Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

12th Asian Maize Conference

(From left to right) Anan Suwannarat (Director General, Thai Department of Agriculture), Hiroyuki Konuma (Assistant Director General, FAO-RAP), Raj Paroda (Executive Secretary, APAARI) and Thomas Lumpkin (Director General, CIMMYT) open the 12th Asian Maize Conference by revealing the accompanying Books of Extended Summaries and Abstracts.

The 12th Asian Maize Conference is taking place in Bangkok from 30 October to 1 November, bringing together more than 350 leading agricultural researchers, policy-makers, farmers and service providers from across the public and private sectors. The conference, “Maize for Food, Feed, Nutrition and Environmental Security,” was organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization (FAO) of the United Nations and the Thai Department of Agriculture, and will culminate in 10 major recommendations to set in place a roadmap for a sustainable intensification strategy for maize in Asia.

The objectives of the conference are to assess specific priorities to enhance maize production and productivity in the region, share the latest knowledge on cutting-edge maize technologies and generate awareness among institutions and stakeholders of better uses of maize as food, feed, fodder and as an industrial crop in Asia.

“This forum provides us with a platform to create synergies among institutions and stakeholders, all of whom recognize the enormous value of maize as a food and feed crop,” said guest of honor Anan Suwannarat, Director General of the Thai Department of Agriculture.

The area, production and yield of maize have increased several-fold over the last 50 years; much of that growth has occurred in the developing world. Compared to other cereals, maize has recorded the fastest annual growth in Asia (around 4 percent). The demand for maize in Asia has been growing in response to changing consumer interests and to feed the growing livestock sector.

“Among cereals, maize offers immense opportunities to address both food and nutrition security in Asia,” said Dr. Raj Paroda, APAARI executive secretary and conference co-chair. “Exciting scientific achievements in the recent past have led to higher annual growth in maize than all other cereals in the region. We now need to effectively harness the existing potential by out-scaling innovations in maize to have greater impact on the livelihoods of smallholder farmers.”

At the same time, maize production and productivity in several Asian countries is severely constrained by an array of factors, including lack of access to improved seeds and other critical production-related inputs, lack of training and knowledge transfer for resource-poor farmers, and abiotic and biotic stresses, the magnitude and dynamics of which are rapidly increasing due to climate change. However, there remains great scope to increase the production area of maize in the region, as well as tremendous opportunities for productivity increases and innovations in crop improvement, management and diversification.

According to Dr. Thomas A. Lumpkin, CIMMYT director general and the other conference co-chair, “Sustainably increasing yields and stabilizing prices requires a concerted effort at the policy level, deployment of new technologies and long-term research investments to ensure that Asian farmers are prepared to respond to the enormous challenges facing agriculture.”

Of wheat, weight, gluten and food intolerances

Julie Miller Jones is a professor emerita of nutrition in the Department of Nutrition and Exercise Science at St Catherine University in St Paul, Minnesota. Any opinions expressed are her own.

A popular dietary trend involves the elimination of wheat- and gluten-containing foods inspired in part by the book “Wheat Belly” written by cardiologist William Davis.

“I’d like to make the case that foods made with wheat make you fat,” Davis wrote. “I’d go as far as saying that overly enthusiastic wheat consumption is the main cause of the obesity and diabetes crisis in the United States.”
Davis claims that wheat is addictive and suggests that a diet eliminating the grain and its relatives, rye and barley is the key to weight loss and a reduction in diabetes.

Davis states that the increase in obesity and diabetes in the United States directly correlates with the increase in the sales of wheat-based products.

There are several flaws in such an interpretation

First, it is an association – the increase in the rate of obesity also directly correlates with the sales of running shoes. Correlations simply show how things vary together. Attributing the increase in obesity to wheat prevents people from addressing the real culprit – caloric imbalance. Calories have increased and physical activity has decreased. The increase in calories does not come from a single food or food group.

“Food available for consumption increased in all major food categories from 1970 to 2008. The number of average daily calories per person in the marketplace increased approximately 600 calories,” according to the President’s Council on Fitness, Sports and Nutrition and statistics from the U.S. Census Bureau.
The general rise in calorie intake reflects increases in the overall consumption of fats and oils, sugars, cereals, meats, poultry and dairy.

At the same time, physical activity has dwindled to far below recommended levels. Thus, to suggest that wheat is the cause of obesity and that its elimination is the solution fails to address overconsumption of most food types and the under-consumption of fruits and vegetables and inadequate activity.

If wheat consumption were the culprit, Americans would have been fattest in 1880 when consumption was 250 pounds (113 kilograms) per capita. We would have weighed the least in 1960 (110 pounds of wheat per capita) and continued to gain weight up until 2000 when wheat consumption climbed to 145 pounds per capita. Since 2000, we should have been losing weight as per capita wheat consumption has dropped steadily to 133 pounds.

These data show that there is no correlation between wheat consumption trends and obesity trends.
Weight-loss diets that advocate the elimination of an entire food group such as wheat may cause initial weight loss, but – like many fad diets – rarely show long-term maintenance of weight loss.

In fact, studies confirm that the easiest diets to maintain are those that deviate least from normal eating patterns. They are also much more likely to be associated with long-term weight loss and maintenance of the loss.
Further, diets that include a balance of foods and do not have “forbidden” or excluded foods are associated with the greatest success in sustaining the weight loss.

Elimination of wheat and gluten can result in problems because wheat is a major contributor to dietary fiber, B vitamins and other nutrients.

Wheat and gluten in food products is unique among proteins. It performs its “magic” by adding elasticity and structure that holds gas to make delicious bread and baked products.

Allergies, Celiac and Gluten Sensitivity

Davis posits that the gluten in grain is toxic and not fit for human consumption.  While this is true for those with an allergy to wheat and celiac disease, it is not true for the population as a whole.

Medical studies show that while 35 percent of people believe they have a food allergy, only about 3 percent actually have true food allergies. For a true allergy the offending food protein (allergen) and an antigen in the body cause an immunoglobulin E reaction.

Of the 3 percent with allergies, only 0.5 percent of children and adults have been diagnosed with an allergy to one of 27 wheat proteins.

Celiac disease, an inherited autoimmune disease, was shown in 2008 to occur in one of every 133 individuals in the United States and is higher in some other countries. This level is much higher than was previously thought. This is partly due to better diagnostic methods, recognition of many symptoms that may affect systems besides the gut, and a documented increase in incidence. Nonetheless, many of those with the disease are not diagnosed and many who do not have the disease are self-diagnosing.

