Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Director General Martin Kropff on Science Week 2015: “Taking CIMMYT to the next level”

During Science Week (15-18 June) held at CIMMYT headquarters in El Batán, Mexico, scientists from around the world gathered to share the successes and review the activities of different CIMMYT programs. Attendees sought to find solutions to help meet global food needs related to basic cereals, as well as combat poverty and face the challenges posed by climate change.

CIMMYT staff from around the world came together to discuss key points and identify new opportunities for improving work quality, learn-change processes, work plans for the coming decades and CIMMYT’s role in science and development.

“The main objective of this Science Week is to take CIMMYT to a higher level of quality and create more impacts,” said CIMMYT Director General Martin Kropff, who welcomed scientists from all over the world. Kropff highlighted the importance of research to learn change processes for the next decades and reaffirm CIMMYT’s goals while interacting with external partners.

For Kropff, Science Week is an opportunity to develop better communication channels so that the ideas of all participants can help formulate a new strategy that fosters better cooperation among the different CIMMYT programs in order to achieve the best impacts.

Kropff also mentioned the importance of CIMMYT’s genetic breeding work, the work done in our germplasm banks and of strategies aimed at achieving sustainable intensification of cereal production worldwide.

Science Week 2015 participants at welcome and introduction ceremony. Photo: CIMMYT
Science Week 2015 participants at welcome and introduction ceremony. Photo: CIMMYT

“CIMMYT is a great institution and has grown very quickly, so it is necessary to put all our scientists to work and develop new plans, new projects and new ways of making future impacts,” said Kropff.

In his final remarks, the Director General said he was very happy to be part of CIMMYT because of the great scope for improvement that events like Science Week provide. “This is the best start one could have, to know all CIMMYT staff worldwide and that they know me, so we can communicate more openly,” Kropff said.

The race to feed the world by 2050: implications for international agricultural research

The good news: by 2050, world population growth will likely fall to half or less the rate of 1.7% per year witnessed over the last half of the 20th century, offering a glimmer of hope for humanity to feed itself sustainably. More troubling though is that agricultural productivity growth is also slowing in many parts of the world, often because of declining investments in farm productivity-oriented research and political indifference. Which competing trend will win out in the end?

Attempting to answer this critical question and shed light on the causes, Philip G. Pardey, Professor of Science and Technology Policy, University of Minnesota, spoke to a global gathering of CIMMYT scientists in Mexico on 15 June. His presentation gave evidence and conclusions from recently published research1 to develop and apply the new “International Agricultural Prospects” model that projects global agricultural consumption and production to 2050.

Looking at U.S. trends over the 20th Century, Pardey said that agricultural productivity grew quickly until 1990 but the pace of growth slowed afterwards by more than half. “Data from 1910 show a curvilinear trend featuring a productivity surge in the 1950s-70s,” he explained. “This U.S. surge might be illustrative of a more general one-time phenomenon in many agricultural economies around the world. This includes widespread uptake of agricultural chemicals, improved seeds, fertilizer and other modern inputs, and a massive movement of labor out of the sector.” The implication, he said, was a need to double down on sustainable agricultural productivity growth including giving increased attention to research that maintains past productivity gains.

Other conclusions from Pardey included:

  • Think long-term: it takes decades to go from an idea to a commercialized farm technology.
  • The basic political economy is driving investments away from farm productivity.
  • Population and demographics are major determinants of the consumption of agricultural output.
  • Additional demand for biofuels may not have as dramatic an effect on food futures as some speculate.
  • Available agricultural land appears more than sufficient for the projected growth in food production.
presentation on international agriculturalprospects. To left, Director General Kropff live tweets event. Photo: CIMMYT
Science Week participants listen to Pardey’s presentation on international agricultural prospects. To left, Director General Kropff live tweets event. Photo: CIMMYT

Regarding consumption, the model factored in consumption of biofuels, human food and animal feed, while considering changes in population growth, per capita income, and demographics — most notably the aging of the planet’s population. “We expect worldwide average per capita incomes in 2050 to be at the levels of more prosperous countries in 2000, but with a big spread among regions of the world,” said Pardey. “There will be encouraging reductions in people below the poverty line, but major clusters of the poor will persist in South Asia and Sub-Saharan Africa.” He also observed that increased life expectancies and numbers of the elderly in countries like China would reduce the demand for calories and change the structure of diets.

The driving factors used to forecast production included the pace of crop yield growth in different regions around the world, the location and availability of agricultural land, and its agro-ecological suitability for growing specific crops. “In the U.S., the ‘average’ maize plant has moved 279 kilometers north and 342 kilometers west since 1910,” he explained. “From 16 to 21 percent of the growth in U.S. maize output is attributable to this movement.”

[1] See A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050 and The International Agricultural Prospects Model: Assessing Consumption and Production Futures Through 2050 (version 2.1).

Quality Protein Maize – what’s in a name?

Across Ethiopia, farmers bring a different dimension to the age-old tradition of naming children in symbolic and meaningful ways, by assigning a human name to Quality Protein Maize (QPM) that reflects its importance. In some parts of Oromia region, QPM is known as Gabissa, meaning builder, because it is believed to build bodies and make people strong. In the Amhara region, it is known as ‘Almi Bekolo’ or ‘Gembi bekolo, both names meaning building the body.  QPM has gained its fame across Ethiopia, as an affordable and viable option to alleviate protein malnutrition and reduce animal feed costs thanks to the CIMMYT’s Nutritious Maize for Ethiopia (NuME) project and many national partners.

QPM looks and tastes the same as normal maize but contains up to twice as much of the essential amino acids, lysine and tryptophan. Eating QPM is beneficial for children who survive on a maize-dominated diet. According to a study in Food Policy children who consume QPM benefit from 12% increased weight and 9% increased height.

