Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Presidential award in recognition of critical breakthrough in maize breeding in Zimbabwe

Called the “Robert Gabriel Mugabe Award” (after the Zimbabwean president), it is presented bi-annually for critical breakthroughs in research. The USD 15,000 award was presented by acting President and Vice-President, Mr. Emmerson Mnangagwa, to the Crop Breeding Institute’s National Maize Breeding Programme, for outstanding research in the production and release of the maize variety ZS265.

“This variety, for which it is receiving the Robert Gabriel Mugabe Award is a truly Zimbabwean-bred non-GMO white-grained variety with excellent tolerance to diseases, drought and low nitrogen and therefore suitable for production under dryland conditions,” read part of the citation.

CIMMYT works in partnership with the Department of Research and Specialist Services in Zimbabwe’s Ministry of Agriculture, Mechanization and Irrigation Development. “We congratulate the national maize breeding program for winning this prestigious award. CIMMYT is proud and pleased that our partner is engaged, committed and as excited we ourselves are!” said Dr. Mulugetta Mekuria, CIMMYT–Southern Africa representative. “Food insecurity can be overcome if we can bring together new knowledge and skills to farmers in a very sustainable manner. There will be crop production challenges unless we integrate climate change, soil fertility and water,” he cautioned.

Magorokosho observed, “Considering that the Zimbabwe program has faced several challenges over the last several years, this is indeed a true achievement which will go down in history books, similar to the famous significant milestone that was reached in Zimbabwe in 1960 when SR-52, the world’s first single-cross hybrid, was released and made available for commercial planting.”

The Zimbabwe Maize Breeding Programme receives the Robert Gabriel Mugabe Award for Outstanding Research, at the10th Zimbabwe International Research Symposium, 13 February 2015. From left to right: Eng.G. Magombo (ZERA Chief Executive Officer); D. Kutywayo; Honorable O. Muchinguri-Kashiri (Zimbabwe Minister of Higher & Tertiary Education, Science &Technology Development); Dr. M.J. Tumbare; T. Chigama; P. Mphoko (Vice-President of the Republic of Zimbabwe); P. Mabodza; Honorable E.D Mnangagwa (Vice-President of the Republic of Zimbabwe); Dr. C. Mutimaamba; V. Tamirepi (holding trophy); P. Mazibuko; and Prof. I. Sithole-Niang; R. Mukaro. Photo: Courtesy of IBP
The Zimbabwe Maize Breeding Programme receives the Robert Gabriel Mugabe Award for Outstanding Research, at the10th Zimbabwe International Research Symposium, 13 February 2015. From left to right: Eng.G. Magombo (ZERA Chief Executive Officer); D. Kutywayo; Honorable O. Muchinguri-Kashiri (Zimbabwe Minister of Higher & Tertiary Education, Science &Technology Development); Dr. M.J. Tumbare; T. Chigama; P. Mphoko (Vice-President of the Republic of Zimbabwe); P. Mabodza; Honorable E.D Mnangagwa (Vice-President of the Republic of Zimbabwe); Dr. C. Mutimaamba; V. Tamirepi (holding trophy); P. Mazibuko; and Prof. I. Sithole-Niang; R. Mukaro. Photo: Courtesy of IBP

The variety was phenomenally successful not just in Zimbabwe, but across Africa. By 1970, 98 percent of Zimbabwe’s commercial maize area was sown to SR-52. The variety is still being grown today in of Africa, especially for green cobs.

In partnership with CIMMYT–Zimbabwe and in response to declining soil fertility and recurrent droughts as a result of climate change, the Zimbabwe national maize breeding team pioneered the development of drought and low nitrogen tolerant maize varieties in the late 1990s.

This culminated in the commercial release, since 2006, of two open pollinated varieties (ZM421 and ZM521) and seven hybrids (ZS261, ZS263, ZS265, ZS269, ZS271, ZS273 and ZS275) with combined tolerance to drought and low nitrogen. These varieties are white and of early-to-medium maturity. ZS261 is a protein-enhanced maize variety which was commercialized in Zimbabwe in 2006, while ZS263 and ZS265 have proven to be popular drought-tolerant varieties.

Also in partnership with CIMMYT–Kenya, the national maize breeding team started conventional breeding insect-resistant varieties in the country in 2009. This was in response to serious field losses from stem borer and postharvest storage losses to the maize weevil and larger grain borer. Two conventionally-bred white maize hybrids that are resistant to the stem borer will be released for commercial use this year.

In recognition of their sterling effort in using plant breeding to address low maize productivity on smallholder farms, CIMMYT’s Drought Tolerant Maize for Africa project awarded the “Best Maize Breeding Team in Southern Africa” prize to Zimbabwe a record five times from 2008 to 2014.

We join in congratulating this truly outstanding team, and look forward to their future feats.

Maize and wheat Super Women campaign highlights diversity

IWDbuttonEL BATAN, Mexico (CIMMYT) – A social media crowd sourcing campaign initiated to celebrate the achievements of women has led to more than a dozen published blog story contributions about women in the maize and wheat sectors.

Each year, International Women’s Day gives the world a chance to inspire women and celebrate their achievements. This year, the International Maize and Wheat Improvement Center (CIMMYT) put out a call asking for blog contributions from the social media community.

CIMMYT asked readers to submit stories about women who have made a difference in the maize and wheat sectors, including women involved in conservation agriculture, genetic resources, research, technology and related socio-economics.

The “Who is Your Maize or Wheat Super Woman?” stories are featured on the CIMMYT website from Monday, March 2, 2015 in the lead up to International Women’s Day on Sunday, March 8, 2015.

Contributions include blog stories about women from Britain, Canada, Guatemala, India, Indonesia, Kenya, Mexico, and the United States. Their stories will also be made available in Spanish-language.

SUPER WOMEN BLOG POSTS:

CIMMYT

No scientific basis for criticism of wheat as a food staple, nutritionist says

A nutritionist who is outspoken about the negative consequences of gluten-free diets said in a recent interview that she wants to dispel myths generated by claims that the protein found in wheat is unhealthy.