Non-celiac gluten sensitivity, a situation where a group of symptoms of discomfort occur with the ingestion of gluten, has been added as a potential syndrome. However, there is much disagreement about whether or not it exists, its potential causes and incidence. If it exists, incidence has been thought to be as low as 1 percent and as high as 30 percent with a recent study suggesting it may be 3 percent of the population.

Interested in this subject? Find out more information here:

Dieting and restrained eating as prospective predictors of weight gain. Link

The prevalence of celiac disease in the United States. Link

The incidence and risk of celiac disease in a healthy US adult population. Link
(Green PH, Jabri B. Celiac disease.  Annu Rev Med. 2006;57:207-21;  Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murray JA, Everhart JE. The prevalence of celiac disease in the United States.  Am J Gastroenterol. 2012 Oct;107(10):1538-44; Riddle MS, Murray JA, Porter CK. The incidence and risk of celiac disease in a healthy US adult population. Am J Gastroenterol. 2012 Aug;107(8):1248-55.  Kassem Barada, Abbas Bitar, Mohamad Abdul-Razak Mokadem, Jana Ghazi Hashash, and Peter Green. Worldwide Incidence of Celiac Disease.  World J Gastroenterol. 2010 March 28; 16(12): 1449–1457.)

Worries Over Wheat

The arguments presented by Davis in “Wheat Belly” and in another book titled “Grain Brain” by neurologist David Perlmutter, which states that carbohydrates destroy the human brain, have fuelled a negative view of wheat products.

Both authors claim that the wheat we are eating has been changed by biotechnology or contains genetically modified organisms (GMO).

They also claim that wheat is different from 100 years ago and contains more gluten and that it is more toxic. The statement about GMO content is false as there is no GMO wheat commercially sold anywhere on the planet.

In terms of gluten content, similar studies comparing old and new lines of grain conducted by the United States Department of Agriculture and at the University of Saskatchewan in Canada show that the gluten amount in wheat varieties more than 150 years old and current varieties varies slightly by year but the amount remains well within biological variability.  This shows that the level of gluten has not changes appreciably over time.
Wheat grain provides types of dietary fiber not widely distributed in other foods. For example, the soluble fiber found in oats and barley that has been shown to lower serum cholesterol and attenuate blood glucose is not found in fruits and vegetables to any great extent.

The recommended amount of dietary fiber is 38 grams per day for adult males and 25 grams for adult females. Getting that level of fiber only from fruits and vegetables (which have an average of 2 to 4 grams of fiber per serving), would require consumption of approximately 12 to 13 servings for adult males. That is at least three times more than the amount currently eaten.

Therefore, exclusion of cereal grains – particularly bran-rich cereals – is not only problematic to getting enough of certain fiber types, it also makes it more likely that an individual will fall far below recommended fiber intakes.

From a nutritional standpoint, this is a big concern at a time when only 4 percent of the U.S. population eats the recommended level of dietary fiber given that it is listed as a nutrient of concern by the Dietary Guidelines for Americans, 2010 issued by the U.S. Office of Disease Prevention and Health Promotion.

National Geographic examines the challenge of feeding the world

“With the population expected to rise by about a third by 2050, crop production worldwide will need to double to keep up with the rising demand for grains – which are also fed to animals – as the developing world becomes prosperous enough to eat more meat” warned an article published in National Geographic on 3 October. The article, “Here’s Why We Haven’t Quite Figured Out How to Feed Billions More People” by Dennis Dilmick, addressed the growing need for investment in agricultural research while lamenting the lack of public funding and interest in such initiatives in recent years.

Dilmick praised CIMMYT and Norman Borlaug for their work that saved millions from starvation during the Green Revolution, and argued that similar action is still needed today in a world that faces rising food prices and an uncertain future climate. Advances in biotechnology can help to keep up with the demand, but must be combined with the provision of appropriate, usable information to farmers in the developing world, that can help them improve their yields and livelihoods. This cannot be done without increases in public funding for agricultural research.

A new Green Revolution is in order, Dilmick argues, but one based more on small incremental changes that can provide huge benefits to farmers in developing countries such as improved post-harvest management practices, the use of new mobile technology to communicate information and better roads and markets; rather than the research breakthroughs that characterized the original revolution. However, one element of the original revolution must stay the same: “When Norman Borlaug worked to develop high-yield ‘Green Revolution’ wheat varieties more than 50 years ago, he was driven by a sense of urgency. We could all benefit by adopting his sense of urgency in making agricultural research a priority once again.”

CIMMYT observes the International Day for the Eradication of Poverty

According to the Millennium Development Goals Report of 2013, the proportion of people living in extreme poverty (less than US $1.25 a day) has been halved at the global level, yet 1.2 billion people still live in extreme poverty. In 1992, the United Nations (UN) established the International Day for the Eradication of Poverty (IDEP), which will be observed internationally for the 22nd time on October 17, 2014, to “promote awareness of the need to eradicate poverty and destitution in all countries.”

The theme for IDEP 2014 is “leave no one behind: think, decide and act together against extreme poverty,” which “recognizes and underscores the demanding challenge of identifying and securing the participation of those experiencing extreme poverty and social exclusion in the Post-2015 Development Agenda that will replace the Millennium Development Goals (MDGs).”2 The eradication of poverty was one of the chief MDGs, and remains at the forefront of the development of the post-2015 development agenda.

Agricultural development is critical in the fight to eradicate poverty, and CIMMYT has developed and designed its programs and projects to contribute to this effort. The work done at CIMMYT to improve the yields of maize and wheat, increase their tolerance to climate change, fight pests and diseases and add higher nutritional value to crops has helped to eradicate poverty by improving the livelihoods of farmers and their families as well as their nutrition and health.

The UN highlights that 17 October also serves as an important reminder to acknowledge the effort and struggle of people living in poverty as well as promoting opportunities for them to make their concerns heard. “Poor people are the first ones to fight against poverty. Participation of the poor themselves has been at the center of the Day’s celebration since its very beginning,” CIMMYT works with its donors and partners to assist smallholder farmers in developing countries, generating solutions to the issues they face with their active input and participation. The mission of CIMMYT, to “sustainably increase the productivity of maize and wheat systems to ensure global food security and reduce poverty,” cannot be realized without the efforts and cooperation of farmers, scientists, researchers and staff working together across the developing world to improve agriculture and eradicate poverty.

Celebrate World Food Day with CIMMYT on 16 October

Join CIMMYT in celebrating World Food Day on 16 October!

Since 1979, World Food Day has served as a call for people around the world to come together to reduce hunger. This year the theme for World Food Day is “Family Farming: Feeding the world, caring for the earth,” as FAO celebrates 2014 as the International Year of Family Farming (IYFF). Family farmers play a significant role in eradicating hunger and poverty, providing food security and nutrition, improving livelihoods, managing natural resources and achieving sustainable development especially in rural areas.