Commitment to the agriculture sector

Around 10% of the Ethiopian national budget has been allocated to agriculture, according to the Ministry of Agriculture. As a result, the agriculture sector, which accounts for roughly 43 per cent of overall GDP, has been registering steady progress over the past two decades, landing the country on a path to food security. A number of other measures have contributed to this success, such as the availability of fertilizer, improved seed and agricultural extension services, which have currently reached more than 8 million farmers.

A focus on nutrition security

The Ethiopian government is currently stepping up nutrition interventions targeting women and children, with aims for a 3% annual reduction in the number of stunted and underweight children, according to the Government’s five-year Growth and Transformation Plan. However, the fact that 2 out of every 5 children in Ethiopia are stunted and 28% of all child mortality in Ethiopia is associated with undernutrition or malnutrition, is a clear indication that a lot still needs to be done.

In Hawassa, southern Ethiopia, maize is eaten as corn bread, baked on a big clay plate. To ensure that QPM bread tastes as good as the conventional maize bread, NuME teamed up with two lecturers of the Hawassa University, Tafese and Debebe, who are organized taste tests. Photo: H. De Groote/CIMMYT
In Hawassa, southern Ethiopia, maize is eaten as corn bread, baked on a big clay plate. To ensure that QPM bread tastes as good as the conventional maize bread, NuME teamed up with two lecturers of the Hawassa University, Tafese and Debebe, who are organized taste tests. Photo: H. De Groote/CIMMYT

To tackle the challenge of malnutrition in Ethiopia, CIMMYT takes a holistic approach to QPM and conducts a range of activities including: improved crop management practices, post-harvest handling and processing, increasing the participation of women, nutrition campaigns, as well as strengthening institutional capacity. Since 2012, 143,747 farmers, extension workers and development officials (of which 28% are women) have attended 993 field demonstrations and 240 field days on QPM utilization.

Funded by the Canadian Department of Foreign Affairs, Trade and Development, CIMMYT is working with the Ethiopian Institute of Agricultural Research, the Ministry of Agriculture and other partners to improve food and nutritional security in Ethiopian farming communities through the promotion and expansion of QPM backed by improved agronomic practices that increase productivity. NuME is building on the success of previous CIMMYT projects to bring QPM to rural maize producers in the Ethiopian maize belt and beyond where consumers, especially young children and women, are at risk of lysine deficiency.

The Skywalker Project: soaring to new heights

Though its name implies science fiction, Skywalker’s results have been incredibly real. A small, unmanned aerial vehicle equipped with remote sensing devices, Skywalker flies over maize fields collecting images and data. It is able to measure several hundred plots in one take. Spectral reflectance and thermal imagery cameras on its wings allow scientists to conduct non-destructive screening of plant physiological properties such as crop growth and water use, at enough resolution to obtain information at plot level.

Under a competitive grant from the MAIZE CRP, the ‘Affordable Field Based HTPP’ or Skywalker project seeks to make state-of-the-art, but affordable, aerial phenotyping platforms available to National Agricultural Research Systems (NARS) to develop new varieties that are tolerant to drought, heat and low nitrogen. It is being developed in collaboration by researchers from the University of Barcelona, Spain; Crop Breeding Institute (CBI), Zimbabwe; Instituto Nacional de Innovación Agraria, Peru; AirElectronics; and Sustainable Agricultural Institute of the High Research Council, Spain.

Charles Mutimaamba, Chief Research Officer and Maize Breeder at CBI and Collaborating Scientist with the Skywalker project, as well as Jill Cairns and Mainassara Zaman-Allah, CIMMYT maize physiologists, recently took the time to provide updates on the project’s challenges and successes thus far.

 

Q: Why was the Skywalker project initially developed?

Jill: The project was developed to bridge the gap between expensive phenotyping platforms being developed at agricultural research institutes and plant breeding institutes in regions of the world where increasing yields is critical for food security.

 

Q: What, in your opinion, are the project’s main achievements so far?

Mainassara: The development of an affordable phenotyping platform that is able to deliver spatial field variability and secondary trait data that can be used to increase breeding gains and enhance NARS awareness of the technological innovation opportunities for research and capacity building that can be gained by partnering with organizations such as CIMMYT.

 

Q: What has been the greatest challenge?

Charles: The multi-stakeholder involvement in the project has been a little challenging in terms of the geographical distances involved, but one benefit is that you get people with diverse skills involved.

 

Q: The CBI in Zimbabwe recently received the prestigious Robert Gabriel Mugabe Award for Outstanding Research. Did the Skywalker project contribute to this award?

Charles: Yes, it did. When we submitted our award nomination, one key activity that we mentioned was embracing and making use of the latest technologies available, specifically the Skywalker, to make our research more precise. The organizers took serious note of that.

 

Q: The project started out as a small pilot grant of the CRP, yet in just a few years, breeders’ interest in the project has greatly increased. What do you think caused this?

Mainassara: Several programs such as the Global Conservation Agriculture Program, visiting NARS from Zambia, private companies from South Africa and colleagues from India have expressed interest in the platform. Breeders are primarily focused on yields; they run many plots across multiple locations and require fast data turnaround for planning the next season. Therefore, they will only take up a new tool if it can reduce their workload and increase gains, and that is what Skywalker does.

 

Q: As a NARS, what do you believe has been the biggest benefit of partnering with the MAIZE CRP and with CIMMYT on the Skywalker project?

Charles: One big benefit has been the provision of resources, which for NARS can sometimes be a big challenge and serious problem. Then there are benefits from the CRP such as the opportunity to network with institutions such as the University of Barcelona and QuantaLab in Spain. Our view is that it has opened doors for us as an institution, which will allow us to strengthen our skills and expertise so that in the long run the project is sustainable.

 

Q: What do you see as the future of remote sensing technology such as the Skywalker in agriculture?

