loss of the crop. Infected plants are frequently barren; ears may be small or deformed and set little or no seed. “There is no maize farmer in the whole of Nyakinywa area in Kaplamai division [Kenya] who has been spared by the disease, which is a danger to food security,” said area chief Francis Morogo in April 2013 in an interview with the Daily Nation newspaper.

Control of MLN is complicated by the fact that it is caused by a combination of two viruses that are difficult to differentiate individually based on visual symptoms. In the past two years, studies undertaken jointly by CIMMYT and KARI have confirmed the vulnerability of most pre-commercial and commercial maize germplasm to MLN under natural disease pressure as well as under artificial inoculation. However, promising CIMMYT inbred lines and pre-commercial hybrids with resistance or moderate resistance to MLN have been identified, which offers considerable hope to combating the disease through breeding efforts.

Together, CIMMYT and KARI are now planning to establish a centralized MLN screening facility for eastern Africa at the KARI Livestock Research Farm in Naivasha to facilitate reliable screening of maize germplasm and deliver MLN-resistant varieties to replace existing susceptible cultivars as quickly as possible. “Besides accelerated development and delivery of elite MLN-resistant products to farmers, our aim is also to build the capacity of regional institutions for developing robust breeding pipelines to incorporate MLN-resistant germplasm, and ensure that farmers have access to such products at the earliest opportunity,” Prasanna adds.

The CRP MAIZE will be hosting a side event on the role of maize in Africa at the Africa Agriculture Science Week (15-20 July) on 16 July in Accra, Ghana. Join us if you can and follow the AASW Blog and #AASW6 on Twitter.

Two new maize hybrids released in Bolivia

maize-hybrids1Bolivia’s National Institute for Agricultural, Livestock and Forestry Innovation (INIAF), in collaboration with CIMMYT, released two new maize hybrids, INIAF H1 and INIAF HQ2, targeting drought-prone areas with high production potential. The release was announced at an event held on 13-14 June 2013 in Villa Montes and Yacuiba.

The new releases are single-cross hybrids derived from CIMMYT lines. INIAF H1 is a yellow flint hybrid with good lodging resistance and excellent husk cover; INIAF HQ2 is a yellow semi-dent hybrid with high protein content (quality protein maize, QPM) and moderate drought tolerance. Both were tested at Villa Montes, where they competed favorably with two widely sown commercial checks, yielding 7 t/ha despite the low (352 mm) rainfall during the growing season.

While Bolivia is self-sufficient in maize production with about 300,000 ha sown to maize and an average yield of 3.3 t/ha, climate change is starting to impact the agricultural sector just like in other Latin American countries. Weather conditions during the current crop season have been unfavorable for production due to persistent drought, and last week the government declared the region of Chaco, where 80% of the country’s maize is produced, a natural disaster area.

FĂŠlix San Vicente receiving an award from the Minister of Energy.
FĂŠlix San Vicente receiving an award from the Minister of Energy.

In the light of the challenges, Rubén Vaca, Sector Executive of Villa Montes, who led the event during the first day, congratulated INIAF on its achievements and noted their potential for increasing the profitability of maize production. Similar sentiment was expressed by Nemesia Achacollo, Minister of Land and Rural Development, and José Sosa, Minister of Energy and Hydrocarbons, who attended the event in Yacuiba on day two. Achacollo applauded the release of the hybrids and announced that “the Ministry is allotting 2 million US$ to INIAF to support their maize program.” As the Ministry of Energy and Hydrocarbons is also involved in agriculture, Sosa stated that the urea factory being built in Cochabamba will support the development of Chaco Tarijeño and the country as a whole. Marcial Rengifo, Sector Development Executive of Chaco Tarijeño in Yacuiba, then stressed the importance of the hybrids for Chaco farmers, and Jemy Gonzales, manager of the National Seed Company, committed to multiplying all the hybrids released by INIAF in the future to ensure that high quality seed is accessible to farmers in a timely fashion and at a reasonable price.

After Achacollo presented a hybrids release certificate to INIAF director general Gabriel René Hoyos Bonillas, the coordinator of INIAF’s Maize Program, Tito Claure, thanked everyone present and asked that INIAF’s collaboration with CIMMYT be maintained, adding that he “would join forces with all the national institutions involved in maize production.”