World Food Day is especially important to CIMMYT’s mission to “sustainably increase the productivity of maize and wheat systems to ensure global food security and reduce poverty.”

According to the CIMMYT 2013 annual report, maize and wheat account for about 40 percent of the world’s food and 25 percent of the calories consumed in developing countries. Billions of people in developing countries receive more than half of their daily calories from maize- and wheat-based foods. These countries need about 700 million tons of maize and wheat to meet their food needs. Because of population increases by 2020, these countries will need an additional 368 million tons of maize and wheat to sustain their communities. By improving varieties of maize and wheat and supplying these varieties to the world, CIMMYT is fighting for and working toward the World Food Day mission daily through various programs and projects.

As one example, innovative wheat varieties from CIMMYT and its research partners have helped Ethiopia more than double its wheat production in a decade, increasing from 1.60 million tons to more than 3.92 million tons from 2003/04 to 2013/14. A 2014 nationwide study published in Food Policy involving more than 2,000 farm households in Ethiopia’s major wheat-producing areas revealed that those who adopt improved wheat varieties are able to spend more on food, are more likely to be food secure and are less likely to suffer chronic or transitory food shortages.

In addition, CIMMYT’s Hill Maize Research Project (HMRP) has been working with national research and extension partners, non-governmental organizations, private seed companies and farmers to develop, test and disseminate high-yielding maize varieties, support seed production and marketing, and test and promote resource-conserving farming practices in the mid-hills of Nepal. Maize is a vital crop in this region especially for poorer families and accounts for nearly 20 percent of all caloric intake. In Nepal, maize is typically grown on family farms; harsh climates, poor infrastructure and market access and worsening shortages of labor are just some of the challenges these families face. The HMRP is helping to address these constraints for a positive impact on farm productivity. Join CIMMYT and FAO on World Food Day by generating awareness of the 805 million people who are suffering from chronic hunger worldwide. How? Follow the conversation online on Facebook and Twitter, by using the hashtag #WFD2014, or visit the World Food Day website to discover how to take action by virtually “toasting” a farmer or even joining/hosting an event in your community.

For more information on World Food Day visit http://www.worldfooddayusa.org/.

CIMMYT recognizes the International Day of Rural Women

Jennifer Johnson

A rural woman in Bangladesh cuts up feed for her family’s livestock.
Photo: S. Mojumder/Drik/CIMMYT.

15 October 2014 will mark the sixth celebration of the International Day of Rural Women, a United Nations (UN) day dedicated to recognizing “the critical role and contribution of rural women, including indigenous women, in enhancing agricultural and rural development, improving food security and eradicating rural poverty.” The International Day of Rural Women was first celebrated on 15 October 2008, and was established by the UN General Assembly on 18 December 2007. CIMMYT acknowledges the importance of understanding and recognizing the important role of women in agriculture, and is committed to the inclusion and participation of women – especially rural women – in its research and programs.

Continue reading

Wheat area expansion faces a headwind requiring increased spending on R&D to raise yields

 

Photo credit: Madan Raj Bhatta

 

Derek Byerlee is a visiting scholar at Stanford University.
Any views expressed are his own.

Over the last 50 years or so, the big increases in agricultural production have come through improved yields largely as a result of the Green Revolution.

From 1961 to 2011, per capita cereal production increased by 40 percent, while the amount of cropland per capita fell by half. In most regions, the total area of cropland has either reached a peak or declined. However, in three tropical regions, land expansion has been and still is a significant source of agricultural growth: Southeast Asia, tropical South America and sub-Saharan Africa.

Since 1990, wheat is the only major crop to experience an overall decline in area.

Looking to the future, how much land can be expected to come into production for cropping?

Currently, about 1,500 million hectares (Mha) of land is used for crops.

I project that additional demand for land will be 6 to 12 Mha each year for a total of 120 to 240 Mha increase from 2010 to 2030.

The higher projection allows a greater role for trade and thereby production by the lowest-cost producers who are often located in land-abundant countries.

These estimates are broadly in line with a synthesis by Erik Lambin & Patrick Meyfroidt who also include projections of the loss of land due to expansion of urban settlements and infrastructure as well as losses due to land degradation. Taking these losses into account, Tony Fischer provides an estimate of total additional gross cropland demand from 2010 to 2030 of 160 Mha to 340 Mha. Global models also suggest expansion of cropland to 2050 of about 300 Mha, given projected yield growth.

Is there enough land to satisfy demand? The Food and Agriculture Organization of the United Nations’s World Agriculture Towards 2030/2050 report estimates that some 1.4 billion hectares of currently uncultivated land that is not forested or in protected areas is suited to crop agriculture although they note that this is an optimistic estimate. A more conservative estimate of available land with at least moderate suitability for rainfed cultivation in low population-density areas – that is, non-forested, non-protected and with a population density of less than 25 people per square kilometer – is approximately 450 Mha.

At first glance, it would thus seem that projected demand for land (even under the scenarios of the higher demand estimates) over the next two decades can be accommodated by available uncultivated land.

However, most of this uncultivated land is concentrated in a few countries in Sub-Saharan Africa, Latin America, Eastern Europe and Central Asia and is often far from ports and roads.

A global analysis may also miss key constraints at the local level such as human diseases and unrecorded current land use that reduce effective land supply.

In addition, an expansion of land area of the order of 160 Mha (the lower-bound estimate of the estimated future land needs) could have significant biodiversity costs from conversion of natural ecosystems, even in the non-forested areas considered above.

Indeed, one of the sustainable development goals currently under discussion in international fora is to reduce deforestation to zero by 2030 – implying a closing of the land frontier. Finally with the exception of some areas in Russia, Ukraine and Kazakhstan, most of the available land is in the tropics and is unsuitable for wheat production.

Overall then, projections of future land availability for agriculture suggest a growing land scarcity, particularly for wheat, especially when taking into account that demand for food and feed will continue to rise with growing affluence in rapidly industrializing countries, as well as the use of land for biofuel feedstocks.

Growing scarcity together with high commodity prices have combined to stimulate global investor interest in farmland that underlies much of the recent discussion on intensification as a strategy to save land and concerns about a global ‘land grab’ by investors from land-scarce countries.

Wheat area is also being pushed out by other crops in many countries. Over the period 1993 to 2013, wheat area has fallen by 4.5 Mha, exceeded only by other winter cereals (barley, rye, and oats) that have collectively lost over 40 Mha.

During the same period, the area of oil crops (mostly soybeans, rapeseed and oil palm) has increased by an astonishing 100 Mha, maize by a hefty 53 Mha and rice by 20 Mha.

