Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

CIMMYT helps the Seed Entrepreneurs’ Association of Nepal devise its organizational strategy

In response to the interest expressed by the Seed Entrepreneurs’ Association of Nepal (SEAN), CIMMYT-Nepal organized a meeting with SEAN and the Nepal Agricultural Research Council (NARC) on 29 July 2015 at NARC’s Agriculture Botany Division, Khumaltar, as an activity of the CIMMYT-led Cereal System Initiative for South Asia-Nepal (CSISA-NP).

Following its interaction with the National Seed Association of India (NSAI) and Indian seed businesses during an event organized by CSISA-NP in the first and second week of June, SEAN decided to devise a strategic roadmap and upgrade its organizational strategy. The specific purpose of the July meeting, which was attended by 19 participants from SEAN, 3 from NARC and 4 from CIMMYT-Nepal, was to study SEAN’s vision, mission and goal, and how they could be updated in the current era of globalization, technological innovation and deregulation.

Increasing farmers’ access to quality seed is important for enhancing Nepal’s food security. To this end, CSISA-NP has been helping small and medium seed enterprises accelerate their growth in an integrated manner. To facilitate their growth, the current situation of seed enterprises, the challenges they face and their potential for growth were recently documented, and the outcomes will be presented at the National Seed Summit on 14-15 September 2015. In addition, representatives of 15 Nepali seed enterprises visited Indian seed companies in May 2015 to learn from their experience, and a memorandum of understanding (MoU) was signed between NSAI and SEAN to foster partnership between them.

Speaking on behalf of SEAN, its president, Laxmi Kanta Dhakal, said that to catalyze the implementation of the MoU between their organization and NSAI, SEAN needs to develop appropriate strategies to address its internal issues as well as reshape partnership modes with potential national and international stakeholders.

Initiated in 1989, SEAN was registered in Nepal in 1991 as a non-profit organization and now comprises 500 members, including seed entrepreneurs engaged in producing, processing and marketing seeds and other agricultural inputs. SEAN’s main purpose has been to organize individual entrepreneurs and private companies to foster capacity building, lobbying and advocating on behalf of seed entrepreneurs, thereby strengthening the national seed industry.

At the meeting, Gurbinder Singh Gill gave a lecture on how to develop the strategic roadmap and facilitated the session where SEAN started working on its mission, vision and goal statements. Gill also shared case studies from different countries and organizations to encourage SEAN’s leadership team to start working at the organizational level. Once these themes are discussed and detailed by SEAN at the organizational level, CSISA-NP will hold a workshop to decide on the way forward. This should lead to an implementable strategic plan for the next five or ten years.

NARC, SEAN and CIMMYT colleagues engaged in establishing a strategic road map for seed enterprises in Nepal.

Towards the end of the meeting, NARC Director (Crops and Horticulture) Shanbhu Prasad Khatiwada said that strong linkage and coordination between the national research program, SEAN, seed enterprises and the CIMMYT team are needed to achieve comprehensive progress towards solving Nepal’s food security issues. He said that this was the first meeting of its kind in Nepal where SEAN, NARC and CIMMYT came together to reshape the organizational strategy of the only seed association of Nepal.
The event was opened by Arun Joshi, Country Representative of CIMMYT-Nepal, facilitated by CIMMYT consultants Narayan Khanal and Gurbinder Singh, and by K.C. Dilli, Monitoring and Evaluation Specialist, CIMMYT-Nepal.

Green manure crop cover reduces need for mineral fertilizer in Africa

Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.
Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.

It is widely accepted that improved maize germplasm will only express its yield potential under optimum agronomic management such as timely planting, optimal plant/space arrangements, and timely weed and pest control. But perhaps the most important agronomic intervention is adequate fertilization. Although farmers in Europe and America have used mineral fertilizers for generations, these have become available in Africa only relatively recently. However, the excessive use of mineral fertilizer in Europe and America has led to water pollution and eutrophication, and has increased the energy requirements of the fertilizer production process.