“We must promote QPM, which – due to its superior nutritional qualities – benefits both the people who consume it directly as well as pig farmers,” said Luis Narro, CIMMYT maize breeder and focal point for South America. Narro then encouraged INIAF to adopt doubled haploid technology to reduce the time required to develop new hybrids and indicated that the GreenSeeker handheld sensor could be used to optimize nitrogen fertilization in maize crops.

Luis Narro explains the advantages of hybrid INIAF H1.
Luis Narro explains the advantages of hybrid INIAF H1.

“The CIMMYT-INIAF collaboration that led to the hybrids release is part of CIMMYT’s regional efforts conducted jointly with an improved germplasm evaluation network in the lowland tropics of Latin America,” said Félix San Vicente, CIMMYT maize breeder for Latin America. “We are ready to strengthen these links in the future in order to be able to handle the negative impacts of climate change on the Chaco region in Bolivia,” he added.

At the end of the event, Narro and San Vicente received awards from the Bolivian authorities in recognition of their inter-institutional collaboration and joint successes.

Nutrient Expert™ decision support tools for maize and wheat launched

Nutrient-Expert™The Nutrient Expert™ decision support tools for maize and wheat in India were officially launched for public use on 20 June 2013 at the National Agricultural Science Centre Complex in New Delhi during a meeting jointly organized by the International Plant Nutrition Institute (IPNI) and CIMMYT.

Beginning in 2009 under the umbrella of the Cereal System Initiative in South Asia (CSISA) and later CRPs MAIZE, WHEAT, and CCAFS, the tools were developed through a joint effort of IPNI, CIMMYT, and national agricultural research systems to help Indian farmers achieve higher yields and profits. These easy-to-use, interactive, computer-based tools capture spatial and temporal variability to provide precise nutrient recommendations to smallholder farmers in the wheat and maize systems of India.

The Nutrient Expert™ was developed in collaboration with target users and local stakeholders from public and private sectors through a series of dialogues and consultations, using site-specific nutrient management principles. As a result, the tools reflect resource constraints of smallholder farmers, lack of access to soil testing, and absence of tillage-specific nutrient management strategies in India. In a three-year validation process assessing their efficacy under contrasting management scenarios, conducted across a large number of locations in collaboration with the Indian Council of Agricultural Research (ICAR), state agricultural universities, state agriculture departments, and fertilizer and seed industries, the tools have shown improved productivity, profitability, efficiency, and reduced environmental footprints over existing fertilizer management practices. According to Bruno Gerard, Global Conservation Agriculture Program director, “the excellent outputs of the IPNI-CIMMYT partnership will benefit not only South Asia but also other regions.” Adding to the positives of the tools, IPNI vice president Adrian M. Johnston praised their unique ability to link databases for output.

The tools were launched at the presence of CIMMYT director general Thomas Lumpkin, ICAR Crop Sciences deputy director general Swapan K. Datta, agricultural commissioner with the Government of India JS Sandhu, Adrian M. Johnston, Bruno Gerard, and ICAR assistant director general for Natural Resource Management B. Moham Kumar. As India faces many challenges to feed its growing population with changing food habits, Lumpkin emphasized the need for new tools: “We need to apply precision agriculture on each square meter; we need tools like the Nutrient Expert™ and remote-sensing technology to be able to do so.”

During panel discussions following the launch, participants stressed the importance of the tools and charted out the future course of action for their large-scale dissemination. “The challenges currently faced by South Asia should be used as an opportunity to create impact. Enabling farmers to apply fertilizer nutrients correctly and in a more precise way is one such opportunity,” said Datta. The Nutrient Expert™ tools will also help reduce the knowledge gap between extension workers and farmers, he added. Concerned about the degradation of natural resources, Kumar stressed that “excessive and imbalanced use of chemicals significantly contributes to nonpoint source pollution. A precise, site-specific nutrient management approach is a welcome solution to this problem.”

The concluding session, chaired by KD Kokate, ICAR deputy director general for extension, and co-chaired by CIMMYT’s Raj Gupta, provided necessary guidance for dissemination throughout the national system and other stakeholders.