This year for example, North Dakota, a quintessential wheat-producing state in the United States, for the first time planted more soybeans than wheat.

In Argentina, soybeans rotated with maize have also displaced a significant wheat area, while in northern China, increasing maize area appears to be at the expense of spring wheat. Wheat area in the United States and China has fallen by 7 Mha and 6 Mha respectively since 1993. The major exceptions to these trends are India and Australia, where wheat area is up sharply.

All of this, of course, implies that increasing wheat yields will be especially critical to maintain its competitiveness and to save further land expansion into forests.

Norman Borlaug, the pioneer of the Green Revolution, long recognized that increased yields were not only essential to increasing global food security but also to saving forests.

This has now been enshrined in the environmental literature as the Borlaug Hypothesis. The real world is not so simple since there are situations where increasing yields may enhance crop profitability and encourage its expansion at the expense of forests. However, we found that just the CGIAR investment in germplasm is likely to have saved from 18-27 Mha of land from 1965-2000.

The bottom line is that increased spending on research and development (R&D) by national programs and CGIAR is a priority to achieving not only food security but confronting land scarcity.

None of the above considers the negative impacts of climate change, but a recent thoughtful analysis by David Lobell of Stanford University has shown that investing in R&D to adapt to climate change and maintain yields in the face of rising temperatures and increased drought is one of the most cost-effective ways to save forests and therefore mitigate climate change.

Surprisingly, wheat is the crop that faces the strongest headwind from both land scarcity and climate change. Wheat also appears to be grossly underfunded at the international level as measured by the budget provided to the WHEAT CRP – one of the lowest among the 15 CRPs. Tony Fischer, Honorary Research Fellow, at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), in a companion piece has shown that there are many promising avenues to higher R&D spending, both to raise yield potential and close large yield gaps.

 

Interested in this subject? Find out more information here:

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p. 4). Rome, FAO: ESA Working paper.

Borlaug, N. 2007. “Feeding a Hungry World.” Science 318(5849):359–359.

Deininger, K.W., and D. Byerlee. 2011. Rising Global Interest in Farmland: Can it Yield Sustainable and Equitable Benefits? Washington D.C.: World Bank Publications.

Fischer RA, Byerlee D, Edmeades GL. 2014. Crop Yields and Food Security: Will Yield Increase Continue to Feed the World? Canberra: Aust. Cent. Int. Agric. Res.

Lambin, E. F. 2012. Global land availability: Malthus versus Ricardo. Global Food Security. 1; 83-87.

Lobell, D.B., U.L.C. Baldos, and T.W. Hertel. 2013. “Climate Adaptation as Mitigation: the Case of Agricultural Investments.” Environmental Research Letters 8(1):015012.

Stevenson, J.R., N. Villoria, D. Byerlee, T. Kelley, and M. Maredia.  2013. “Green Revolution Research Saved an Estimated 18 to 27 Million Hectares from Being Brought into Agricultural Production.” Proceedings of the National Academy of Sciences. Available at: 10.1073/pnas.1208065110 [Accessed May 13, 2013].

 

 Go back to: Wheat Matters

 

Partnering with seed companies to disseminate fertilizer-friendly maize seed in East Africa

Watanga Chacha, CEO Meru Agro displays a bag of HB513, a fertilizer-friendly maize hybrid. Picture: Biswanath Das/CIMMYT
Watanga Chacha, CEO Meru Agro displays a bag of HB513, a fertilizer-friendly maize hybrid.
Picture: Biswanath Das/CIMMYT

Seed companies are key partners in delivering improved seed to smallholder farmers in Africa, the key beneficiaries of agricultural research. Meru Agro in Tanzania is one such partner, producing ‘fertilizer-friendly’ maize varieties with support from the Improved Maize for African Soils (IMAS) project. “We call the varieties ‘fertilizer-friendly’ because they use the small amounts of fertilizer that smallholder farmers in Africa apply more efficiently,” said Dr. Biswanath Das, CIMMYT maize breeder. Since 2013, Meru Agro has been multiplying HB513, a fertilizer-friendly and drought-tolerant hybrid. The company has produced over 1,200 metric tons of HB513 seed, which can potentially reach 50,000 smallholder farmers in the mid-elevation regions of Tanzania in the upcoming cropping season.

Promotion

The small-to-medium enterprise uses innovative methods to promote its maize varieties. The company runs extensive demonstration plots at key locations and gives away ‘promo packs’ to farmers during field days. “These are 100 gram packs that we give away through the agrodealers. The packs allow farmers to test the varieties for themselves and compare them with what they are growing,” said Watanga Chacha, the company’s chief executive officer. The company also participates in the annual NaneNane agricultural shows held in Arusha, Mbeya and Mwanza in August where they showcase their varieties. “When they plant for NaneNane, they do it at intervals to ensure that farmers can see how the hybrid performs at different growth stages,” said Dr. Mosisa Worku Regasa, CIMMYT seed systems specialist.

Watanga Chacha, CEO Meru Agro displays a bag of HB513, a fertilizer-friendly maize hybrid. Picture: Biswanath Das/CIMMYT
Watanga Chacha, CEO Meru Agro displays a bag of HB513, a fertilizer-friendly maize hybrid.
Picture: Biswanath Das/CIMMYT

Meru Agro has embraced radio as a marketing tool. “We use radio advertisements to reach farmers in our target areas,” said Chacha. “We have the advertisements recorded in the local accents which help the audience identify with them.” The company also invests in extension, training farmers in good agricultural practices augmented with training for agro-dealers. “This has contributed to the expansion of our distribution network as farmers get to know the merits of the maize varieties we are selling,” adds Chacha. “The training gives farmers confidence that they are buying a good variety by knowing the merits of the varieties in advance.”

Rapid Growth

Meru Agro has grown from an agro-dealer that began operations in October 2006 and evolved into a seed and farm input supplier in 2009. “We started with three employees, we now have 34 people, eight graduates, five diploma holders and one master’s degree holder,” says the entrepreneur. “A good strategy does not automatically translate to good performance. The team you have makes the difference – their technical skills and capacity to execute the strategy makes the difference,” said Chacha, crediting his staff for contributing to the company’s success.

Seed production and breeding research done by organizations such as CIMMYT and the national agriculture institutes benefit small seed companies like Meru Agro. “We have released four maize hybrid varieties in collaboration with CIMMYT and we are producing some open-pollinated varieties (OPVs) that have been released by the national program in Tanzania,” said Chacha. The company’s product portfolio leans towards hybrid seeds; this is informed by the market response. “Most farmers in Tanzania are now shifting from OPVs to hybrids.” The company is planning to establish a breeding unit in the near future. In the meantime, it relies on public goods derived from breeding research produced by CIMMYT and the national agriculture institute.