Photo: Xochiquetzal Fonseca/CIMMYT
Photo: Xochiquetzal Fonseca/CIMMYT

“Wheat has recently been under attack by people who’ve made claims about it that simply can’t be verified by science,” said Julie Miller Jones, professor emeritus of nutrition at St. Catherine University in St. Paul, Minnesota.

“Gluten-free” has become a big money maker for the food industry. Sales have soared 63 percent since 2012, with almost 4,600 products introduced last year, according to the January 2015 issue of Consumer Reports magazine.

Retail sales of gluten-free foods in the United States were estimated at $12.2 billion in 2014, and by 2020 the market is projected to be valued at $23.9 billion, Statistica reports.

The popularity of gluten- and wheat-free diets has grown in part due to claims published in such books as “Wheat Belly” by William Davis and “Brain Grain” by David Perlmutter. These publications say that wheat products are the cause of most health problems, views rebutted by Miller Jones.

Such claims counter current medical and nutritional advice in international dietary guidelines established in conjunction with the U.N. Food and Agriculture Organization and the World Health Organization.

“Apart from the approximately 1 percent of people who suffer from celiac disease, the fewer than 1 percent of people who suffer from wheat allergies and the few who suffer from non-celiac gluten sensitivity, prominent celiac experts and health professionals discount the many supposed benefits of going gluten-free, urging those who do not have these conditions not to adopt such a diet,” Miller Jones said.

As a food staple, wheat plays a vital role in global food security, providing 20 percent of the overall total amount of calories and protein consumed worldwide.

Miller Jones, who delivered a talk at CIMMYT in Mexico, shared her views on the controversy surrounding fad diets that urge the elimination of wheat and its protein complex, gluten, in the following interview.

Q: What worries you about negative attacks on wheat consumption?

A: I’m very concerned about it. One of the attacks is based on the fact that wheat has been bred by people – that this breeding somehow has done something very evil to the grain. I really want to dispel the myth that wheat is somehow bad for you and that modern wheat is somehow different from the wheat that existed years ago. It’s different because we can grow more of it, it’s higher yielding, but it’s not different in terms of the nutrition that it delivers. In fact, we get more nutrition per acre, which I think is a good thing rather than a bad thing.

Q: Critics have suggested that scientists are creating new proteins in wheat. Is this true?

A: You can’t create a new protein without creating a mutation, and plant breeding doesn’t normally create new mutations. There are hundreds of varieties of wheat that exist in the world – what Norman Borlaug (the late CIMMYT wheat breeder and Nobel Peace Prize winner, known as the father of the Green Revolution) did was cross these wheats to develop grains that would grow under a variety of conditions. The glutenins and gliadins that were there have been there ever since wheat has been grown as a crop. He claims that new, modern wheat has more gluten than it did before. A lot of research is showing that the level has not changed. In fact, in his book, Dr. Davis suggests that gliadin is a new toxic protein. That is patently false because you can go back into the early chemical literature – that mentions gliadin early in the 1800s.

Q: Critics have also said that gluten-free fad diets are marketed towards a more western, wealthy culture. If so, what are the implications for the developing world?

A: Obviously, these doctors are trying to sell books in affluent countries where obesity is a big problem. We would all love to find a solution to obesity. All the simplistic solutions like eliminate a particular food or food group or eat in the ancient way – all of those solutions are really quite simplistic. There are a number of things that we need to do in order to address obesity. They are aimed at an obese population concerned about chronic disease and diseases that are associated with obesity. The tragedy in that is that if, as we’ve seen with other issues, when developed nations say that they are not going to eat something because of a particular issue with that food then that food has been rejected as food aid in some developing countries. So this has some really amazingly potentially harmful results that no one really initially intended – these unintended consequences are really problematic. It could also mean that people switch their diets to foods that are less sustainable. We’re really facing a problem with feeding the additional two-and-a-half billion people that will exist on this planet in 2050. Clearly, it’s not a viable or sustainable strategy for feeding the world. I’m very concerned about it and these sort of second-order consequences.

Q: How credible are reports that wheat consumption is bad?

A: Dr. Davis suggests that if we didn’t eat wheat we would cure diabetes. Well, the data simply say completely the opposite. We have studies of large populations from all over the world where people who ate about three servings of whole-grain cereals and bread a day had a 25 percent reduced risk of diabetes. They have a 25 percent reduced risk of coronary heart disease. A study just published at Harvard University in January of this year showed that the people who ate whole grains had reduced mortality for age. So the idea that taking wheat and grains out of the diet makes you healthier simply flies in the face of the scientific literature.

Q: Is there a simple goal you want to achieve?

A: I think that what we do know about healthy diets is that healthy diets are ones that are balanced. If we look at those diets, which support brain health, heart health, help prevent diabetes – they’re the ones such as the Mediterranean diet, which has breads and cereals as a base. It includes meat, poultry, fish but relatively small amounts of meat. It asks you to eat some legumes. The dietary approach to stop hypertension called the DASH diet has been studied on a large cohort of men and women who initially had high blood pressure. What they showed was that when people ate this diet, which has lots of fruits and vegetables, servings of whole grain, low-fat dairy – this mix that we need – those people had a lower risk of cancer and coronary disease. We actually have data on brain health, and diets such as the Mediterranean and the DASH diet showed the least loss of cognitive functioning in the elderly.

Q: In general, should people avoid specific food groups?

A: Instead of eliminating a food group, what we ought to do is eat it in the right amounts. That does not give you the excuse to eat large numbers of servings of what I call doodles, dingdongs and doughnuts. What we need to think about is those kinds of staple foods that have nourished the Aztecs in the past, nourished the pioneers coming across to the New World and that will nourish us today – eat those in the right amount. I’d also like to say exercise would be a good idea, too.