In Africa, mineral fertilizer remains a scarce, expensive and risky resource for most smallholder farmers. On average, farmers use less than 10 kg/ha of NPK fertilizer, and many do not apply it at all. The price of fertilizer is 3-5 times higher in Africa than in Europe due to the lack of infrastructure and production facilities, often making it unaffordable for farmers. Fertilizer is primarily applied to higher value and horticulture crops that, unlike maize, give farmers greater return on their investment.

Many farmers in southern Africa plant maize extensively on large areas, harvest less than 1 t/ha on average and mine already depleted nutrients from the soil while trying to become food secure and escape from poverty – an impossible task! But farmers are now being offered a range of solutions that provide a way out of the poverty trap, such as improved drought and stress tolerant maize germplasm, conservation agriculture (CA), improved rotation systems with legumes and green manure cover crops.

The use of CA principles (minimum soil disturbance, crop residue retention and diversification through rotation and intercropping) hinges on the ability of farmers to retain sufficient surface crop residues to protect the soil from heavy rain, evaporation and sunlight. However, farmers in mixed crop/livestock systems face competing demands for these residues because they also feed them to their animals.

It is against this background that the Food and Agriculture Organization of the United Nations (FAO) involved CIMMYT in a small project aimed at introducing green manures to smallholder farmers in eastern Zambia and central and southern Malawi. Green manures are grown primarily to improve the soil, generate biomass for ground cover and provide fodder; some also produce grain for feed and food.

In Lilongwe District, Malawi, farmer Bikoni Yohane and wife Esnart proudly present their maize-cowpea intercropped field, which will produce grain and leaves for home consumption and im-prove soil fertility. Photo: Christian Thierfelder/CIMMYT.

A range of varieties have been tested by the Global Conservation Agriculture Program over the past five years. Crops such as velvet bean, lablab, cowpea, sunnhemp, jackbean, pigeonpea and groundnuts have been identified as viable options with great potential for smallholders. They provide 5-50 t/ha of extra biomass for groundcover and/or fodder, leave 50-350 kg/ha of residual nitrogen in the soil and do not need extra fertilizer to grow. The new project is testing these species in full rotation or intercropped with maize on farmers’ fields in the three project regions. To increase adoption, the project is using an intensive participatory process to adapt the green manures to smallholder conditions.

This initiative is not the only one where CIMMYT has been involved with green manure cover crops: in northern Mozambique, a collaboration with CARE International reports that yield increased from 4 t/ha to 13 t/ha by only using lab-lab and improved germplasm in cassava-based CA systems. The ACIAR-funded ZimCLIFFS project in Zimbabwe was also very successful in growing lablab and velvet beans to generate supplementary fodder for livestock during the dry winter period.

Through innovative approaches, CIMMYT will further explore new ways of integrating green manures into smallholder farming systems so they become the status quo, not just an option!

16 new CIMMYT maize lines released

CIMMYT is pleased to announce the release of a set of 16 new CIMMYT maize lines (CMLs). These CMLs were developed at various breeding locations of the CIMMYT Global Maize Program by multi-disciplinary teams of scientists in sub-Saharan Africa, Latin America and Asia. These lines are adapted to the tropical and subtropical maize production environments targeted by CIMMYT and partner institutions.

Continue reading

Tackling wheat rust diseases requires $108 million a year, study shows

PhilipPardey
Economist Philip Pardey on the sidelines of the International Wheat Yield Conference in Sydney, Australia. CIMMYT/Julie Mollins

SYDNEY, Australia (CIMMYT) – When storybook character Alice stepped through the looking glass, the Red Queen encouraged her to run as fast as she could. Alice did, but despite her efforts she remained stuck in one place:

“Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!” said the Red Queen.

Philip Pardey, a professor in the Department of Applied Economics at the University of Minnesota, referred to the Red Queen character in Lewis Carroll’s 19th century novel “Through the Looking Glass” at the International Wheat Conference in Sydney, Australia to illustrate a conundrum about wheat rust disease research.

Despite efforts to develop wheat that is resistant to damaging stem, stripe and leaf rusts, the diseases, which have existed for 10,000 years, will continue to thwart scientists, Pardey said, adding that the annual global investment in wheat rust research should be $108 million a year in perpetuity.