The company is partnering with other agencies involved in seed distribution in Tanzanian including the Tanzania Agricultural Partnerships (TAP), Farm Input Promotional Services (FIPS) and the Government Farm Input Subsidy Program to distribute 400,000 two-kilogram packs of maize seed to smallholder farmers. “We are targeting smallholder farmers, some of whom have very little land, between one-quarter of an acre to three acres,” said Chacha. “In Tanzania, farmers prefer small packs of certified seed. There is a huge untapped market in Tanzania as maize is the staple crop,” said Chacha explaining the rationale behind their expansion plans.
“The IMAS program provided technical backstopping and financial support to Meru Agro for seed production of MERU HB 513 which is drought-tolerant, in addition to being nitrogen use efficient,” said Das. Meru Agro staff have participated in seed business management courses facilitated by CIMMYT, contributing to capacity building within the company. “The company has produced large volumes of certified seed,” said Regasa.

Challenges

“The seed business is challenging,” said Chacha. The CEO cites the high investment costs in machinery for seed cleaning, grading and packaging. Chacha says drought is one of the challenges that hamper their seed production as not all of it is done under irrigation. “It takes time to convince farmers,” added Chacha, citing promotion as another challenge.

Go back to IMAS Project Updates

Will yield increases continue to feed the world? The case for wheat

Tony Fisher is Plant Industry Honorary Fellow with the Commonwealth Scientific and Industrial Research Organization (CSIRO). Any opinions expressed are his own

The release of the bread wheat variety Borlaug100 earlier this year in the irrigated Yaqui Valley of northwest Mexico was both apt and reassuring.

The 100th anniversary of the late scientist Norman Borlaug’s birth was also celebrated in 2014. The performance of his namesake wheat variety represented a notable jump in potential yield, lifting bread wheat up to the potential of the best durum wheat variety, currently dominant in the valley.

Borlaug, who is credited with saving more than 1 billion lives, was awarded the Nobel Peace Prize in 1970 for his work at the International Maize and Wheat Improvement Center (CIMMYT) and its predecessor organization, the Office of Special Studies, where he began breeding wheat in the 1940s. Scientist Sanjaya Rajaram took over leadership of breeding in 1972, followed by Maarten van Ginkel in 1995, and Ravi Singh as breeder for irrigated areas in 2005. Between 1950 and 2014, potential yield of the approximately 160,000 hectares (400,000 acres) of wheat in the valley increased from about 5 metric tons (5.5 tons) per hectare to 9 metric tons per hectare, while farm yield rose five-fold, from 1.3 metric tons per hectare to 6.5 metric tons per hectare as varieties and agronomic management improved hand in hand.

These technologies have also had an impact on many developing countries with similar or related wheat agro-ecologies.

Many people are quick to point out that yield is not everything in global food security, that other issues are also important, including grain nutritive value, yield stability in the face of pests and diseases, crop input requirements, and more broadly, access of the poor to food (income and price), diversion of grain to animal feed and biofuel, and losses due to wastage.

However, nutritive value of the staples has not greatly changed, nor have yields become less stable, while input use per kilogram of grain produced has decreased, so that none of those issues are as fundamental to food security as farm yield increase.

Indeed yield increase has contributed more than 80 percent of the huge global consumption increase over the last 50 years (incidentally supplying of the burgeoning world population with more calories per capita). The increase in arable land area contributed only about half of the remaining supply increase, since cropping intensity (crops per year per hectare of arable land) also increased. This yield increase has saved vast areas of land from the plow. It is for these reasons that the subtitle of my recent book, Crop yields and global food security: will yield increase continue to feed the world?, asks whether yield increase will continue to feed the world.

While the book looked at past and prospective farm yield change across many crops, here space permits only a brief look at the global wheat yield situation.

The importance of wheat as a food calorie and protein source has already been pointed out in this “Wheat Matters” series of blogs: suffice to say wheat, being produced equally in developing and developed countries, is the top global source of calories (rice is actually the top source for poor consumers) and the top traded food grain, a position it is unlikely to lose.

Estimates of wheat-demand increase from 2010 to 2050 vary considerably: if prices are to be kept no greater than 2010 average real prices, I estimate a supply increase of about 50 percent is needed. Thus production needs to grow at 1.25 percent a year linear relative to the 2010 yield in order to meet estimated demand growth, but currently world wheat yield is growing at only 1 percent a year (relative to the 2010 trend yield of 3.0 metric tons per hectare).

While the potential yield of wheat has been lifted remarkably by breeding, as was seen in the example above, current rates of potential yield progress have slowed, averaging only 0.6 percent a year (range 0.3 to 1.1 percent) across 12 case studies around the world.

Experience suggests that the newest varieties are adopted relatively quickly by farmers and should as a consequence lift farm yield by about the same relative amount (i.e. 0.6 percent a year).

A separate source of progress in farm yield comes from farmers adopting new management practices, which close the gap between farm and potential yield. Actually, the current gap averaged only 48 percent (of farm yield itself), ranging from 23 percent to 69 percent across the case studies, with little difference between developing and developed countries, or irrigated and rainfed environments.

Interested in this subject? Find out more information here:

Fischer R.A., Byerlee D. and Edmeades G.O. 2014. Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. The Australian Centre for International Agricultural Research: Canberra. Access at http://aciar.gov.au/publication/mn158

Since the minimum yield gap, due to considerations of costs and risk, is around 30 percent (of farm yield), the scope for further yield gap closing is more limited in wheat than in the other major cereals, which, in contrast to wheat, showed many larger yield gaps, especially in developing countries.

Besides, the gap-causing constraints in the cases of wheat are generally multiple, related to small deficiencies in soil fertility, weeds and disease management and in the timing of operations. This puts special pressure in the case of wheat on lifting potential yield progress, and justifies substantial increases in research in this area. There is certainly no sign that a biological limit in wheat potential yield has been reached, and several new tools and strategies of sufficient promise are available to justify such investment.

Finally, although increasing carbon dioxide is probably lifting both potential and farm yields of wheat about 0.2 percent a year, it is suggested that out to 2050, this will be cancelled by the negative effect of mean temperature increase, which is now becoming more evident.

 

China’s wheat production critical to global food security

China’s Wheat Production Critical to Global Food Security

Zhonghu He is country representative in China for the International Maize and Wheat Improvement
Center (CIMMYT), and Qiaosheng Zhuang is a professor at the
Chinese Academy of Agricultural Science (CAAS).

China’s domestic agricultural activities are vital to ensuring food security for its 1.4 billion people and – as the world’s largest wheat producer – the country plays a major role in shaping international markets.