The program was coordinated by IPNI-South Asia director Kaushik Majumdar and CIMMYT senior cropping systems agronomist ML Jat.Nutrient-Expert™3

Nepal wheat scientists receive government award

NepalThe Government of Nepal and the Nepal Agricultural Research Council (NARC) awarded Madan Raj Bhatta, Sarala Sharma, Deepak Bhandari, Dhruba Bahadur Thapa, and Nutan Raj Gautam — winners of the first-ever Borlaug Global Rust Initiative (BGRI) Gene Stewardship Award — for their outstanding contribution to food security through development and promotion of rust resistant wheat varieties in the country and for highlighting the country’s research globally. The award – one million Nepalese rupees (11,440 US$) and a plaque – was presented by the Minister of Agricultural Development Tek Bahadur Thapa Gharti on 8 May 2013 on the occasion of the 22nd anniversary of NARC in Khumaltar, Lalitpur.

On behalf of the awardees, Bhatta and Sharma thanked the Government of Nepal and NARC for recognizing their contributions and praised the role of CIMMYT’s Global Wheat Program and BGRI in promoting agronomically superior rust-resistant wheat varieties crucial for food security in the region. “I am going to use 100,000 rupees of my prize money to establish a fund awarding two farmers or technicians every year for significant contributions towards wheat rust management,” said Sharma in her award acceptance speech. On behalf of CIMMYT, wheat breeder Arun Joshi congratulated the award-winning team and NARC for their remarkable contributions in bringing about excellence in development and release of rust-resistant wheat varieties, seed multiplication of resistant varieties with diverse genetic backgrounds, disease surveillance, participatory research with farmers, and improvement of livelihoods of small-scale farmers to combat the problems of food security.

“Wheat has played a great role in internal food supply in the country, a role equivalent to more than 26 billion rupees annually,” said B.B. Gurung, NARC executive director. “The new technologies and wheat varieties introduced by the team have brought a significant increment in wheat area and productivity in the last five years,” he added, referring to the increase in wheat area from 0.7 million hectares to 0.8 million, production from 1.4 million tons to 1.8 million, and productivity from 2.1 t/ha to 2.3 t/ha.

Seed Health Lab aces its annual audit

Sanidad-de-Semillas-2012Since obtaining official accreditation in 2007, CIMMYT’s Seed Health Lab (SHL) must undergo a yearly audit to detect any deviation ISO/ IEC 17025 (General requirements for the competence of testing and calibration laboratories). To fulfill this requirement, on 17-18 June 2013, the Mexican Accreditation Entity reviewed the SHL’s quality system and seed testing protocols, and also inspected its new facilities in the Bioscience Building. It applied international standards on the general requirements for testing and calibration laboratories and found zero non-conformities at the SHL.

Monica Mezzalama, SHL head, thanks all SHL staff for their patience, perseverance, and professionalism, which made it possible to achieve this excellent result. Congratulations, SHL!

Four new maize varieties released in Ethiopia

A happy farmer holding cobs of BH547 (right hand) and BH546 (left hand).

The national productivity of maize, one of the most important staple crops grown in Ethiopia, is close to 3 tons/ha, a 50% increase since 2008. This increase is attributed mainly to the use of new technologies, including improved varieties such as the ones developed and provided to smallholder farmers by the Ethiopian Institute of Agricultural Research (EIAR) and CIMMYT. This year, the National Maize Research Program of EIAR in collaboration with CIMMYT released four new varieties for high-potential and drought-prone maize growing areas.

The new varieties include BH546 and BH547, intermediate maturing, three-way cross hybrids released for high-potential maize growing areas, and MH140 and Melkassa-1Q for drought-prone areas. The varieties were either developed from CIMMYT source germplasm or they contain CIMMYT inbred lines as one of their parents. BH546 has a yield advantage of 30% and 10% over BH540 and BH543, the most popular hybrids adapted to the same agro-ecology, with a mean yield potential of 8.7 tons/ha across several locations under optimum management conditions. Its narrow semi-erect leaves make it desirable for high-density planting and inter-cropping with legumes, a common practice in most maize growing areas of the country. BH547 has a grain yield advantage of 26.4% and 7% over BH540 and BH543, respectively, and mean grain yield of 10 tons/ ha. Farmers participating in variety selection preferred the hybrids over the popular varieties for their bigger cob size, good husk cover, high yield potential, and better reaction to known diseases of the area.

BH546 in the field.
BH546 in the field.