Currently, major projects such as the Borlaug Global Rust Initiative, which is directed at completely wiping out Ug99 stem rust, are funded for set periods of time and target specific strains of rust. It is unfeasible to expect a cure to be found, Pardey argued.

“It’s fallacious to think that we can ‘solve the stem rust problem’ through funding because the actual solution sows the seeds of its own destruction,” Pardey said, explaining that the fight against rusts is ongoing and must be funded continuously.

RED QUEEN EFFECT

Just as Alice and the Red Queen ran in one spot as hard as they could but got nowhere, rust sexual reproduction and genetic re-combinations fight to survive, allowing wheat rusts to co-evolve and adapt to changes in their environment.

In his study, Pardey determined that global losses from all three rusts average at least 15.04 million tons (552.8 million bushels) per year, equivalent to an average annual loss of about $2.9 billion a year.

He calculated that the economically justifiable investment in wheat rust research and development should be $108 million a year, equivalent to an annual investment of $0.51 per hectare per year across the current 212 million hectares (524 acres) of wheat worldwide.

“The nature of the intervention is that the very seeds of success of wheat breeders sows their own destruction,” Pardey said. “A co-evolutionary pressure is developed where rust has every incentive to survive, so when fungicides are used or the biology of the plants is altered to resist those fungi, it forces evolutionary pressure on the fungi to evolve around that resistance.”

Almost the entire global wheat crop is at risk of infection from wheat rusts, Pardey said. Globally, only 3.2 percent of the crop is grown in areas not susceptible to ‹infection, while 62.7 percent of the crop is in areas that are vulnerable to all three rusts.

“I’m hopeful Pardey’s research findings illustrate the importance of ongoing funding for wheat rust research,” said Hans Braun, head of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the Wheat Research Program overseen by the CGIAR consortium of agricultural researchers.

“Pardey’s research is critical in highlighting the severity of the threat from all three types of rust, showing that continuous funding in perpetuity is the best way to keep them in check. Consistent funding will make it easier to help farmers and protect food security by controlling the disease.”

GLOBAL RISKS

Through modeling for both seasonal vulnerability and system vulnerability, Pardey determined that losses at any particular location or point in time do not represent the average annual global losses over the longer term.

“In 1935, the United States lost a fifth of the crop to rust, last year they lost less than half a percent,” Pardey said. “So, I wouldn’t want to take last year’s loss as being representative of the losses of this disease, nor would I want to take the 1935 loss. It’s not representative.”

Pardey developed a framework to characterize the probabilistic nature of losses over the century, then conducted a Monte Carlo simulation – which assesses risk impact under all possible outcomes of a given scenario – to determine a loss average estimate.

“If wheat breeders are successful in getting modern varieties onto all the wheat areas around the world, there is additional value because they’re at a higher yield level when the disease pulls the yields down,” Pardey said.

“High-yield varieties make the value of the rust avoidance go up as the yield goes up. You’ve got a virtuous cycle. The rust resistance becomes more valuable the more extensive the higher yielding varieties are spread. An investment of $108 million a year just allows us to keep up with it – we’re running fast to stand still.”

Zero-till wheat raises farmers’ incomes in eastern India, research shows

Farmer-with-wheat-harvest
Photo Credit: Vinaynath Reddy / CIMMYT

In a study published last month in Food Security, CIMMYT researchers reported that wheat farmers’ total annual income increased by 6% on average with the introduction of zero tillage (ZT) in Bihar.

While studies done in the past in the eastern Indo-Gangetic Plains (IGP) have shown ZT impacts in field trials or controlled environments, this research is believed to be the first that studied actual impacts in farmers’ fields in eastern India.

ZT allows direct planting of wheat without plowing, sowing seeds directly into residues of the previous crop on the soil surface, thus saving irrigation water, increasing soil organic matter and suppressing weeds.

“We found that the prevailing ZT practice, without full residue retention, used by farmers in Bihar has led to an average yield gain of 498 kilogram per hectare (19%) over conventional tillage wheat, which is in contrast to the results of a recent global meta-analysis” says Alwin Keil, Senior Agricultural Economist, CIMMYT and the lead author of this study.