China produces about 120 million metric tons (265 million pounds) of wheat each year – on approximately 24 million hectares (59 million acres) of land, an area similar to the size of Algeria, according to statistics from the Food and Agriculture Organization of the United Nations (FAO).

Wheat makes up 40 percent of grain consumption in China and about 60 percent of the country’s population eats the grain daily.

Cultivated wheat, which was likely introduced to China in the late 6th to early 5th millennium B.C., is the second most important food crop in China after rice. It is the dominant staple food in the northern part of the country where it is used mainly to produce noodles and steamed bread.

In present-day China, more than 95 percent of wheat is sown in the autumn. A double cropping system is used in the Yellow River and Huai River valleys in which wheat is rotated with maize. In the Yangtze Valley it is rotated with rice.

Chinese wheat matures early, so two crops can be harvested each year.

Wheat in China is also exceptionally resistant to high temperatures during the grain filling stage, during which kernel size is determined, as well as such diseases as head scab, septoria and karnal bunt. The wheat cultivar Sumai 3, a plant selected by breeders for its desirable characteristics, is used globally as a source for improving scab resistance.

Current Challenges

Demand for wheat in China is growing due to population increase and rising living standards, but production is challenged by water scarcity, environmental contamination, rising temperatures, droughts, labor shortages and land-use shifts from grain production to cash crops.

Researchers anticipate that in the near future the consumption of homemade steamed bread and raw noodles will decrease in favor of western-style breads and pastries.

Breeding for high-yield potential remains the first priority, as the available planting area for wheat is unlikely to increase.

Overall breeding goals include increasing grain yield, while maintaining genetic gains already made by scientists in grain yield and improving the processing quality without increasing needed inputs to grow healthy crops.

Conventional breeding – in which wheat plants with desirable, or “elite” traits are selected and used as “parents” for subsequent generations – has been in use for more than a hundred years. The technique, combined with an increased application of biotechnology, will continue to play a leading role in wheat variety development.

In addition to powdery mildew and yellow rust, Fusarium head blight has migrated to the main wheat regions in northern China due to climate change and the continuous practice of wheat and maize rotation, posing a major threat to wheat production. Other diseases, such as sharp eyespot and take-all, are also becoming increasingly troublesome as scientists try to increase grain yields. Wheat in the area has a very low resistance to scab, which is creating another challenge.

Scientific Innovation

It is important that foreign germplasm – the genetic resources of an organism – from international research centers and alien genes from wild relative species be explored as potential sources of multiple-disease resistance.

In order to reduce inputs for wheat production, it is essential to breed varieties with higher water, nitrogen (N) and phosphorus (N) fertilizer use efficiencies, but this must be combined with high-yielding potential.

Interested in this subject? Find out more information here:

Zhonghu He and Alain P.A. Bonjean, 2010. Cereals in China, Mexico, D.F.: CIMMYT.

Zhonghu He, Xianchun Xia a, Shaobing Peng, Thomas Adam Lumpkin, 2014. Meeting demands for increased cereal production in China, Journal of Cereal Science, 59: 235-244.

Fahong WangZhonghu He, Ken Sayre, Shengdong Li, Jisheng Si, Bo Feng, Lingan Kong,2009. Wheat cropping systems and technologies in China, Field Crop Research, 111: 181-188.

Drought tolerance for wheat grown in rain-fed areas must be strengthened, because varieties with drought tolerance and better water-use efficiency are already urgently needed.

Under altered conditions driven by climate change, planting dates have been delayed by 10 days over the last 20 years, but maturity has remained basically unchanged. Climate-resilient varieties are needed.

New genes and genetic resources must be explored with novel tools to realize higher genetic gains. Gene-specific markers will play an important role in facilitating the genes for disease resistance and quality. Genetically modified wheat could offer potential tools in reducing damage from head scab and aphids.

Crop management must play an important role in increasing wheat production. Low-cost farming practices are needed so that wheat can be more competitive in the financial markets and new cropping systems must be suited to machinery operation. International collaboration has contributed significantly to improving Chinese wheat research and development capacity.

The government of China considers the International Maize and Wheat Improvement Center (CIMMYT) an important strategic partner in wheat research and continues to work closely with CIMMYT and other international partners to meet future wheat demands.

 

6th CSISA wheat breeding meeting reviews gains in South Asia

On 11-12 September, 61 scientists from Bangladesh, Bhutan, India and Nepal convened in Kathmandu, Nepal, for the 6th Wheat Breeding Review Meeting of the Cereal Systems Initiative for South Asia (CSISA) objective 4 program.

Participants pose for a photo at the 6th CSISA Wheat Breeding review meeting, Kathmandu, Nepal, held 11-12 September.
Photo: Prakash Shrestha.

The meeting was organized by CIMMYT’s Kathmandu office and led by Dr. Arun Joshi. Other CIMMYT participants were Andrew McDonald and Cynthia Mathys. Participants included representatives of the Wheat Research Centre of Bangladesh (Dinajpur); Bangladesh Agriculture Research Institute (BARI), Ghazipur; India’s Directorate of Wheat Research (DWR), Karnal and Shimla; the Indian Agricultural Research Institute (IARI), Delhi and Indore; Central Soil Salinity Research Institute, Karnal; Punjab Agricultural University, Ludhiana and Gurdaspur; Banaras Hindu University, Varanasi; the University of Agricultural Sciences, Dharwad; Uttarbanga Krishi Vishwa Vidyalaya, Coochbehar, West Bengal; Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur and Powarkheda; Agharkar Research Institute, Pune; Govind Vallabh Pant University of Agriculture and Technology, Pantnagar; Chandra Shekhar Azad University of Agriculture and Technology, Kanpur; Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, Distt. Nadia, W. Bengal; Nepal’s National Wheat Research Program (NWRP), Bhairahwa; Nepal Agricultural Research Institute (NARI); Nepal Agricultural Research Council (NARC); Renewable Natural Resources (RNR); Research and Development Centre (RDC), Bajo; the Bhutanese Ministry of Agriculture and Forest; and SAARC Agriculture Centre (SAC), Dhaka, Bangladesh.

The CSISA meeting began with remarks by the chief guest, Dr. Dil Bahadur Gurung, executive director of NARC, along with Dr. Md. Rafiqul Islam Mondal, Director General of BARI and McDonald and Joshi of CIMMYT. Within a wider framework of discussions concerning wheat improvement issues, the CSISA meeting reviewed the progress of the 2013-14 cycle and established work plans for the 2014-15 crop cycle. McDonald presented a summary of all CSISA objectives and highlighted the substantial results obtained in wheat breeding. Mondal expressed his satisfaction that CSISA wheat breeding has regional recognition in South Asia and is trying its best to create linkages among regionally important research issues. Gurung highlighted the significance of collaborative research with a regional perspective and reported the successes being achieved by CSISA in wheat research and cropping systems in Nepal. He expressed his appreciation for new research efforts under CSISA and said that, “the South Asia-CIMMYT collaboration is paramount to the food security in the region.”