USAID’s Feed the Future initiative highlights CIMMYT heat tolerant maize breeding

 Photo: Allison Gillies/CIMMYT
Photo: Allison Gillies/CIMMYT

The Feed the Future initiative of the U.S. Agency for International Development (USAID) featured CIMMYT’s Heat Tolerant Maize for Asia (HTMA) project in a recent newsletter, highlighting it as an exemplary public-private partnership. Launched in 2013, the project is developing heat-resilient hybrid maize for resource-poor smallholder farmers in South Asia whose livelihoods are threatened by climate change.

The damaging effects of climate change on agriculture have already been felt throughout much of South Asia, and climate model studies predict that this trend will not end anytime soon. According to a 2009 report from the Asian Development Bank, maize production capacity in South Asia could decrease by 17 percent by the year 2050 if current climate trends continue. Due to the temperature sensitivity of key crops such as maize, farmers in the region urgently need access to seed of varieties that can withstand temperature stress. As climate change-related weather extremes threaten agriculture in South Asia, research and development partners are seeking solutions.

The HTMA “
balances up-stream and down-stream research-for-development by leveraging CIMMYT germplasm with the research capacity and expertise of partners such as Purdue University, Pioneer-Asia and national programs in Bangladesh, Pakistan, Nepal and Bhutan,” said P.H. Zaidi, the project leader. HTMA private partners such as DuPont Pioneer and the regional seed companies Kaveri Seeds and Ajeet Seeds have direct ties to local markets and farming communities that will foster the widespread availability and use of the new hybrids, according to Zaidi.

Outputs of this partnership include new breeding lines with enhanced levels of heat tolerance. The first generation of heat-tolerant hybrids from those lines became available after the second year of the project, and a new set of elite, stress-resilient hybrid varieties will be released by the project every two years. Apart from this, early-generation lines are being shared for use in partners’ breeding programs, strengthening their germplasm base and ensuring the continued development and delivery of heat-stress-resilient maize after the project ends, Zaidi said. According to the Feed the Future report: “The new varieties
show great promise to be taken to scale and deployed in tropical climates beyond South Asia.”

Prioritize food security, not conflict, wheat scientist advises

Heat and drought are a major cause of wheat yield losses worldwide, problems that scientists predict will worsen due to climate change.

As a wheat physiologist, Matthew Reynolds works to bolster crop yields and improve the capacity of wheat to survive stressful conditions, particularly in developing countries.

Wheat physiologist Matthew Reynolds[
Wheat physiologist Matthew Reynolds
“Climate change puts farmer livelihoods at risk and can lead to vast food-crop losses in vulnerable environments,” said Reynolds, who was recently named a distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Reynolds, who plays a leading role in several international wheat initiatives, including the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP), has developed new wheat lines based on combining complementary physiological traits.

Some of this work is detailed in a book entitled “Climate Change and Crop Production,” which he was commissioned to edit.

In addition to improving wheat drought resilience, Reynolds, who also serves as a consultant for Bayer Crop Science, has developed physiological approaches for improving the yield potential of wheat, work that will underpin the new IWYP initiative, which has so far attracted more than US $50 million in funding.

He shared his views in the following interview after being named distinguished scientist.

Q: What provides inspiration for your work?

What inspires me about working for CIMMYT is how we apply science to real life problems by participating in a very exciting chain of events that preferentially benefits many of the least privileged members of society. Because of CIMMYT’s multicultural character and because we’re a focal point of applied wheat and maize research in the world, scientists at CIMMYT understand the agricultural problems of the developing world in quite a unique way.

Q. What is your most significant achievement?

The achievement I’m most satisfied about is that we’ve been delivering improved wheat technologies to national governments using a physiological approach – that’s something that 25 years ago nobody would have believed was possible. Our first intervention was to show the value of measuring wheat canopy temperature and now it’s a tool that everyone is adopting. Thermal imaging is an offshoot – it’s a very robust tool for measuring plant temperature. It helps us determine whether a plant is adapted when it is “cool” or if there’s something wrong with it when it’s too “warm.” It’s a wonderful diagnostic tool, kind of like a doctor’s stethoscope, except we can even measure it remotely now from the air on thousands of plots at once.

Q: What role does agriculture play in poverty alleviation?

While we can do something about the fact that almost one billion people go hungry globally, agriculture is only a small part of that equation. There are a lot of other elements that we have no control over – market forces, foreign policy and natural phenomena like climate instability – all of which can neutralize our efforts. The overarching incentive for our work was defined by the late CIMMYT wheat breeder and Nobel Peace Prize winner Norman Borlaug, who famously said: “I cannot sit idly by in the midst of abject poverty and hunger and human misery.”

Q: What is the biggest challenge the world faces?

I think the challenge the world at large faces is to work towards greater unity and equality of opportunity. CIMMYT is in a sense the Red Cross of resources for farmers, but we try to pre-empt their problems and make an investment in their future. It’s been reaffirmed recently that the fundamental basis for sustainable economic growth is a vibrant agricultural sector. Our overarching aim is food security for all, focusing especially on resource-poor consumers and farmers. As a society, we expend enormous effort on controlling natural resources such as land, water, and minerals – irrespective of the cost and conflict that this causes, while, ironically, sustaining the planet’s resource base is secondary at best. That was perhaps justifiable before the advent of good communication and international cooperation, but it makes no sense anymore, especially with a crowded planet. I suppose it’s always much harder to get people to unite – something Borlaug was good at, although not without considerable effort.

Q: What is Borlaug’s legacy?

His main legacy in my opinion is making people conscious of humanitarian problems and implementing real solutions with absolute dedication. This is something most politicians and leaders only pay lip service to, to avoid upsetting the status quo, which is basically a massive and growing inequality in the world. While I was not raised a Catholic, I read a wonderful quote recently from Pope Francis that relates very much to CIMMYT’s mission. He said at his inauguration: “While the income of a minority is increasing exponentially, that of the majority is crumbling. This imbalance results from ideologies which uphold the absolute autonomy of markets and financial speculation, and thus deny the right of control to states, which are charged with providing for the common good.” At CIMMYT we are still — at least for now – charged with providing for the common good; let’s hope we can maintain that legacy.