MH140, originally developed by CIMMYT-Zimbabwe, is a highly stable high-yielding hybrid tolerant to drought and low nitrogen stresses, as well as major foliar diseases of the central rift valley of Ethiopia. MH140 showed a yield advantage of 18% and 10% over the popular hybrids of the drought prone areas, MH130 and MHQ138, respectively. Melkasa1Q, developed for dry and marginal maize growing areas of Ethiopia, is a quality protein maize version of an extra-early maturing open-pollinated variety Melkasa-1 developed through backcrossing-cum- recurrent selection. The whole grain of Melkasa1Q contains 3.9% lysine and 0.9% tryptophan, about twofold of the levels in Melkassa-1; it shows an 11% grain yield increase over Melkasa-1, with mean grain yield of 4.6 tons/ha.

EIAR in collaboration with CIMMYT and the Ministry of Agriculture have begun variety demonstration and popularization to promote the seed delivery system. Private and public seed companies involved in seed production can take up these varieties and embark on their production and marketing.

EIAR thanks CIMMYT breeders, seed specialists, and project leaders Dagne Wegary, Dan Makumbi, Amsal Tarekegne, Cosmos Magorokosho, Tsedeke Abate, and Mulugeta Mekuria for their technical and financial support leading to the release of the varieties.

MasAgro partners explore the nutritional and industrial uses of corn starch

Almidon-flippedAlthough many of us know that cereals such as maize contain starch, very few of us are aware of its usefulness and numerous applications. Luis Arturo Bello from the National Polytechnic Institute (IPN) is one of a number of Mexican scientists who are internationally recognized for their knowledge and research on starch, especially corn starch. Bello, along with other researchers from Mexico’s National Autonomous University (UNAM)-Juriquilla and CIMMYT, discussed various aspects of starch with representatives of the academic and industrial sectors during a course combining theory and practice sponsored by the Sustainable Modernization of Traditional Agriculture (MasAgro) initiative at the Center for Applied Physics and Advanced Technology (CFATA-UNAM), in the city of Querétaro on 3-5 June 2013.

“We know that compounds such as starch, proteins, and oil, among others, are very important for the quality of the finished product, which is what people consume. This is why the food industry is interested in learning more about starch and identifying maize varieties with optimal traits for food processing and production,” said Mario Rodríguez of UNAM during the event.

The course highlighted how maize starch content influences food processing and preparation (for example, the nixtamalization process for making tortillas), as well as its varied uses and nutritional roles. Course participants also had the opportunity of learning the theory underlying X-ray technology, electronic microscopy, and rheology, and of identifying the diverse forms and composition of maize starch.

The course brought out the importance of exploring maize genetic diversity as a potential source of resistant starches and dietary fiber, and of starches with different forms, structures, and sizes. As part of the human diet, these starches influence the glycemic index, which indicates how quickly carbohydrates such as starch are digested and absorbed by the human body. Some starches have a very rapid glycemic index (they are absorbed very quickly), and others, such as resistant starches, have a slower one.

The glycemic index is important in conditions such as diabetes, where glucose levels have to be controlled, or in diets aimed at gaining or recovering energy reserves. In disorders such as obesity, a lot of glucose accumulates, fat metabolism is activated, and fats are stored in adipose tissue.

“By exploring and understanding the genetic diversity of maize landraces through initiatives such as MasAgro, we are finding new ways of improving and conserving it,” said Natalia Palacios, maize nutritional quality researcher at CIMMYT. “Starch is only one of many nutritional and industrial compounds that are useful to us.”

Seed systems in a snapshot

snapshot1
CIMMYT seed systems specialists Peter Setimela and James Gethi and Crop Breeding Institute’s Busiso Mavankeni review seed parent trials in Kadoma, Zimbabwe.

Curbing maize post-harvest losses continues

zambia2“Reducing post-harvest losses is key to increasing availability of food as it is not only important to increase domestic food production but also to protect what is produced by minimizing losses,” stated Zechariah Luhanga, Permanent Secretary, Provincial Administration at the Office of the President, Eastern Province, at the Provincial Stakeholders Workshop on Effective Grain Storage for Sustainable Livelihoods of African Farmers Project (EGSP-II) held in Chipata, Zambia, on 29 May 2013. “We as the key stakeholders and participants in the agricultural sector can enhance food security and improve incomes of resource poor farmers and artisans by promoting improved storage technologies such as metal silos and hermetic bags in Zambia.”

The workshop had five main objectives: (1) to provide a forum for exchange of ideas, information, and research outputs on EGSP-II among stakeholders in Chipata; (2) to raise awareness on post-harvest losses and dissemination of effective grain storage technologies among provincial stakeholders; (3) to consult provincial stakeholders on effective postharvest technologies, policy environment, and market issues for the purpose of refining, updating, and implementing EGSP-II; (4) to engage in policy dialogue on matters related to storage and find means of enhancing adoption of the technology; and (5) to acquaint key stakeholders in the province with the post-harvest technology and ways to enhance its adoption among farmers.