Jill: This technology has great potential to be used to curb the spread of maize lethal necrosis (MLN). Screening for MLN currently involves visual ratings of disease severity, which is time consuming and subjective. In addition, these measurements have to be taken many times in many fields over a short period of time. Based on the success of the Skywalker project, it was decided that remote sensing could be used to rapidly and quantitatively measure the severity of MLN symptoms in individual plots. The MAIZE CRP recognized phenotyping for MLN as a research gap and there is now a new MAIZE strategic grant to apply this technology in the development of MLN tolerant maize germplasm with the Kenya Agricultural and Livestock Research Organization and the University of Barcelona.

Please click here for more information on the Skywalker and other aerial remote sensing devices.

Charles Mutimaamba, Chief Research Officer and Maize Breeder at the CBI, pauses for a photo with the Skywalker in a field. Photo: Thokozile Ndhlela
Charles Mutimaamba, Chief Research Officer and Maize Breeder at the CBI, pauses for a photo with the Skywalker in a field. Photo: Thokozile Ndhlela

First wheat improvement training course for young scientists held in Pakistan

Hands-on field work. Photo: Monsif-ur-Rehman/CIMMYT
Hands-on field work. Photo: Monsif-ur-Rehman/CIMMYT

The Wheat Productivity Enhancement Program (WPEP) in Pakistan, led by CIMMYT and funded by the United States Department of Agriculture (USDA), is working to enhance and protect wheat productivity in Pakistan by supporting research leading to the identification, adoption and optimal agronomic management of new, high yielding, disease resistant wheat varieties.

The objective of the first Wheat Improvement Training Course, conducted from 1 March–24 April 2015, was to build the capacities of 20 early- and mid-career scientists and Ph.D. scholars from across Pakistan. Organized in collaboration with the Wheat Research Institute (WRI) and the Ayub Agricultural Research Institute (AARI) in Faisalabad, Punjab province, this unique learning opportunity included lectures, field demonstrations and lab work focusing on conventional and molecular breeding methodologies, plus wheat pathology, physiology and quality.

Participants visiting the food technology laboratories. Photo: Monsif-ur-Rehman/CIMMYT
Participants visiting the food technology laboratories. Photo: Monsif-ur-Rehman/CIMMYT

Another objective was to acquaint participants with new and improved wheat germplasm including both CIMMYT introductions and WRI local germplasm.
Specialists in wheat breeding, pathology, agronomy, physiology, statistics, entomology and quality shared their experiences with the participants, who also received hands-on training on emasculation and pollination procedures in wheat and barley; rust and Karnal bunt inoculation procedures in the field; varietal release procedures; the varietal release program; aphid identification; and rejection and selection criteria used in wheat trials.

The course was followed by a loose smut eradication campaign in AARI fields in Faisalabad, Punjab province. The participants also visited food technology laboratories where they observed various activities and equipment used for assessing protein and starch content, gluten tolerance and baking quality.

Maize lethal necrosis poses serious threat to East Africa’s seed sector

The International Conference on MLN Diagnostics and Management in Africa, held on 12-14 May 2015 in Nairobi, Kenya, is the second meeting CIMMYT has organized this year on maize lethal necrosis (MLN), coming soon after an MLN diagnostics and screening workshop held in March. This points up how important the disease is to the entire CIMMYT fraternity in Africa.

Officials at the opening of the MLN international conference in Nairobi. Left to right: George Bigirwa (AGRA), Stephen Mugo (CIMMYT), Joe DeVries (AGRA), Felister Makini (KALRO) and Gary Atlin (Bill & Melinda Gates Foundation). Photo: CIMMYT
Officials at the opening of the MLN international conference in Nairobi. Left to right: George Bigirwa (AGRA), Stephen Mugo (CIMMYT), Joe DeVries (AGRA), Felister Makini (KALRO) and Gary Atlin (Bill & Melinda Gates Foundation). Photo: CIMMYT

The conference, organized jointly with the Alliance for a Green Revolution in Africa and the Bill & Melinda Gates Foundation, in collaboration with the Kenya Agricultural and Livestock Research Organization (KALRO), brought together critical players in the maize sector, particularly seed companies, to discuss how to effectively control seed transmission of MLN pathogens by ensuring the production, distribution and cultivation of non-contaminated commercial seed, which is a major concern for CIMMYT.

B.M. Prasanna, Director of CIMMYT’s Global Maize Program, explained the urgency of this concerted effort, “This is a complex challenge that requires multi-institutional and multi-disciplinary synergies. It’s not just about developing and deploying MLN-resistant varieties, but also understanding how the disease is transmitted, the factors underlying its rapid spread and ways to control its spread to unaffected countries while limiting its damage.”

The role of seed companies in MLN-endemic countries of East Africa is particularly critical for limiting seed contamination and curbing further spread through infected seed. However, like farmers, seed companies are suffering massive production losses, increased production costs and reduced sales due to MLN. Therefore a balanced approach is very important.

CIMMYT and KALRO continue to support seed companies and national research programs by screening their germplasm at the MLN screening facility in Kenya. During the conference, seed company representatives visiting the facility were invited to send their germplasm for screening during the current cropping season. It is clear that seed companies need more support to train their staff to recognize early infection; they must also adopt best practices for monitoring, diagnosing and managing MLN.

Conference participants view experimental maize hybrids at the MLN screening facility with explanations from CIMMYT staff. Photo: CIMMYT
Conference participants view experimental maize hybrids at the MLN screening facility with explanations from CIMMYT staff. Photo: CIMMYT

Ongoing research to develop MLN-resistant varieties is at the core of the work CIMMYT does in Africa in close partnership with the public and private sectors, including seed companies.The Africa RISING Project and the CGIAR Research Program on MAIZE also support these efforts. However, there are no quick solutions, and developing and disseminating MLN-resistant maize varieties will take several years.

Two recent CIMMYT publications MLN Pathogen Diagnosis, MLN-free Seed Production and Safe Exchange to Non-Endemic Countries and Distribution and Impact of MLN in Kenya gave the participants very useful information and the best practices for managing MLN in both endemic and non-endemic countries. The latter, a study on MLN incidence, distribution, severity and impact in Kenya, gives a head start to future studies in endemic East African countries by helping to fill the current information gap.