Chief Minister of Bihar assures support to BISA

Of the 1 billion food insecure people in the world, more than 30 percent are in South Asia. By 2030 it will be one of the most vulnerable regions to climate change-related food shortages, with maize, rice and wheat prices predicted to double in the next 20 years. Photo: M. DeFreese/CIMMYT
Of the 1 billion food insecure people in the world, more than 30 percent are in South Asia. By 2030 it will be one of the most vulnerable regions to climate change-related food shortages, with maize, rice and wheat prices predicted to double in the next 20 years. Photo: M. DeFreese/CIMMYT

The Chief Minister of Bihar, India, Shri Jitan Ram Manjhi, affirmed his support for the Borlaug Institute for South Asia (BISA) and its efforts to ensure food security, in a meeting with Thomas A. Lumpkin, director general of CIMMYT, and with government, BISA and CIMMYT representatives on 3 February. As part of this, Manjhi agreed to support development of model villages in every district of Bihar, one of the fastest-growing and developing states in India.

“Ever-increasing energy prices, declining natural resources and variable climates have left farmers with diminishing returns,” Lumpkin said. “Bihar farmers need technologies that increase their profits under changing climates and economies.”

Launched in 2011 as a collaborative effort between CIMMYT and the Indian Council of Agricultural Research (ICAR), BISA is a non- profit international research institute dedicated to food, nutrition, livelihood security and environmental rehabilitation in South Asia, a region that is home to more than 300 million undernourished people.

During the meeting, Lumpkin emphasized the need for the quick transfer to Bihar farmers of technologies such as direct-seeded rice and zero-tilled wheat, to reduce production costs and labor and energy use.

Direct seeding of rice eliminates the need for transplanting seedlings from bund nurseries, and sowing wheat with zero tillage allows earlier planting so the crop can mature and fill grain before pre- monsoon high temperatures.

Lumpkin highlighted BISA’s critical capacity-building role, to support farmers and extension workers who test and promote innovative agriculture technologies.

Government representatives from Bihar included Shri Amrit Lal Meena, principal secretary to the chief minister; Shri Tripurari Sharan, principal secretary of agriculture; Shri Dharmendra Singh, director of agriculture; and Shri Gopal Singh, officer on special duty to the chief minister. CIMMYT and BISA attendees included John Snape, CIMMYT board chair; Hari Shanker Gupta, BISA Director General; Nicolle Birrell, CIMMYT board member; Etienne Duveiller, CIMMYT director of research- South Asia; M.L. Jat and Raj Kumar Jat, CIMMYT cropping systems agronomists; and Kumar Ashwani Yadav, senior advisor for India country relations.

From left to right: Raj Kumar Jat, Hari Shanker Gupta, Nicolle Birrell, Shri Amrit Lal Meena, Shri Jitan Ram Manjhi, Thomas A. Lumpkin, Etienne Duveiller and M.L. Jat. Photo: Fabiola Meza/CIMMYT
From left to right: Raj Kumar Jat, Hari Shanker Gupta, Nicolle Birrell, Shri Amrit Lal Meena, Shri Jitan Ram Manjhi, Thomas A. Lumpkin, Etienne Duveiller and M.L. Jat. Photo: Fabiola Meza/CIMMYT

Spreading innovation: new partnerships drive change in Odisha

The Cereal Systems Initiative for South Asia (CSISA) has collaborated with Digital Green (DG), the Department of Agriculture (DOA), Government of Odisha, Krishi Vigyan Kendras (KVKs) and Orissa University of Agriculture & Technology (OUAT) for a pilot project integrating information and communication technology (ICT)-based video-led dissemination models in 20 villages of Puri district in Odisha, India.

Farmers watch a video on disease control at a community video screening in Puri district, Odisha. Photo credit: Ashok Rai/CIMMYT
Farmers watch a video on disease control at a community video screening in Puri district, Odisha. Photo credit: Ashok Rai/CIMMYT

How the pilot works: DG trains and builds the skills of state agents to shoot and create videos with farmers on improved farming practices and then holds screenings for small groups of farmers using small-sized, low-cost, battery-run pico projectors. CSISA provides its technical inputs in video topic selection, content planning and story boarding. During the video screening, state agents keep track of the questions asked and have follow-up meetings with the farmers to check on the adoption of farming practices.

This CSISA–DG initiative has resulted in the production of videos on 10 technical themes reflecting the needs of local farming communities. Topics included the demonstration of new paddy, post-harvest and livestock management technologies and relevant successes by local farmers. So far, six videos on CSISA- promoted technologies have been produced. Ninety-one group screenings were held, with nearly 500 farmers in Puri district attending at least one of the video screenings. “Each video requires good planning, a good script and technical understanding of the subject,” said Sudhir Yadav, IRRI Irrigated Systems Agronomist and the CSISA Odisha Hub Manager.

“We aim at both increasing participation of the community and creating a two-way flow between research and extension,” said Rikin Gandhi, CEO of DG, during a presentation at the Borlaug 100 event organized by CIMMYT.

These videos inspire farmers to learn about and adopt new technologies and management practices. A video on the benefits of chopped straw as fodder in dairy management has helped farmers to enhance milk production, commented Suresh Parida, a farmer from one of the pilot villages. Farmers have also found it easier to identify pests and diseases in their crop after seeing a video of pest and disease management in paddies.

“As the actors in the video are local farmers from the area, it generates trust among the viewers to adopt a demonstrated practice,” said Avinash Upadhaya, Regional Manager of DG for Odisha, at a recent participatory stakeholder’s workshop in Puri. Farmers, mediators from KVK and project coordinators from DOA, CSISA and DG met to discuss the changes that the ICT model has brought and challenges in integrating it with traditional training methods. Ashok Lakra, a village agricultural worker of a pilot village highlighted the advantages of DG’s approach, stating “At a demonstration, we might miss some important information, but these videos deliver the entire package and cover all the points.”