Four review sessions were conducted, chaired by Mondal, Dr. Ravi Pratap Singh, Dr. Girish Chandra Mishra and Joshi. Three sessions were platforms to present review reports and work plans from the 10 research centers; two other sessions discussed physiology, spot blotch, extension of wheat breeding activities and how to link wheat breeding with seed dissemination and capacity building in South Asia. Another session discussed conducting trials, weather data, advanced and segregating material in Kenya and submission of data booklets and reports. A major discussion was held to encourage the strengthening of existing links with CSISA objective 4 (wheat breeding) and other objectives of CSISA, which include linkages with hubs and other stakeholders,  and explored the possibilities of providing quality seeds from newly released improved varieties to farmers as quickly as possible. The inclusion of conservation agriculture and participatory variety selection were also encouraged.

Joshi also highlighted major achievements by the CGIAR Centers during the last six years of CSISA: breeding for biotic and abiotic stress tolerance gained momentum with around a dozen new varieties released and popularized in South Asia; germplasm exchange with CIMMYT increased significantly; the majority of advanced lines in CIMMYT trials carried resistance to Ug99 and other rusts; shuttling of segregating generations between South Asia and Kenya increased; use of physiological tools for heat and drought tolerance increased in the region; stronger links were formed among breeders, seed producers and farmers; and capacity building was promoted in the region. Many new topics were discussed, including the current status of wheat rusts in SAARC countries by Dr. Subhash Bhardwaj, DWR Shimla; the current status and future options for wheat breeding for salt-affected soils by Neeraj Kulshrestha, CSSRI, Karnal; capacity building options for crop protection at DWR for SAARC scientists by M.S. Saharan, DWR, Karnal; and how DWR can fast-track CSISA wheat varieties to farmers in the eastern Gangetic plains by Dr. Randhir Singh Poswal, DWR, Karnal. Dr. Shree Prakash Pandey of IISER Kolkata presented the outcome of new research on a WHEAT CRP project, “Deciphering phytohormone signaling in modulation of resistance to spot blotch disease for identification of novel resistance components for wheat improvement.” “SAARC Agriculture Centre – Its Introduction and Programs,” was presented by Dr. Tayan Raj Gurung, senior program specialist from SAARC Agriculture Centre (SAC), Dhaka. He stressed that regional collaboration on wheat breeding for salt-affected soils is urgently required in South Asia and recommended that CIMMYT play a leading role.

The review meeting enabled CSISA wheat researchers to highlight research achievements and increase their understanding of the newer challenges and provided opportunities for further improvements in the coming years.

Wheat value chain workshop aims to bolster food security in Sindh, Pakistan

Food insecurity is a persistent problem in Sindh, a province in Pakistan slightly smaller than Tajikistan and home to 42.5 million residents. Almost three-quarters of the population are subject to regular food shortages due to the stagnation of staple food production and pressures caused by a doubling of the population since 1999.

One of several breakout groups brainstorms solutions during the workshop.

In an effort to address the food security challenges in the area, CIMMYT held a one-day workshop as part of the Agricultural Innovation Program (AIP) for Pakistan on 26 August in collaboration with the Wheat Research Institute and the Sakrand, Sindh and Pakistan Agricultural Research Council. More than 40 representatives vital to the wheat-seed value chain – including researchers, extension representatives, seed companies and the seed regulatory body of Pakistan – gathered in Hyderabad to analyze ways to transform wheat seed systems in the province.

The workshop was instrumental in revealing major opportunities and limitations across the entire spectrum of wheat seed systems, from breeding and releasing wheat varieties along with popularization and demand creation, to generating profitable and sustainable seed businesses.

On-farm evaluation of newly released varieties, Benazir 2013 and NARC 2011, indicated yield potentials 15 to 20 percent higher than existing varieties. If such varieties are made available and accepted throughout the region, food security could improve considerably due the varieties’ higher yield potential and rust resistance capability – traits critical to sustaining wheat productivity gains in Sindh.

According to the Federal Seed Certification and Registration Department (FSC&RD), only 31 percent of wheat seeds in Sindh are supplied by the commercial sector – public and privately owned seed companies – while 69 percent come from farmer-saved seeds.

Certified wheat seeds used in Sindh that are transported from Punjab province are not officially recognized in Sindh. If the unofficial transactions facilitating the flow of wheat seeds from Punjab are considered, this may indicate that wheat-seed systems in Sindh are fully functional and healthy.

Figure 1. Wheat varietal portfolio in Sindh seed systems (source: FSC&RD)
Figure 1. Wheat varietal portfolio in Sindh seed systems (source: FSC&RD)

However, this new batch of wheat varieties is not currently in the commercial seed production chain, so the average age of wheat varieties in Sindh indicates an unhealthy seed system. This is also illustrated by the predominance of the 10-year- old wheat variety TD 1 (Figure 1), the fact that wheat cultivars in the seed supply are, on average, 18 years old, and that two out of five varieties are more than 25 years old (Figure 1; Tj-83 and Sarsabz-89).

The Major Gap

The workshop identified a lack of coordinated efforts among those involved in the wheat-seed value chain to popularize new varieties as a significant weakness in Sindh. Weak coordination and linkages among research, extension, seed companies, the seed regulatory body and farmers has resulted in a very slow popularization of new varieties.

Many wheat varieties released in recent years have yet to reach farmers. This may be in part because the Sindh government’s Department of Agricultural Extension does not appear to have specific activities devoted to the publicity of new seed varieties.

More than 90 percent of certified wheat seeds in Sindh are supplied by private seed companies, which tend to focus on selling a few common wheat varieties with the highest market demand.

Deployment of new varieties in seed systems is slow also due to limited land and financial resources of research organizations. The lack of a regulatory framework allowing private seed companies to produce pre-basic and basic seeds is also a factor limiting the supply of adequate seeds.

Private seed companies said they recognized there is a lack of varietal choice – including short-duration varieties – and expressed interest in being involved in wheat variety development. However, they said they are limited by a lack of technical capability, financial resources, land and capital to develop research and development capacity.

Workshop participants identified a number of actions to incorporate into the AIP work plan for the upcoming wheat season, which begins in October-November. These actions include:

‱ Participatory varietal selection involving small-, medium- and large-scale farmers.