During the conference, specific recommendations were made to prevent MLN spread, reduce virus infections and efficiently screen seed lots.

 

SAGARPA and CIMMYT aligning agendas for a great new vision on sustainable maize and wheat systems for improved livelihoods

martinez and kropffTexcoco, Mexico, 11 June 2015.- Mexico’s Secretary of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and the International Maize and Wheat Improvement Center (CIMMYT) discussed today their continued commitment to Mexico’s food security and pledged to work together to raise Mexico’s self-sufficiency of cereal production to 75 percent by 2018. Enrique Martínez y Martínez, head of SAGARPA, and Martin Kropff, newly appointed director general at CIMMYT, held a meeting to discuss research and development priorities in the framework of their strategic collaboration. As an example of the collaboration the MasAgro project aims to boost maize productivity by promoting use of improved seeds and sustainable farming practices among Mexico’s smallholder farmers and how these past efforts can be improved for more impact that responds to real needs.

Secretary Martínez y Martínez acknowledged CIMMYT’s efforts in increasing maize and wheat productivity in Mexico and in the world but requested the non-profit international research organization to come up with new ideas to tackle food security challenges in Mexico within the new global context. President Peña Nieto pledged to increase spending in research to 1 percent of Mexico’s GDP. Current investment stands at 0.35 percent and SAGARPA counts on CIMMYT to help increase investment in agricultural research for development, Martínez said.

During the meeting, Martin Kropff restated CIMMYT’s commitment to Mexico’s development. “We strongly believe in public – private partnerships and want to help Mexico further strengthen its links with international research networks,” said Kropff who was Rector of Wageningen University, a world class agricultural higher education institution in the Netherlands, before recently joining CIMMYT. Research, however, should not be done for the sake of research but garantee impact and respond to demand-driven needs, agreed both leaders.

SAGARPA and CIMMYT agreed to work together to develop a yellow maize integrated seed sector in Mexico. The country is self-sufficient in white maize production but imports between 8 to 10 million tons of yellow maize to meet industry and livestock demand for yellow grain. Also a plan for a public-private investment platform in the wheat sector could jointly be developed through a bilateral working agenda.

The land that feeds us

​The Land that Feeds Us: Growing Land Scarcity, the Borlaug Hypo​​thesis, and the Rise of Megafarms

by Derek Byerlee

​Visiting Scholar, Stanford University and Adjunct Professor, Georgetown University, United States

​Date: Monday, 1st June 2015

Time: 12:30-13:30hrs.

Venue: New Auditorium

 

Download Presentation

 

*The idea behind brown bag lunchtime seminars is to use the lunch break in everyone’s busy schedule to hold a brief exchange of ideas.

​The Land that Feeds Us: Growing Land Scarcity, the Borlaug Hypo​​thesis, and the Rise of Megafarms

by Derek Byerlee

​Visiting Scholar, Stanford University and Adjunct Professor, Georgetown University, United States

​Date: Monday, 1st June 2015

Time: 12:30-13:30hrs.

Venue: New Auditorium

 

Download Presentation

 

*The idea behind brown bag lunchtime seminars is to use the lunch break in everyone’s busy schedule to hold a brief exchange of ideas.

Farmers in India embrace high-zinc wheat for its nutritional benefits

Under-nourishment affects some 795 million people worldwide. According to the U.N. Food and Agriculture Organization (FAO), more than one out of every nine people do not eat enough to lead healthy, active lives. Almost 780 million undernourished people live in developing countries, with about 94% in Asia and Africa, FAO reports.

Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India
Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India

But these statistics tell only part of the story. Two billion people around the world also suffer from micronutrient deficiency, according to the World Health Organization (WHO). Also known as “hidden hunger,” micronutrient deficiency occurs when the food consumed by people does not provide enough vitamins and minerals. People in South Asia and sub-Saharan Africa are hardest hit by hidden hunger, which is characterized by iron-deficiency anemia, and vitamin A and zinc deficiency.

Zinc is important for cellular growth, cellular differentiation and metabolism. Zinc deficiency, which affects about one-third of the global population, limits childhood growth and decreases resistance to infection. According to WHO, zinc supplements may help to improve linear growth of children under five years of age.

Tackling hidden hunger is the major focus of the HarvestPlus-led wheat biofortification breeding program at CIMMYT and its national program partners in South Asia. The main objective of the program is to develop and disseminate competitive wheat varieties with high grain zinc content and other essential agronomic features.

The biofortification breeding program introduces high zinc levels derived from the best sources (wild species and landraces) into adapted wheat backgrounds. The result is widely adapted, high yielding, high zinc varieties with durable disease resistance. These new varieties are 20-40% superior in grain zinc concentration and are agronomically on a par or superior to other wheat cultivars popular in South Asia. Research is also underway to transfer genomic regions into adapted backgrounds in a more precise and targeted manner, thus accelerating breeding efficiency, as well as to identify biofortified varieties for specific growing conditions in target countries.

Women farmers in field.
Women farmers involved in seed production and dissemination of high zinc varieties, along with Banaras Hindu University (BHU) and CIMMYT researchers.

Competitive high zinc wheat varieties have already been distributed to national program partners in South Asia to reach resource-poor smallholder farmers. In 2012, HarvestPlus devised a strategy with Banaras Hindu University and CIMMYT to reach thousands of wheat farmers with zinc-biofortified, disease resistant wheat in eastern Uttar Pradesh, India. Wheat productivity in this region is low compared to other parts of the country, which is why it was chosen to serve as a platform for testing and promoting high zinc wheat varieties.

After various demonstrations in 18 villages, many of the farmers became interested in adopting high zinc wheat. In 2013, seed mini-kits were distributed to farmers in the region and by 2014, more than 10,000 farmers had adopted high zinc wheat.