The global meta-analysis published last year compared crop yields in ZT and conventionally tilled production systems across 48 crops in 63 countries. It reported that ZT is only profitable in rainfed systems and when it is combined with full residue retention and crop rotation. “However, in Bihar, marginal and resource-poor farmers cannot afford to leave the full residue in the field as they use the rice straw to feed their livestock,” says Keil.

According to Keil, the divergent findings of the meta-analysis may be caused by the fact that most of the reviewed studies were conducted in moderate climatic zones (U.S., Canada, Europe, China) and results were aggregated across various crops.

Bringing a Wheat Revolution to Eastern India

Compared to the prosperous northwestern states, the eastern IGP is characterized by pervasive poverty and high population density, and its resource-poor farmers are more prone to the risks of climate change. Bihar has the lowest wheat yields in the IGP with an average of 2.14 tons per hectare.

To feed a growing wheat-consuming population, Bihar currently imports wheat largely from Punjab, where yields have stagnated over the last five years due to an over-exploitation of resources, especially water.

While ZT is widespread on the mechanized farms of Punjab and Haryana, seat of the first Green Revolution in India, farmers in the eastern IGP are yet to benefit. “There is also evidence that the positive effect of ZT is larger in areas with low agricultural productivity (generally low yields, such as Bihar) than in areas with higher productivity (such as Punjab, for instance),” remarks Keil.

Increasing Access among Smallholders

The study concludes that ZT users reap substantial benefits, and that this technology could help close the growing yield gap between production and consumption of wheat in Bihar. A 19% yield increase would translate into a production increase of 950,000 MT, which exceeds the total wheat imports into Bihar (868,000 MT in 2011).

However, with low ownership of tractors and ZT drills, large-scale adoption of ZT in eastern India hinges on an expansion of the network of service providers, who can custom-hire these kinds of services to smallholder farmers.

With public and private sector partners, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) has supported the development of ZT service providers among tractor owners by facilitating the purchase of ZT drills and providing technical trainings and know-how since 2009. Consequently, the number of ZT service providers in Bihar increased from 17 in 2011 to 1,624 in 2014, servicing a total of approximately 44,700 acres.

“Furthermore, we found that only 32% of non-users of ZT in our sample were aware of the technology. Hence, increasing the number of service providers to enhance farmers’ access to ZT has to go hand-in-hand with large-scale information campaigns to raise their awareness of the technology,” says Keil.

Robert Zeigler

Lessons and opportunities from a commodity CGIAR center in times of change: reflecting on my IRRI era and possible implications for CIMMYT

​International Rice Research Institute

​Date: ​Wednesday, 19 August 2015

Time: 12:30-13:30hrs.

Venue: Auditorium in main building

*The idea behind brown bag lunchtime seminars is to use the lunch break in everyone’s busy schedule to hold a brief exchange of ideas.

Rebuilding livelihoods: CIMMYT supports agricultural recovery in Nepal

Farmer-uses-minitiller-in-Nepal
Farmer uses a mini-tiller in mid-west region of Nepal CSISA

The recent 7.6 magnitude earthquake that struck Nepal on 25 April, followed by a 7.3 magnitude aftershock on 12 May and several hundred additional aftershocks to date, has had huge negative impacts on the country’s agriculture and food security. Around two-thirds of Nepal’s population relies on agriculture for their livelihood and agriculture contributes to 33 percent of Nepal’s GDP. It is estimated that about 8 million people have been affected by the earthquakes, with smallholders in hilly regions being most hard-hit.

The earthquake damaged or destroyed agricultural assets, undermining the longer-term food production capacity of farm families and disrupting critical input supply, trade and processing networks. Farmers lost grain and seed stocks, livestock, agricultural tools and other inputs, and are facing significant shortages of agricultural labour. Widespread damage to seed and grain storage facilities have affected smallholder farmers’ ability to secure their harvested crops through the rainy season.