Maize suffers heavy post-harvest losses estimated at 20-30%. “The main underlying factor is that most of the small-scale farmers do not have access to improved storage facilities,” explains Tadele Tefera, CIMMYT entomologist and EGSP-II coordinator. Ivor Mukuka, EGSP national coordinator for Zambia, noted that since the larger grain borer was first found in Zambia in 1993, there have been sporadic outbreaks causing substantial losses in maize. “For instance, rapid loss assessments in Lundazi and Chama districts revealed losses ranging from 5-74%. Other studies indicate storage losses of between 45-90% based on farmers’ estimation,” he added.

Luhanga reminded participants that grain post-harvest management development requires active participation of all stakeholders, including government, research systems, non-governmental organizations, and the private sector in bringing the technologies to farmers’ doorsteps. “You need to make sure to set priority activities so that they address the challenges faced by smallholder farmers regarding maize grain post-harvest management, but also expand their opportunities in the maize sector,” Luhanga urged more than 50 stakeholders present in the meeting.

Besides post-harvest loss reduction, the metal silo technology provides huge business opportunities to artisans. “Engaging in metal silo fabrication and marketing can create jobs and rural enterprise development,” said Egbet Munganama, principal agricultural engineer at the Department of Mechanization, Ministry of Agriculture and Livestock, Zambia. According to Jones Govereh, EGSP policy analyst, artisans can earn over US$ 3,000 per year if they fabricates just five silos a month on average. “This is an attractive income for micro-entrepreneurs but commercially oriented entrepreneurs can earn much more,” he explained.

“Improved maize storage technologies have a great potential impact on food security as most households lose much of their maize due to poor storage facilities,” concluded CIMMYT principal economist Hugo De Groote, considering that maize is the major food crop in Zambia.

Tadele thanked the Swiss Agency for Development and Cooperation (SDC) for funding EGSP-II, a project aiming to reduce post-harvest losses, enhance food security, and improve incomes of resource-poor farmers in Zambia.

French savoir-faire

FrenchAfter a year of exchanges, planning, and construction, CIMMYT and CMF, a French company manufacturing greenhouses, inaugurated CIMMYT’s new state-of-the-art greenhouses at El Batán on 13 June 2013. The facility is funded by CIMMYT and the Carlos Slim Foundation and is part of a vast laboratory complex opened on 13 February 2013 in the presence of Bill Gates and Carlos Slim.

It was a good opportunity for the French Ambassador, Elisabeth Beton Delègue, to come and visit CIMMYT, while supporting a dynamic French enterprise working in Mexico and other parts of the world. She was guided through the visit by Kevin Pixley, Marianne Bänziger, Renaud Josse (director of CMF) and his staff, and Guillermo Simon, representing CARSO, Carlos Slim’s conglomerate company.

“This is a great adventure,” said Beton Delègue. “It is the first time I see a realization of this type, with multiple possibilities allowing a dialogue between researchers and manufacturers and I am proud of our French technology.” CMF has designed a greenhouse of 1,577 m2 consisting of 21 cells that can reproduce different climates. It has its own weather station too. “We work closely with the researchers to define what the real research needs are,” explains Josse. “We try to build the most adequate project. One cell can reproduce a desertic climate, another a tropical climate. We work on the characterization of necessities in terms of temperature gaps and humidity fluctuations among other things.” This precise control of climatic parameters will be of great assistance for CIMMYT’s research on climate change.

The other building to be realized by CMF is a smaller greenhouse of 400 m2 which consists of five sealed cells for biosafety (BSL2 or biosafety level 2). No exchange between indoor and outdoor area will be possible. The project is well underway and should be completed soon.

Marianne Bänziger reflected on the importance of the biosafety guarantee, and appreciated that calling in the experts in the area would certainly lead to higher quality research.

“I am very happy to participate in the inauguration of the greenhouses and to visit CIMMYT,” said Beton Delègue, “and I hope to collaborate with CIMMYT in the future because we have many projects going on which deserve that we meet again.”

For Ravi Singh, CIMMYT distinguished scientist, “the new greenhouses are like a new car model. The good control will help to improve efficiency and obtain better results.”