Public-private partnerships are contributing to fast-track commercialization. As a result, more than 50,000 farmers adopted zinc-biofortified wheat varieties during the 2015-2016 crop cycle. Farmers are happy with the “Zinc Shakthi” variety for its good performance, including a yield advantage of about 5-10% under both full and limited irrigation, as well as its grain size, cooking quality, grain color and overall appearance.

For development expert Paula Kantor, gender equality was crucial

1400EL BATAN, Mexico (CIMMYT) – Paula Kantor had an exceptionally sharp, analytical mind and a deep understanding of how change can empower men and women to give them greater control over their own lives, helping them shape their future direction, said a former colleague.

Kantor, a gender and development specialist working with the International Maize and Wheat Improvement Center (CIMMYT), died tragically on May 13 at age 46, in the aftermath of a Taliban attack on the hotel where she was staying in Kabul, Afghanistan.

At the time, she was working on a new CIMMYT research project focused on understanding the role of gender in the livelihoods of people in major wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

The aim of the three-year project, supported by Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), is to find out how wheat research-and-development can contribute to gender equality in conservative contexts so that, in turn, gender equality can contribute more to overall development.

“Paula’s research was targeting a very large populace facing serious threats to both food security and gender equality,” said Lone Badstue, gender specialist at CIMMYT, an international research organization, which works to sustainably increase the productivity of maize and wheat to ensure global food security, improve livelihoods and reduce poverty.

“Paula had vast experience – she spent most of her working life in these contexts – in very patriarchal societies – and had a great love for the people living in these regions. She also had a deep understanding of what she felt needed to change so that both men and women could have a better chance to influence their own lives and choose their own path.”

Kantor, a U.S. citizen, was no stranger to Afghanistan. Several years before joining CIMMYT, she had been based in Kabul where she worked as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency, from 2008 to 2010.

The project Kantor was working on at the time of her death builds on the idea that research and development interventions should be informed by a socio-cultural understanding of context and local experience, Badstue said.

Ultimately, this approach lays the groundwork for a more effective, equitable development process with positive benefits for all, she added.

WHEAT AND GENDER

Globally, wheat is vital to food security, providing 20 percent of calories and protein consumed, research shows. In Afghanistan, wheat provides more than half of the food supply, based on a daily caloric intake of 2,500 calories, while in Pakistan wheat provides more than a third of food supply, and in Ethiopia it provides about 13 percent of calories, according to the U.N. Food and Agriculture Organization (FAO) and the Global Food Security Index. These data do not reflect gender disparity with regard to food access.

In Afghanistan, Ethiopia and Pakistan, the central role of wheat in providing food security makes it an important part of political stability. Overall, gender inequality and social disparities have a negative impact on general economic growth, development, food security and nutrition in much of the developing world, but particularly in these three countries, Badstue said.

Women make up between 32 to 45 percent of economically active people in agriculture in the three countries, which are classified by the U.N. Development Programme’s Gender Inequality Index in the “low human development” category.

Although women play a crucial role in farming and food production, they often face greater constraints in agricultural production than men, Badstue added.

Additionally, rural women are less likely than men to own land or livestock, adopt new technologies, access credit, financial services, or receive education or extension advice, according to the FAO.

Globally, if women had the same access to agricultural production resources as men, they could increase crop yields by up to 30 percent, which would raise total agricultural output in developing countries by as much as 4 percent, reducing the number of hungry people by up to 150 million or 17 percent, FAO statistics show.

“Addressing gender disparities between women and men farmers in the developing world offers significant development potential,” Badstue said.

“Improvements in gender equality often lead to enhanced economic efficiency and such other beneficial development outcomes as improved access to food, nutrition, and education in families.”

METICULOUS RESEARCHER

Paula was brilliant,” Badstue said. “She had a clear edge. She was someone who insisted on excellence methodologically and analytically. She was very well equipped to research issues in this context because of her extensive experience in Afghanistan, as well as her considerate and respectful manner.”

Kantor’s involvement in “Gennovate,” a collaborative, comparative research initiative by gender researchers from a series of international agricultural research centers, was also critical, Badstue said.

The group focuses on understanding gender norms and how they influence the ability of people to access, try out, adopt or adapt new agricultural technology. Kantor provided key analytical and theoretical guidance, inspiring the group to take action and ensure that Gennovate took hold.

Kantor’s work went beyond a focus on solving practical problems to explore underlying power differences within the family or at a local level.

“Agricultural technology that makes day-to-day work in the field easier is crucial, but if it doesn’t change your overall position, if it doesn’t give you a voice, then it changes an aspect of your life without addressing underlying power dynamics,” Badstue said.

“Paula was trying to facilitate lasting change – she wasn’t banging a particular agenda, trying to force people into a particular mind-set. She was really interested in finding the space for manoeuver and the agency of every individual to decide what direction to take in their own life. She was a humanist and highly respected throughout the gender-research community.”

Before joining CIMMYT, Kantor served as a senior gender scientist with the CGIAR’s WorldFish organization for three years from 2012. She also worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

A funeral mass will be held for Paula Kantor at 11 a.m. on June 11, 2015 at St Leo the Great Catholic Church in Winston Salem, North Carolina. 

CIMMYT will hold a memorial service for Paula Kantor on Friday, June 12, 2015 at 12:30 p.m. at its El Batan headquarters near Mexico City. 

Conservation agriculture in Africa: where does it fit?

Conservation agriculture (CA) encompasses the principles of minimum soil disturbance, retention of crop residues on the soil and diversification through crop rotations and associations. Worldwide, CA adoption exceeds 125 million hectares. Its benefits include reduced production costs and soil degradation, more effective and efficient use of resources like water and fertilizer, and greater overall cropping system productivity. CA-based practices have recently regained scientific attention as part of newly emerging concepts such as sustainable intensification, ecological intensification and climate-smart agriculture.