In response to the devastation, USAID-Nepal has provided US$1 million for earthquake relief and recovery to the CIMMYT-led Cereal Systems Initiative for South Asia in Nepal (CSISA-NP). The Earthquake Recovery Support Program, for a period of 13 months, will be implemented in close coordination with the Ministry of Agricultural Development (MoAD), Department of Agriculture (DoA), Department of Livestock Services (DoLS), Nepal Agricultural Research Council (NARC) and District Disaster Relief Committee (DDRC). The districts that will receive support include Dolkha, Kavre, Khotang, Makwanpur, Nuwakot, Ramechap, Sindhupalchowk, and Solukhumbu, which have suffered particularly high levels of damage.

“Even if seed is available, the capacity for farmers to plant and harvest crops has been severely diminished due to the loss of draft animals and the exacerbation of labor shortages,” said Andrew McDonald, CIMMYT Principal Scientist and CSISA Project Leader. “We will reach more than 33,000 farming households through seed and grain storage facilities, mini-tillers and other farm machines, agricultural hand tools, technical training and agronomy support,” added McDonald.

The program will provide 50,000 grain storage bags, 30 cocoons for community grain storage, 400 mini-tillers and other modern agriculture power tools (e.g., reapers, maize shellers, seeders), 800 sets (5 items in a set) of small agricultural hand tools, and 20,000 posters on better-bet agronomic practices for rice and maize. “We will first focus on getting small horsepower mini-tillers into affected communities, and subsequently broadening the utility of these machines to power a host of essential agricultural activities including seeding, reaping, threshing and shelling, as well as powering small pumps for irrigation,” said Scott Justice, Agricultural Mechanization Specialist, CSISA-NP.

At the program’s inception workshop held recently on 28 August, Dr. Beth Dunford, Mission Director, USAID Nepal, remarked that USAID-Nepal has arranged a special fund to help earthquake-affected people. Beyond the devastation of houses, public infrastructure like roads, the earthquake has seriously disrupted the agriculture and rural economy throughout the impacted districts. Re-establishing vital agricultural markets and services in the aftermath of the earthquake is key to how quickly these communities will recover, underlined Dunford.

For effective coordination and monitoring of activities in the program, Central Level Management Committee, District Level Management Committee and Local Level Management Committee have already been formed. They aim to identify most earthquake affected areas within a district and will ensure efficient and transparent distribution of support items.

Dr. Adhikari, Joint Secretary, MoAD, highlighted that the Ministry feels a real sense of ownership over this program and is committed to implementing the activities through its network. He said the farm machinery support program will be a perfect platform for MoAD to expand its farm mechanization program into other areas of the country. The Earthquake Recovery Support Program also aligns with the Agriculture Development Strategies of the Government of Nepal, which focuses on community-wide inclusive development.

Bhutan releases its first winter wheat variety

In Bhutan, wheat is an important cereal for farmers at high altitudes, where its area of cultivation is considerable. However, in recent years, the winter wheat area has declined owing to numerous circumstances, including not having a better variety. This may be due to the fact that spring wheat has been the focus of most research and development efforts to date.

However, of late, the national wheat program has been paying equal attention to winter wheat research and development in collaboration with CIMMYT and ICARDA. But while ICARDA’s winter wheat nurseries are still being evaluated, CIMMYT-Nepal has helped to introduce cultivars that have recently been released in cooler regions elsewhere. One such genotype is Danphe (KIRITATI//2*PBW65/2*SERI.1B).

Danphe’s performance during its multi-location evaluation in the highlands of Bhutan (1200-2600 masl) was very promising. The new variety on average yielded 30% more than the local cultivar called Kaa, which means wheat in the local language. In addition, Danphe produces big grains, is short in height and lodging tolerant, which are farmers’ preferred traits. Up to now, farmers have had to manage with Kaa, which is very tall, small-grained and low yielding. Farmers who attended the field days unanimously preferred Danphe over the local cultivar.

In view of such an astonishing performance and of farmers’ preference for Danphe, the 18th Technology Release Committee of Bhutan’s Ministry of Agriculture and Forests authorized the release of this line under the name Bumthang Kaa Drukchu. Bumthang is the name of the target area (the district), Kaa means wheat and Drukchu means sixty (60).

Ganesh Chhettri, a committee member from the Department of Agriculture, remarked that such an accomplishment in such short time was not expected, as winter wheat was never adequately attended to. Further, he commented that wheat production in this ecosystem will surely increase now that farmers have a higher yielding variety.