  • Participatory on-farm demonstrations of new varieties with involvement of all major actors of the wheat seed value chain.
  • Initiation of pre-basic and basic seed production by private seed companies with support from research, extension and seed regulatory bodies.
  • Provision of new seed wheat varieties to landless and smallholder farmers in Sindh.
More than 40 wheat-seed value chain representatives attended the workshop.

Upcoming: 12th Asian Maize Conference

In Asia, maize production is growing at a faster rate than any other cereal. The demand for maize has grown in response to changing consumer habits; with greater demand for meat in consumers’ diets, maize is in high demand as feed for the growing livestock sector. At the same time, there remains great opportunity to increase the area under maize production in the region, as well as tremendous opportunities for innovations in crop improvement, management and diversification.

A Bangladeshi farmer uses a bed planter on his land, where his maize yields have increased since using the equipment.

It is in this context that the 12th Asian Maize Conference and Expert Consultation on “Maize for Food, Feed, Nutrition and Environmental Security” will be convened in Bangkok, Thailand, from 30 October to 1 November.

Organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), CIMMYT, the FAO Regional Office for Asia and the Pacific, the Thai Department of Agriculture and the CGIAR Research Program on MAIZE (MAIZE CRP), the event will bring together around 250 researchers, policy-makers, service providers, innovative farmers and representatives of various organizations from across the public and private sectors.

The objective of the conference is to assess specific priorities to enhance maize production and productivity in the region, share the latest knowledge on cutting-edge maize technologies and generate awareness among institutions and stakeholders toward the better use of maize as a food, feed and an industrial crop in Asia.

These discussions will lead to an innovative and impact-oriented regional strategy for accelerated adoption of resilient technologies, market opportunities, networks, investment priorities and policy guidelines.

The Third Circular is available on the MAIZE CRP website. Registration forms, also available with the Third Circular, are accepted until 1 October.

A tribute to Alejandro Ortega, former CIMMYT maize scientist

Photo courtesy: Jorge Castro/PIEAES

In communion with family members, Mexican and global partners and past colleagues, CIMMYT mourns the passing and celebrates the extraordinary life of Alejandro Ortega y Corona, former CIMMYT maize scientist who died in his native Mexico on 9 September at the age of 83. Ortega’s professional contributions include developing techniques to mass rear insects for use in insect-resistant maize breeding, as well as quality protein maize (QPM) improvement and screening techniques for heat and drought tolerance.

“Alex was an accomplished and dedicated entomologist and served as a mentor and an example of dedication to improving the lot of the poor, for many of us,” said Greg Edmeades, former leader of maize physiology at CIMMYT. “He believed we could make a difference in this world – and he did through his sheer hard work.”

A graduate in biology of the Universidad Nacional AutĂłnoma de MĂ©xico (UNAM) in 1953, Ortega obtained a M.Sc. (1954) and a Ph.D. (1960) in Economic Entomology from Ohio State University. Among the first Mexican students to complete graduate studies outside of Mexico with Rockefeller Foundation support, during 1952-57 Ortega served in the Office of Special Studies, the joint Rockefeller Foundation-Mexican Ministry of Agriculture program where Norman E. Borlaug pursued the research that led to the Green Revolution and the creation of CIMMYT. After working during 1961-66 as head of entomology at Mexico’s national agricultural research institute (now the National Institute of Forestry, Agriculture and Livestock Research, known as INIFAP), Ortega joined the CIMMYT Maize Program in 1967, where he focused on entomology, physiology, breeding and pathology. In 1988 he left CIMMYT and worked for two years as a volunteer and later as a salaried researcher in INIFAP in northwestern Mexico. He worked on a number of things at INIFAP, including the development of heat-tolerant maize (one resulting hybrid, H431, is still popular in the region). Most recently, Ortega served as national coordinator for the Global Maize Project, a large effort to collect and document Mexican maize landraces during 2008-2011.[1] Ortega is also author of a 1987 CIMMYT field manual on insect pests of maize that is still used by researchers worldwide.

In August 2013 Ortega was honored for his service and contributions to maize drought and heat research at a special ceremony at CIMMYT’s Norman E. Borlaug Experiment Station (CENEB) in Ciudad Obregón. He was revered by staff at all levels, according to Martha Willcox, CIMMYT maize landrace coordinator who helped organize the CENEB event. “A former maize program secretary said Alex was the most polite scientist she ever worked for,” said Willcox. “Tractor drivers and field workers at the station took up a collection to give him a special, carved-wood statue of a Yaqui Indian dancer, after the ceremony.”

“Alejandro will always be remembered for his exemplary work in maize improvement at CIMMYT and INIFAP,” said Pedro Brajcich Gallegos, INIFAP director general. “He achieved results of national and international recognition, but he leaves a legacy of modesty and care for others. May he rest in peace.”

The CIMMYT community sends profound condolences to Ortega’s wife Eliavel and his children Lidia, Lucía, Alejandro Ortega González, Glenda, Alejandro Ortega Beltrán and Alejandra.

[1] Ortega Corona, A., M. de J. Guerrero Herrera and R.E. Preciado Ortiz (eds.). 2013. Diversidad y Distribución del Maíz Nativo y sus Parientes Silvestres en México. Mexico, D.F.: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).

CIMMYT scientist examines socio-economic determinants of yield variability in maize

M.L. Jat, senior cropping system agronomist in the Global Conservation Agriculture Program at CIMMYT, in collaboration with Hirak Banerjee, Rupak Goswami, Somsubhra Chakraborty, Sudarshan Duttac, Kaushik Majumdar , T. Satyanarayana and Shamie Zingore, recently published a study examining the socio-economic determinants of yield gap in maize. The study, “Understanding biophysical and socio-economic determinants of maize (Zea mays L.) yield variability in eastern India” was published in the NJAS – Wageningen Journal of Life Sciences and was made possible by a grant from the Maize CRP. The term “yield gap” refers to “the difference between actual yields and potential yield,” potential yield being “the maximum yield that can be achieved in a given agro-ecological zone.” The purpose of the study was to investigate the key factors limiting maize productivity in two districts in each of the Indian states of West Bengal, Malda and Bankura, in order to develop effective crop and nutrient management strategies to reduce yield gap in the region.

The study compared the maize yield and socio-economic situation of farmers in the region and found that factors such as the caste or ethnic origin of farmers, availability of family labor, land ownership, use of legumes in cropping sequence, irrigation constraints, type of seed used, optimal plant population, labor and capital investment and use of organic manure had strong correlations to the maize yields farmers were able to achieve. The authors of the study hope that this information can facilitate the development and introduction of appropriate typology-specific crop management practices, in accordance with the needs of farmers and the socio-economic factors affecting their productivity, which could help to increase maize yields and reduce the yield gap for the region’s farmers.

Click here to read the full article.