CIMMYT’s increasing efforts to promote CA in Sub-Saharan Africa began at a regional hub in southern Africa in 2004, moved to eastern Africa in 2009, and subsequently expanded to other Africa locations. In Africa, conservation agriculture has benefitted from significant donor attention and the call to address multiple agricultural challenges, which include the pressure of expanding populations on land resources, declining soil fertility, low productivity, and the negative effects of climate variability.

Research has proven the biophysical and economic benefits of CA for Africa, yet CA adoption and spatial expansion by African farmers is relatively low, compared to its acceptance in similar agro-ecologies in the Americas and Australia.

The lack of widespread adoption in Africa has led some researchers to question the suitability of CA for smallholder farmers in Africa or the wisdom of spending resources to study and promote it. A divide between CA-for-Africa proponents and opponents in the research community has opened, obscuring issues and hindering unbiased examination of CA opportunities and constraints. Adding to the uncertainty, there is little research in Africa to assess where CA might make the best impact or, more generally, where conditions are simply too marginal for cropping systems of any type.

AFTER 10 YEARS OF RESEARCH, WE FEEL IT IS CRITICAL TO LOOK OBJECTIVELY AT WHERE WE ARE WITH CA IN AFRICA. Specifically: What is CIMMYT’s comparative advantage in the research and development of CA systems? Does “business-as-usual” — that is, conventional tillage systems — provide better outcomes? Is there any form of alternative agriculture being adopted more quickly or widely than CA? Do we gain anything if we lose our comparative advantage as a leading global CA research institute and only focus on “good agronomic practices”?

We believe that CA has great promise for smallholder farmers in sub-Saharan Africa but CIMMYT and other organizations may have approached its study and extension from the wrong angle. In particular, CA has often been promoted in Africa as a way to raise yields. In fact, short-term yield gains are common from better moisture capture and retention under CA, in seasons with erratic and prolonged dry spells. But yield benefits from CA are normally not immediate; they generally begin to appear after two-to-five cropping seasons. Smallholder farm households often live at the edge of food insecurity year-in and year-out and are undisposed to risk an innovation that raises system productivity only in the medium term.

In contrast, the adoption of CA outside of Africa has been driven by benefits such as energy savings, reduced erosion, more timely sowing, and enhanced water- and nutrient-use efficiency. Furthermore, CA adopters worldwide have typically been large-scale commercial farmers who seek enhanced and sustainable profits and, as a consequence, ways to cut production costs. So how can their positive experience apply to smallholders and be used for proper targeting and extension of CA systems in Africa?

IN OUR OPINION, CIMMYT AND ITS PARTNERS SHOULD FOCUS ON (1) identifying the key drivers that have facilitated adoption of CA worldwide and (2) delineating the niches in Africa where these drivers are present, meaning where CA is likely to fit. As a start, we may wish to look at settings where:

  • Farm energy is scarce or expensive (whether provided by motors, draft animals or human labor ).
  • Timely planting is crucial, soil degradation extensive, and climate-related stress common. (This niche might be bigger than we think in Africa)

WE BELIEVE THAT CHALLENGES HAVE TOO OFTEN BEEN CONFUSED WITH BARRIERS TO ADOPTION. Too much time and effort have been spent highlighting challenges arising when implementing CA, instead of actively looking for ways to overcome them through technological and institutional innovations, including improved working arrangements between multiple actors. Furthermore, we feel that far too many resources are being channelled by CIMMYT’s Global Conservation Agriculture and Socioeconomics Programs into diagnostic studies, without commensurate investments in applied research for innovations to address the challenges.

Future research with farmers and other stakeholders should explore opportunities to ensure that CA systems meet smallholder farmers’ needs. It should also aim to target CA principles and practices in areas where highest returns are expected. In conclusion, we believe that BUSINESS AS USUAL IS NOT AN OPTION and that, in many places where CIMMYT works, CA IS IN DEMAND to alleviate labor bottlenecks, improve the timeliness of operations, control erosion and improve water- and nutrient-use efficiency. Should this demand be ignored? Of course challenges exist, but research – and international research in particular – should not simply document challenges but also provide solutions.

Christian ThierfelderChristian Thierfelder is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked since 2004 in CA projects in Malawi, Mozambique, Zambia and Zimbabwe and has conducted applied and strategic research on-farm and on-station to adapt CA to the needs of smallholder farmers in southern Africa. Through effective partnerships he has reached out to more than 10,000 farmers in southern Africa. He guided the research programs of 25 B.Sc., M.Sc. and Ph.D. students, and has authored and co-authored more than 30 research articles in high-impact peer-reviewed journals and books.

Frederic Baudron
A CIMMYT systems agronomist based in Addis Ababa, Ethiopia, Frédéric Baudron trained as a tropical agronomist, specialized as a livestock scientist and worked for various development programs targeting the interface between people (mainly farmers) and wildlife. He then completed a PhD in plant production systems. Projects he leads include Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI), implemented in Ethiopia, Kenya, Tanzania and Zimbabwe.

IsaiahNyagumboIsaiah Nyagumbo is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked in water harvesting and soil conservation research initiatives and was a pioneer of CA work on smallholder farming systems in Zimbabwe since the 1990s. Isaiah currently leads the agronomy component of the CIMMYT managed and ACIAR funded regional program ‘Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA)’ operating in 5 countries of Eastern and Southern Africa. Isaiah has also authored and contributed to regional research publications focusing mainly on CA, agricultural water management, water harvesting and technology dissemination.

For further detail regarding these views, stay tuned for the upcoming paper:

Baudron, F., Thierfelder, C., Nyagumbo, I., Gérard B., 2015. Where to target conservation agriculture? How to overcome challenges associated with its implementation? Experience from Eastern and Southern Africa. Forthcoming (expected in early-July) in Environments.