“The best language that the farmer understands is the language of other farmers. This works as a good communication model to help in creating awareness and dissemination of improved technologies,” said Yadav.

 

Myanmar and CIMMYT assess needs and joint maize and wheat research

Aye Aye Win, Senior Researcher at Zaloke Research Farm in Mongwa, was the last CIMMYT GWP trainee from Myanmar in Mexico (2002) and is currently the only wheat breeder in the country. Photos: Fabiola Meza/CIMMYT
Aye Aye Win, Senior Researcher at Zaloke Research Farm in Mongwa, was the last CIMMYT GWP trainee from Myanmar in Mexico (2002) and is currently the only wheat breeder in the country. Photos: Fabiola Meza/CIMMYT

Given growing demand for maize and wheat in Myanmar and the increasing challenges to produce both crops, officials of the Myanmar Ministry of Agriculture and Irrigation’s (MOAI) Department of Agricultural Research (DAR) and CIMMYT representatives met at DAR headquarters at Yezin during 24-27 January, to strengthen collaboration, with a focus on increasing farm productivity and training a new generation of Myanmar scientists.

Maize area, output and demand are growing with increased use of the grain in poultry and livestock feeds. Nine-tenths of the 450,000-hectare (ha) national maize area is rain-fed and grown with few inputs. It suffers from erratic precipitation among other things. Nearly one-third is sown to hybrid seed imported from Thailand. Small- and medium-scale local seed producers need stimulation and support.

Wheat is important for subsistence farmers in the eastern hills but also to meet the rising demand of a growing population with more urban inhabitants. National consumption yearly exceeds 0.5 million tons, only 0.18 million of which is produced in Myanmar (the rest is imported from Australia). Yields are low due to lack of inputs or new seed varieties. Farmers particularly need heat tolerant, rust resistant wheat varieties and resource-conserving cropping technologies.

Drying maize in Myanmar.
Drying maize in Myanmar.

CIMMYT germplasm and other support are crucial for both crops in the country, but interactions have grown less frequent. The last Myanmar maize researcher to participate in training courses in Mexico came in 1999; the last wheat trainee, in 2002.

Participating in discussions were Dr. Tin Htut, director general, MOAI Department of Agricultural Planning, and DAR senior staff including Dr. Ye Tint Tun, DAR director general and U. Thant Lwin Oo, director for Maize & Other Cereals, Oil Seeds and Legumes.

CIMMYT was represented by Thomas A. Lumpkin, director general; Etienne Duveiller, regional representative for Asia; and administrative assistant Fabiola Meza. In addition to taking part in high-level discussions, they visited Dr. Win Win New, Director of the Aung Ban Agricultural Research Farm and Maize Breeder who conducts maize and wheat trials in southern Shan State and accompanied the team for field tours.

Collaboration discussion with DAR officials in Yezin.
Collaboration discussion with DAR officials in Yezin.

These interactions grew out of visits in 2014 to Myanmar by Duveiller and Dan Jeffers, a CIMMYT maize breeder based in Yunnan, China.

Opportunities to address Myanmar’s concerns include regional collaboration with CIMMYT maize research in Yunnan and Hyderabad and training at BISA farms in India, for conservation agriculture and small-scale mechanization. CIMMYT and DAR are developing an agreement to facilitate collaboration.

Index insurance to safeguard farmers from climate change

“We’ve got the germplasm and improved varieties, but what can we do to overcome the hurdle of farmer adoption of these technologies?” Jon Hellin, value chain and poverty specialist for CIMMYT’s Socioeconomics Program presented this challenge and how crop-index insurance may be part of the solution, at a high-level Climate Change, Agriculture and Food Security (CCAFS) webcast event Wednesday, 28 January in London. The event covered innovations in index insurance and how Nigeria can implement them, as part of a plan to safeguard its farmers from climate change effects.

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies”

– Jon Hellin

CIMMYT’s Socioeconomics Program

 

Benefits of Index Insurance

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies,” said Hellin. Traditional crop insurance gives payouts that are explicitly determined on measured loss for a specific client. Index insurance allows farmers to purchase coverage based on an index that is correlated with those losses, such as average yield losses over a larger area or a well-defined climate risk, e.g. erratic rainfall, that significantly influences crop yields.

This approach can address many of the problems that limit the application of traditional crop insurance, including lower transaction costs and eliminating the need for in-field assessments. In addition, because the insurance product is based on an objective index it can also be reinsured, allowing insurance companies to efficiently transfer part of their risk to international markets. This makes index insurance financially viable for private-sector insurers and affordable for small-scale farmers.

CIMMYT is involved in a CCAFS-supported crop index insurance project. One focus is to determine how crop index insurance can enhance adoption of drought tolerant maize varieties. CIMMYT, along with international partners and scientists, has been developing many such varieties under the Drought Tolerant Maize for Africa (DTMA) initiative. “When it comes to these varieties and exciting initiatives like crop index insurance, that’s where we can come together and get great win-wins,” Hellin stated.

 

Challenges and Opportunities

Scientifically-validated crop-index insurance schemes need indices that are affordable and attractive to stakeholders, particularly farmers and the insurance industry and other refinements. However, as demonstrated by examples from Ethiopia, Kenya, Rwanda and Senegal, if implemented correctly index insurance can build resilience for smallholder farmers not only by ensuring a payout in the event of a climate shock, but also by giving farmers the freedom to invest in new technology and inputs, such as seed.

“The Nigerian government’s interest in crop insurance will allow us to test different approaches for bundling insurance with technologies, making it attractive to farmers and private sector actors,” Hellin proposed.

Pakistan wheat farmers call for quality seed of the right varieties

A Pakistani farmer carries seed of a new wheat variety for on-farm testing. Photo: Anju Joshi/CIMMYT
A Pakistani farmer carries seed of a new wheat variety for on-farm testing. Photo: Anju Joshi/CIMMYT

Lack of good seed of appropriate varieties is holding back harvests of smallholder wheat farmers in rugged, rain-fed areas of Punjab, Pakistan, said a group of farmers to some 50 representatives of seed companies, input dealers, and research, extension and development organizations, at a workshop in Chakwal, Punjab, on 18 September 2014.