CIMMYT is considering providing about 1500 kg of Danphe seed to Nepal to fulfill farmers’ needs for the ensuing season, and promote the new variety’s dissemination and adoption.

The world’s largest maize ear contest 2015

Contest winner Domingo FrĂĄnquez Flores from the nearby village of Coapan, with a maize ear 44 centimeters long. Photo: Victor Vidal/INIFAP
Contest winner Domingo FrĂĄnquez Flores from the nearby village of Coapan, with a maize ear 44 centimeters long.
Photo: Victor Vidal/INIFAP

On 14 August 2015, I was one of the judges in the contest to find “The World’s Largest Maize Ear” held in Jala, Nayarit, Mexico. The contest is one of the most popular events during the week-long celebration in honor of the town’s patron saint. This was the third time I was a judge, and the contest has become an annual highlight for me in my role as one of the custodians of the world’s maize genetic diversity. The Jala landrace will always hold a special place in my heart, not just because of its size, which is impressive, but also because of the culture surrounding it and the dedication of the people who grow it.

I met my friend, Dr. Victor Vidal, INIFAP maize breeder and enthusiastic supporter of maize genetic resources, at the flagpole on the main street separating the twin towns of Jala and Jomulco. Our first stop was the stall of the family of Don JosĂ© Antioco ElĂ­as Partida of Coapan, the winner of last year’s contest, and a winning contestant for many years. We learned that sadly, Don JosĂ© had died earlier in the year. However, two of his sons, continuing the family tradition, entered the contest this year.

At 4:45 p.m., the contestants gathered in the auditorium of the town hall, and watched a video about Jala maize, created by Dr. J. Arahón Hernández Guzmán, a local “boy” who got his Ph.D. at Cornell, and is now a professor at the Colegio de Posgraduados in Puebla. He presented Victor and me with copies of his video. Afterwards, the “convocatoria” (list of contest regulations) was read out loud. There was a bit of discussion about the rule that the maize be grown under “natural conditions,” i.e., no irrigation.

We judges were called to the stage, introduced, and the convocatoria was read once again. We split up into three teams, and the contestants, three at a time, were called up to have their five ears of Jala maize shucked and measured. The largest ear was selected, and its length and the contestant’s number were written on pieces of masking tape that were stuck on the ear. The contestants’ names and the length of their largest ear were announced, and photos were taken. Most ears were 30+ cm long, only a few were 40+. The crowd definitely kept track, cheering loudly for their friends, and especially for the 40+ ears. The very first farmer who came to our table had the winning ear, at 44 cm. As the contest proceeded, there would be a murmur of disappointment when another farmer had an ear that was almost a winner.

Judging Team #2 in action, shucking and measuring Jala maize on stage, including Denise Costich (CIMMYT), and Victor Vidal (INIFAP) on the right. Photo: Victor Vidal/INIFAP

Once all the shucking and measuring are completed, there is always an interval while the data from the different teams are collated and the winning places are assigned. During this time, my friend Victor gave an explanation of why some of the ears did not produce kernels (the reason: lack of pollination). As it happened, one of the oldest contestants had brought in an ear that was 48 cm long, but none of the grain was filled, so it had to be disqualified. However, this showed that there is genetic potential for still larger ears. With the approval of the mayor of Jala, Victor proposed that another contest be held at harvest time, when the ears would be mature enough to be stored and eventually germinate. Having the contest at harvest time would allow for further selection and improvement of the Jala landrace; in addition, seed of the outstanding phenotypes could be stored in germplasm banks.

At the end of the contest, there was a moving ceremony in memory of the late Don José Elías, and his family came on stage to accept the tribute. Three generations of proud Jala maize growers stood before the crowd, the youngest held in the arms of his father, exemplifying a tradition that keeps maize landraces alive and well as an integral part of the culture and food security of Mexico and the world.

Three generations of the family of the late Don JosĂ© Antioco ElĂ­as Partida, accepting an award recognizing Don José’s contributions. Photo: Denise Costich/CIMMYT

Contributions from Victor Vidal

Why GM wheat may be the key to stave off world hunger

IMG_8188Sanjaya Rajaram is the 2014 World Food Prize laureate for scientific research that led to an increase in world wheat production by more than 200 million tons. Any views expressed are his own.