Growing land scarcity, the Borlaug hypothesis and the rise of megafarms

Derek Byerlee, former director of the CIMMYT economics program (1987-94) and current visiting scholar at Stanford University and adjunct professor at Georgetown University, presented some of his latest research at a brown bag lunch at CIMMYT headquarters on 1 May. His presentation, “Growing Land Scarcity, the Borlaug Hypothesis and the Rise of Megafarms,” examined the economic and environmental benefits and repercussions of cropland expansion, the recent rise of agribusiness and the delicate balance between crop intensification and deforestation.

The “Borlaug Hypothesis” is the idea that increasing crop yields can help prevent cropland expansion and deforestation, thus alleviating hunger and poverty without dramatically increasing environmental impact. Developed by the legendary Nobel Prize Laureate and CIMMYT scientist Norman Borlaug, the postulate is controversial in environmental circles, and some researchers have published studies showing that higher crop yields in the tropics increase incentives to clear forests, thus making investments in crop research potentially counterproductive to sustainable growth.

Byerlee noted that the world has increased per capita cereal production by about 40 percent over the last 50 years on about half the arable land per capita that it used in 1961. Models developed by Byerlee and his associates show that, without CGIAR work since 1965 to develop improved crop varieties, the land area devoted to food crops would have increased by 18 to 27 million hectares, mostly in developing countries. Byerlee supports Borlaug’s claim that broad-based investment in crop research and development indeed contributes to saving the world’s forests, although estimates by Byerlee and his associates are an order of magnitude lower than those of Borlaug.

Investment in crop intensification may be more important than ever, as the world’s growing population demands ever-growing quantities of food and land. “Meta-analysis of demand estimates suggests that, given current yield trends, agriculture will require an additional 200 to 450 million hectares of land by 2030 — as much as the entire combined land area of India and South Africa,” Byerlee said. At the same time, Byerlee found that an estimated 450 million hectares of land could be available for crop expansion but is concentrated in just a few countries and its cultivation could have negative impacts on the environment and on people already using that land for other purposes.

Linked to the question of where crops should be cultivated is the issue of who will cultivate them, especially on the land frontier. Byerlee described the recent rise of “megafarms” run by agribusiness companies and examined their economic benefits (or lack thereof) in comparison to traditional family farms that still prevail across the world. Byerlee argued that family farms were more efficient, equitable and contribute to more growth than megafarms, which benefit from professional management and technologies that allow for larger scale but do not display significant cost advantages over traditional family farms. Byerlee ultimately recommends models that combine agribusiness and smallholder farms for best results.

Please click here to view the full presentation.

CIMMYT receives “Excellence Through Stewardship” certification

CIMMYT has been awarded an Excellence Through Stewardship (ETS) certificate of achievement for successfully completing the ETS audit requirements for its operations in Mexico and Kenya. ETS is a global, not-for-profit industry-coordinated organization dedicated to “promote the responsible management of agricultural technology, through encouraging product stewardship and quality management systems practices and by educating the public.” The ETS audit was an independent third-party review of CIMMYT’s quality management system and standard operating procedures (SOP) for transgenic research. “The successful ETS certification is an important milestone in implementing and modeling – teaching and demonstrating – responsible stewardship of transgenic research,” according to Kevin Pixley, Director of CIMMYT’s Genetic Resources Program. CIMMYT is the first CGIAR center to achieve ETS certification.

CIMMYT has had a clear policy guiding its work in transgenic crops since the mid 2000s. Principles include respecting sovereignty and safety and assisting partners to responsibly avail the technologies, if their countries have the legal framework and regulatory capacity and if they request CIMMYT collaboration or assistance. Transgenic research is a small part of CIMMYT’s breeding portfolio and no CIMMYT-derived wheat or maize variety currently sown by farmers is transgenic. CIMMYT’s involvement in transgenic research can help ensure that transgenic crops remain an accessible option for resource-poor farmers.

New technologies to increase coffee-maize system profitability

To demostrate the advances of the project “Increasing the profitability of maize-coffee systems” conducted by CIMMYT in Colombia over the past 10 years in collaboration with the National Federation of Colombian Coffee Producers (FEDERECAFE, Spanish acronym), two field days were held at the Paraguaycito–Quindío (29 April) and La Catalina–Risaralda (7 May) Experiment Stations belonging to CENICAFE, FEDERECAFE’s research unit. At these events, attended by 158 representatives of the Local Coffee Growers’ Committees and the National Federation of Cereal Growers (FENALCE, Spanish acronym), the latest advances in the areas of climate change, agronomy and genetic improvement were presented.

Agronomy

In the field of agronomy, there were demonstrations on how to use a manual maize planter and the GreenSeeker sensor. These inventions are available to farmers today thanks to the work and perseverance of Bill Raun and his colleagues at Oklahoma State University, USA.

In the 1980s, when Bill was working for CIMMYT’s Agronomy Program for Central America, he realized the risks farmers faced when growing maize. The seed was treated with insecticides and fungicides to protect it and promote germination and crop establishment. Farmers would take the seed in their bare hands and put it into the soil, in holes made with the help of a stick; they did not use gloves or any kind of protection.

More than 20 years later, farmers finally have a manual planter. The most important parts of the planter are a plastic tube where the seed is placed, a cylinder that regulates seed drop and a device at the end of the planter that passes the seed from the plastic tube into the soil. During the sowing demonstrations, the attendees observed the excellent germination of a plot sown with the planter the previous week. The planter can also be used for fertilization and is ideal for planting maize on the very steep slopes where coffee is grown and where mechanization is not possible. Most of the region’s coffee growers are small-scale farmers whose land holdings average 1.54 hectares.

Argemiro Moreno, former CENICAFE scientist, spoke on efficient nitrogen use for maize crops in Colombia’s coffee growing region. He also explained the basics of GreenSeeker use to calculate the precise amount of nitrogen that plants need for maximum growth and production and to avoid polluting the atmosphere or the ground water through excess fertilizer use. There was also a demonstration of how to use the GreenSeeker in the field and for converting the readings into fertilizer dosage recommendations (by cell phone at www.nue.okstate.edu).