“Ninety-five percent of farmers in Pothwar, a semi-arid region of bare and broken terrain, use farm-saved seed of obsolete varieties, invariably with limited use of modern agricultural technologies and inputs, resulting in poor crop establishment and low yields,” said Krishna Dev Joshi, CIMMYT wheat improvement specialist based in Pakistan. “Their yields average only 0.6 tons per hectare, whereas progressive farmers in irrigated areas get ten times that much.”

Joshi said only three varieties cover 83 percent of the region’s wheat area and the same cultivars have been used for an average of 24 years. “One of these, C591, is a variety that was recommended in 1934 and is still grown on about 14 percent of the region’s nearly 0.6 million hectares of wheat area.”

According to Akhlaq Hussain, ex-Director General, Pakistan Department of Federal Seed Certification and Registration, one problem is that, despite their low yields, the older varieties have many traits that the farmers like. For example, they give stable yields under low inputs and harsh growing conditions and provide the preferred flavor and long-lasting good texture in chapattis.

Muhammad Tariq, Director of the Barani Agricultural Research Institute (BARI), Chakwal, Punjab, said there are few producers or suppliers of suitable, quality seed, fertilizer or other farm inputs for such marginal areas. They may be considered unattractive markets, but more than 70 percent of Pakistani wheat farmers are smallholders, cultivating between one and five hectares of land, according to Tariq.

Such farmers harvest on average only 1.5 tons per hectare and urgently need better seed and technology to raise their yields, said Joshi. “Farmers at the workshop complained they could not get access to high-yielding varieties of their choice,” he explained. “They also criticized the long time — typically three years — required to obtain seed of new varieties, once the varieties are officially released.”

Given this need and the lack of legitimate suppliers, fraudulent seed dealers and middlemen often market inferior or false products. “Last year I bought a bag of seed labelled ‘Galaxy,’ a new, high-yielding variety,” said Haji Muhammad Aslam Ochallee, a farmer from Khushab District, “but the seed inside was of an entirely different variety.”

Some seed dealers may mix seed or sell grain in bags labelled ‘certified seed’ at low prices to lure smallholders, and big landlords may sell cheap seed illegally to neighbors, said Qaiser Rasheed, Managing Director of the company Robert Cotton Association. “All these practices cheat farmers, distort markets and erode farmers’ trust in the formal seed sector,” Rasheed observed.

Pothwar’s problems reflect Pakistan’s overall food security challenge, according to Joshi. “A 2014 bulletin by the World Food Program shows that more than 27 million people in Pakistan are highly-to-severely food insecure,” he said. “The big concern is that most smallholders and vulnerable people live in districts that will need special attention to improve food security.”

 

Activating the Wheat Seed Value Chain

As a part of the Agricultural Innovation Program (AIP) for Pakistan, a project funded by the US Agency for International Development (USAID), CIMMYT is working with the Pakistan Agricultural Research Council (PARC), BARI in Punjab, seed companies and farmers to close gaps in the wheat seed value chain for rain-fed Punjab.

Workshop participants cited the need for better communication and coordination of research and extension agencies with commercial input suppliers sector and, especially, better marketing of new wheat varieties to farmers. “If stakeholders don’t integrate and coordinate, small-scale farmers will remain deprived of modern technologies and innovations, such as wheat varieties that resist new and virulent disease strains,” said Joshi.

“If stakeholders don’t integrate and coordinate, small-scale farmers will remain deprived of modern technologies and innovations, such as wheat varieties that resist new and virulent disease strains”

– Krishna Dev Joshi

CIMMYT Wheat Improvement Specialist

Farmers recommended establishing village committees to choose and access seed of new varieties and help foster truth in labeling. They particularly called for strict punishment for those selling fake seed.

For their part, seed companies said the lack of reliable irrigation or storage facilities hinders seed production in Pothwar. “Because of this, seed must be transported over long distances, raising costs, which in turn discourages buyers and cuts profits,” said one company representative.

The workshop forged an agreement to allow private seed companies to produce pre-basic and basic seed, supervised by concerned breeders and with support from Federal Seed Certification and Registration Department, to speed the marketing of new varieties. One result was that Robert Cotton Association has received pre-basic and basic seeds of two wheat varieties, Chakwal50 and Dharabi11, originally developed and released by BARI, which will provide technical backstopping.

Other action points agreed on at the workshop included the following:

  • On-farm trials and demonstrations that allow farmers to learn about and choose from new, high-yielding wheat varieties. To address this, AIP-wheat has already launched participatory varietal selection trials in which farmers and researchers jointly evaluate 14 new, high-yielding, disease resistant wheat varieties of diverse genetic backgrounds on the farms of 65 smallholders across Pothwar. In addition, to help farmers assess and improve crop management practices, the project is conducting 20 on-farm, participatory experiments on fertilizer use and 107 trials on pre-soaking seed, a practice that improves germination and crop establishment.
  • Community-based seed production linked with private companies and supported by proper equipment and training in quality seed production. Achievements to date include seed of 9 new varieties being multiplied directly with 52 Pothwar farmers on more than 42 hectares.

     Group. Photo: CIMMYT
    Group. Photo: CIMMYT

Letter from the field

World Food Prize Borlaug-Ruan Intern Describes Experience with CIMMYT in Turkey

Adam WillmanThe prestigious Borlaug-Ruan International Internship provides high school students an all-expenses-paid, eight-week hands-on experience, working with world-renowned scientists and policymakers at leading international research centers.

Adam Willman, a Borlaug-Ruan International Intern from Iowa, USA, spent last summer working for CIMMYT’s Soil Borne Pathogens (SBP) Division in Eskißehir, Turkey, working and studying root lesion nematodes under Dr. Abdelfattah “Amer” Dababat and Dr. GĂŒl Erginbas Orakcı.

Willman said “Everyone I worked with had something different and interesting to teach me. I experienced a wide variety of the work that is ongoing at CIMMYT-Turkey. These experiments focused on the overall goals of reducing food loss from disease and pests that can plague farm fields across the globe.”

Willman’s work also included assisting Elfinesh Shikur Gebremariam from Ankara University with Fusarium fungus, Fateh Toumi from Ghent University and Jiang Kuan Cui from China’s Ministry of Agriculture with cereal cyst nematodes. “I was exposed to both the threat that plant diseases pose to food security and the cutting-edge research to combat this” he added.

Willman also commented on the unique opportunity to experience Turkey’s people and culture, saying “I witnessed the amazing kindness, generosity and hospitality of everyone from the director of the research institute, to CIMMYT researchers and workers, to everyday strangers. I am very thankful for my time and experience at CIMMYT-Turkey.”

In a final message he thanked Dr. Dababat, Dr. Erginbas and all of the workers and researchers at SBP.

“Working with SBP for eight weeks truly changed my life and gave me the perspective on my education that I am still utilizing today. I hope to in the future become a plant pathologist and continue researching the many diseases and pests that affect the crops that we, as a planet, depend on. Global food security is within reach, and the scientists and workers at SBP are helping us obtain this goal,” Willman concluded.

 

Adam Willman (5th from the left) with the SBP pathogens division, students, visitors and Global Wheat Program Director Dr. Hans Braun during a field day in Eskißehir. This photo was taken in the field of the Transitional Zone Agriculture Research Institute (TZARI) in Eskisehir, Turkey.

 

Gates Foundation predicts agricultural extension will have a big impact on Africa

In their seventh annual letter Bill & Melinda Gates look 15 years into the future to predict the steps needed to improve the lives of poor people faster than in any other time in history. Technology advancements in agriculture, education and global health are key to this vision, with particular reference to the importance of new vaccines, mobile phone technology and online education. “Poverty has been halved because of innovation,” Bill Gates emphasized at the Davos World Economic Forum last week. “Economic miracles start with agriculture, education and then [countries] can participate in the world economy.”

The Gates Foundation has placed their agricultural bets on Africa being able to feed itself in 15 years. This will be achieved through training in crop rotation, no-till farming, fertilizer use and planting techniques. “Investing in extension
is the only way to reap the full benefit of innovation,” Bill and Melinda Gates emphasized. It is predicted this will lead to a 50 percent yield increase across Africa, reducing famines through more nutritious crops and a reduced dependence on imports. Mobile phones will also be a game-changer, giving farmers access to information on improved seed and fertilizer, proper techniques, daily weather reports and market prices.

The notion that scientists should work closely with farmers is central to CIMMYT’s approach. There is a great deal of information out there today and farmers have choices to make. Selecting the right seed varieties and technologies alone is not enough. It is also crucial to combine this knowledge with an understanding of how to develop an integrative agronomic system that connects farmers to a working value chain. In this respect agricultural extension can help farmers achieve their agricultural goals.

Nonetheless, agricultural extension alone will not be sufficient to help African farmers increase agricultural productivity. Extension must go hand in hand with developing new varieties – why use an Altair Basic if you can get a Surface Pro 3? Tanzanian farmer Joyce Sandiya’s success with new drought tolerant maize seed is featured in the annual letter. “That seed made the difference between hunger and prosperity,” she said, eloquently reflecting on the importance of a single seed.

CIMMYT projects in Africa that are funded by the Bill & Melinda Gates Foundation show how to develop and deploy new seed varieties. In eastern and southern Africa, up to 2 million farming households have benefited from improved drought tolerant maize seed emerging from joint work by CIMMYT scientists and seed companies, government exten-sion programs and national research organizations.

Research alone is academic, unless it is informed by awareness of problems on-farm and supported by extension. Agricultural research is essential to develop new seed varieties, technologies and innovations, while extension is crucial to ensure that farmers can use these technologies.

Boosting yields while staving off the spread of wheat diseases

El Dr. Julio Huerta, patĂłlogo experto en royas y cientĂ­fico adjunto (asignado por el Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP)/Investigador de Trigo y Avena INIFAP CIRCE CEVAMEX).

Wheat provides about 20 percent of the world’s food calories. Growing wheat to maturity can be complicated by fast-spreading virulent diseases, which threaten production and land-shortage pressures.

Two among many wheat scientists in the wheat breeding program with the International Maize and Wheat Improvement Center (CIMMYT) near Mexico City, work to develop and fine-tune high-yielding, disease-resistant wheat varieties.

Ravi Singh head of CIMMYT’s Global Spring Wheat Improvement Program and Julio Huerta, a rust pathologist, select the most desirable traits suitable for about 60 percent of the developing world’s wheat growing area across various climates, environments and at risk of threats from diseases and pests.

Their understanding of the selection process evolved from nearly four decades of research, which began as they worked under the mentorship of Sanjaya Rajaram, the winner of the 2014 World Food Prize, at CIMMYT research stations in El Batan, Obregon and Toluca.

“As a teacher, Dr. Rajaram led us through the Socratic method of questioning to help young scientists observe, articulate and learn from what they saw in the wheat fields,” Huerta said.

Inspired by what he refers to as the “freedom to flourish,” through the process of asking and receiving answers to questions which inspired him, Huerta developed an eye for wheat selection and judicial elimination in wheat breeding ultimately becoming one of the top wheat curators in the world.

Over the years, as their skills developed, Huerta and Singh tested the theoretical basis for wheat improvement to help form an applied regime approach whereby the “laws” of science are evaluated in practice – in fields across the globe. This work led to their capacity to produce germplasm – or wheat material – which is ultimately distributed to government-run National Agriculture Research Systems (NARS).

“We develop a set of germplasm that is distributed globally,” Singh said. “However, as we make distribution decisions, we evaluate the locations where these seeds will be grown prior to selecting appropriate traits suitable for specific contexts such as high-heat or early frost.”

After receiving germplasm from CIMMYT, NARS work with local seed nurseries to consider which varieties would be best to grow, adapting recommended varieties to their local environment.