Genetic improvement––biofortified maize

As Luis Narro, CIMMYT-Colombia, explained during both field days, biofortification uses conventional breeding to develop varieties with higher content of micronutrients such as iron, zinc and provitamin A. Normal maize grain contains, on average, 20 ppm Zn and 2 ppm pro-vitamin A, whereas biofortified maize being developed at CIMMYT with support by HarvestPlus contains 32 ppm Zn (white maize) and 8-10 ppm provitamin A (orange maize).

As a HarvestPlus activity, 81 white experimental hybrids with high zinc content and 81 orange hybrids with high provitamin A content are being evaluated in Colombia’s coffee growing region. Preliminary results at La Catalina Experiment Station indicate that the best hybrid with high Zn content (8.9 t/ha) yielded 10% more than the normal (check) hybrid and showed less ear rot and less tar spot damage. The yield of the best hybrid with high provitamin A content was 5.4 t/ha, similar to that of the normal check.

At the same time, the HarvestPlus team at CIAT, in collaboration with small food product manufacturers in Colombia’s Cauca Valley, are conducting pilot studies aimed at developing food products from biofortified maize, as well as sensory studies and studies on micronutrient retention and on shelf life. Consequently, it’s very possible that cropping and consumption of biofortified maize will be promoted in Colombia’s coffee region as an alternative for improving food security.

* This is the second part of a two-part report; the first was published in the previous issue of the CIMMYT Informa.

Sin in the seed: meeting of the minds to combat maize lethal necrosis

“We are all gravely concerned about the rapid spread of maize lethal necrosis [MLN], not just due to the wide prevalence of insect vectors that can transmit the MLN-causing viruses, but also due to production, distribution and cultivation of commercial seed contaminated with MLN pathogens,” said Stephen Mugo, CIMMYT’s Regional Representative for Africa, at the opening of the recently concluded three-day International Conference on MLN Diagnostics and Management in Africa. This captures a core message the conference – seed transmission is a primary means of MLN’s spread in East Africa.

Jointly organized by the Alliance for a Green Revolution in Africa (AGRA), CIMMYT and the Bill & Melinda Gates Foundation in collaboration with the Kenya Agricultural and Livestock Research Organization (KALRO), the conference brought together scientists, regulators and policymakers from 17 African countries, USA and Mexico, to discuss how to effectively control seed transmission of MLN pathogens, especially to non-endemic countries.

MLN presents a new and unprecedented challenge to East Africa’s robust seed industry since it can be transmitted through infected seed. Needless to say, seed companies are crucial in limiting seed contamination and thus in stemming further spread of the disease. For this reason, major seed companies participated in the conference to help map feasible joint action to control transmission through seed. Companies in MLN-endemic areas of East Africa are already feeling the heat from the disease leading to massive production losses, increased production costs and reduced sales. “We have had to shut down almost all our maize-production sites in the endemic areas across eastern Africa because of major losses attributed to MLN,” said Kassim Owino from Seed Co, Kenya.

Officials at the opening of the MLN international conference in Nairobi. Left to right: George Bigirwa (standing, AGRA), Stephen Mugo (CIMMYT), Joe DeVries (AGRA), Felister Makini (KALRO) and Gary Atlin (Bill & Melinda Gates Foundation).

Seed poses a problem, but also presents a solution
“The seed sector can ensure that when a series of MLN-resistant varieties are developed, farmers benefit from the seed. But we must recognize the fact that in the case of MLN, the seed sector can also be a factor in its spread. So we need to work together to identify means of preventing spread,” remarked Dr. Joe DeVries, Director of AGRA’s Program for Africa’s Seed Systems.

Collective efforts will be required not only to control the spread of MLN but also to effectively manage the disease where already present, including developing and deploying new MLN-resistant varieties as a lasting solution. Ongoing research to develop MLN-resistant varieties is at the core of CIMMYT’s work in Africa and is being undertaken in close partnership with the private and public sectors including seed companies. The Africa RISING Project and the CGIAR Research Program on MAIZE have also supported these efforts. However, there are no quick solutions, and developing and disseminating MLN-resistant maize varieties will take several years.

In the meantime, seed companies and seed producers need to ensure that seed is MLN-free. To do this, they require support to train their personnel to recognize early infection in addition to adopting best practice on surveillance, diagnostics and management of MLN. CIMMYT’s MLN diagnosis and protocols and MLN-free seed production are examples of best practice. In parallel, regional phytosanitary bodies need to regulate and monitor production and movement of seed, especially into areas currently unaffected.

What next and what needs to be done?
The CIMMYT–KALRO MLN screening facility at Naivasha, Kenya, will continue to have a critical role in the ongoing research. This facility screens germplasm from transnational and national seed companies, and from national research programs. Conference participants visited the facility and witnessed MLN leaf sampling and ELISA diagnostics systems, as well as experimental maize hybrids demonstrating promising MLN tolerance. Seed companies were invited to send their germplasm for screening for the current cropping season.

Viewing hybrids

Viewing experimental maize hybrids at the MLN screening facility with explanations from CIMMYT staff.

Other than a recent CIMMYT study on Kenya, there is little information on MLN incidence, distribution, severity and impact. More studies like this would help to quantify the magnitude of the disease.

The conference made important recommendations on joint action and regional protocols, summed up by Gary Atlin from the Bill & Melinda Gates Foundation:, “Efforts to manage seed production within an environment that seems conducive to the spread of MLN are very important. There are strategies and tools available that can help manage the disease. We hope to get a clear picture of these strategies and how they can be applied in the region’s seed systems, to safeguard the maize-seed supply for African farmers and ensure delivery of germplasm continues in the positive direction it has been moving.”

Some of the presentations from the conference are on SlideShare.

The conference was widely reported in national and regional newspapers and television, as indicated by the links below.

Links