Scientists Singh and Huerta offer vital contributions to the ability of farmers to generate profits while strengthening food security by improving wheat productivity. A key part of this work involves replacing varieties susceptible to disease with durable resistant varieties that mitigate losses.

Over many years, CIMMYT has worked with hundreds of partner organizations and thousands of individuals; seed from CIMMYT’s International Wheat Improvement Network has been delivered to 121 countries.

‘Gluten-free’ diets put food security, human health at risk – nutritionist

Hans Braun, director of the Global Wheat Program at CIMMYT examines wheat with nutritionist Julie Miller Jones in a greenhouse at CIMMYT headquarters near Mexico City. Jones presented a talk on nutrition and wheat at CIMMYT. Photo: Xochiquetzal Fonseca/CIMMYT
Hans Braun, director of the Global Wheat Program at CIMMYT examines wheat with nutritionist Julie Miller Jones in a greenhouse at CIMMYT headquarters near Mexico City. Jones presented a talk on nutrition and wheat at CIMMYT. Photo: Xochiquetzal Fonseca/CIMMYT

EL BATAN, Mexico (CIMMYT) — Eliminating wheat consumption to avoid ingesting gluten is at best unnecessary for most people and at worst means that diets could lack cereal fiber and other valuable health benefits provided by grains, according to a top nutritionist.

Complete removal of wheat from the human diet would further cripple global efforts to feed the current global population of 7.2 billion, said Julie Miller Jones during a presentation delivered to scientists at CIMMYT on Tuesday.

Despite providing 20 percent of calories consumed globally, wheat and its protein complex, gluten, are often criticized in books and news stories as the cause of many human ailments. However, wheat and grain-based staples provide an array of nutritional and health benefits.

The claim that such non-cereal fibers as those found in fruit, vegetables and legumes can replace cereal fibers has been shown to be untrue, said Miller Jones, who is professor emeritus of nutrition at St. Catherine University in St. Paul, Minnesota.

Eating fibers from a variety of sources plays a role in maintaining healthy cholesterol and blood sugar levels, she said, adding that they also reduce the risk of gut disorders, help maintain healthy gut bacteria and keep unhealthy bacteria at bay.

Abandoning wheat consumption altogether could lead to a reliance on more costly foods, in short supply or impossible to produce on a global scale to meet the dietary needs of a population expected to increase to more than 9 billion by 2050, said Miller Jones.

“Even if we did decide to abandon wheat as a dietary staple, we don’t have the turnaround time, the availability or the quantity of foods that have been recommended as alternatives in anti-gluten fad diets,” she said.

The popularity of gluten-and wheat-free diets has grown largely due to claims published in such books as “Wheat Belly” by William Davis, “Grain Brain” by David Perlmutter and in the news media, asserting that wheat products are the cause of most health problems. Such claims counter current medical and nutritional advice in international dietary guidelines established in conjunction with the Food and Agriculture Organization (FAO) and the World Health Organization (WHO).

Javier Peña, wheat quality specialist CIMMYT examines bread with nutritionist Julie Miller Jones in the wheat quality laboratory at CIMMYT. Jones presented a talk on nutrition and wheat at the Center. Photo: CIMMYT

“Gluten-free” is a burgeoning industry. Sales have risen 63 percent since 2012, with almost 4,600 products introduced last year, according to “Consumer Reports” magazine.

This is an alarming trend for such nutritionists as Miller Jones, who was also at CIMMYT to discuss the outline for a series of research papers on the various aspects of grain carbohydrates, gluten and health.

“‘Gluten-free’ is actually just another low-carb diet with a hook – any diet that suggests abandoning an entire food group is unhealthy,” said Miller Jones who recommends the DASH diet, which is rich in fruits, vegetables, low fat or non-fat dairy products, whole grains, lean meats, fish, poultry, nuts and beans.

Read the full story here.

Further reading
CIMMYT Review Paper:
Anti-Wheat Fad Diets Undermine Global Food Security Efforts

MasAgro offers tortillas made of maize hybrids in highlands workshop

On 11 November 2014, representatives of Mexico’s highland maize value chain attended a workshop at CIMMYT headquarters in El Batán, Mexico. MasAgro-Maize Network partners, a representative from the milling industry and members of the MasAgro-Farmer team tested hybrid grains from the CIMMYT highlands maize genetic improvement program. Participants also analyzed parent lines of hybrids and measured the grain quality of two CIMMYT hybrids for dough and tortillas.

Natalia Palacios (green hat, right), maize nutrition quality specialist, explained the process for defining grain quality and outlined dough and tortilla industry requirements.
Natalia Palacios (green hat, right), maize nutrition quality specialist, explained the process for defining grain quality and outlined dough and tortilla industry requirements.

The workshop was organized by Arturo Silva, leader of the MasAgro-Maize component, and Alberto Chassaigne, responsible for CIMMYT seed systems.

Principal researcher JosĂ© Luis Torres and his colleague Carmen BretĂłn led a tour of trial plots, where workshop participants could see CIMMYT hybri and synthetic varieties for Mexico’s highlands. Breeding experts explained the origins of each material while participants examined the aspect of ears.

Ubaldo Marcos, CIMMYT maize seed production manager, presented seed production technology for six hybrids, as well as the differences between ear size and female parental seed, which are grown at densities of 65,000 and 75,000 plants per hectare.

Afterwards, there was a demonstration of artisanal nixtamalization to obtain dough from two CIMMYT hybrids. Natalia Palacios, maize nutrition quality specialist, explained grain quality and outlined dough and tortilla industry requirements. Tortillas were then made from the nixtamalized dough. A positive opinion from the representative of the dough industry was much appreciated.

The participants also estimated yields of the white and yellow hybrids evaluated as part of the MasAgro Highlands Network under low nitrogen, rain-fed and irrigated systems and the estimates were compared to real yield values. At the end, workshop participants concluded that MasAgro-Maize takes advantage of the crop’s genetic potential to boost maize yields in the highlands.