Unless global policymakers redouble their efforts to properly support a strategy to ensure a future food supply, the current hunger crisis threatens only to get worse.

A gathering of more than 500 scientists at the 2015 International Wheat Conference in Sydney, Australia, provides an opportunity to revisit these matters.

Already almost 800 million people worldwide – about one in nine people – are undernourished and do not get enough food to eat to lead a healthy active life, according to the U.N. Food and Agriculture Organization (FAO).

By 2050, the current global population of 7.3 billion is projected to grow 33 percent to almost 10 billion, according to the United Nations.

A recent report from the Taskforce on Extreme Weather and Global Food System Resilience projects that food demand, driven by population growth, demographic changes and increasing global wealth, will rise more than 60 percent.

The majority of hungry people live in developing countries where almost 14 percent of the population is undernourished, the FAO states in its 2015 “State of Food Insecurity in the World” report. The current refugee crisis in Europe provides dramatic evidence that wealthy countries must increase investments that will help promote food security and political stability in poor countries.

BOLSTERING FOOD SECURITY

Investments in agricultural science must be at the top of the list. Wheat currently provides 20 percent of calories and 20 percent of protein to the global human diet. In order to keep up with population growth, we must increase wheat production from the current annual 700 million metric tons a year to 1 billion. We also face the threat of climate change-related global warming.

Over the past 50 years, the 15-member CGIAR consortium of agricultural researchers – where I worked for most of my career with the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA) – have been helping smallholder farmers to increase crop yields and stave off devastating diseases.

To date, however, scientists have been unable to sufficiently increase yields to meet demand through hybridization. Production must grow 70 percent over the next 35 years – an achievable goal if annual wheat yields are increased from a current level of below 1 percent to at least 1.7 percent. It is time to invest in biotechnology to ensure yields can provide nourishment for an ever-hungrier planet.

Simultaneously, we must maintain balance in the food chain and restore depleted carbon in the soil. Such concerns as disease resilience, seed diversity, water management and micronutrient imbalance must be tackled.

Governments and the private sector must more fully support research efforts to accelerate the development of new wheat varieties or face the risk of further global insecurity related to price

Impacts of international wheat improvement research: 1994 – 2014

Improved wheat varieties developed using CGIAR breeding lines, either in cross-pollinations or as direct releases, cover more than 100 million hectares — nearly two-thirds of the area sown to improved wheat worldwide, new research (Lantican et al., in press) shows. Benefits in added grain from CGIAR wheat research range from $2.8 to 3.8 billion each year — a very high return for the work’s annual, public funding of only $30 million, according to the full-length study. Consistent and secure funding is crucial to maintain the research and institutional capacities required to deliver such impact, particularly given the mounting challenges facing wheat food security and farm livelihoods in developing countries.

According to the study, the impacts derive largely from research and development activities conducted by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), both members of the CGIAR Consortium of agricultural research centers, with support from the CGIAR Research Program on Wheat (WHEAT) and partners worldwide including national research programs, advanced research institutes, and private companies.

Findings show that since 1994, farmers globally have enjoyed access to 4,604 improved wheat varieties and that there is continued and significant use in the developing world of CIMMYT and ICARDA wheat lines, which are bred and shared freely through international partnerships. CIMMYT-derived varieties alone cover as much as 80% of the wheat area in South Asian countries and, in sub-Saharan Africa, more than 90% of the area in Kenya and in Ethiopia.

More than a quarter of all wheat varieties and 40 percent of all spring wheat varieties released in this century contain CIMMYT germplasm.

In addition to profiting farmers in the developing world, where CIMMYT and ICARDA’s efforts are focused, the surplus grain produced also benefits wheat consumers — particularly the poor who spend a large portion of their income on food — according to evidence cited.

Specifically, the authors made reference to the study of Stevenson et al. (2013), published in the Proceedings of the National Academy of Sciences, which showed that, in the absence of CGIAR wheat improvement, global wheat prices would have been 29-59% higher in 2004 than they actually were.

Evidence also shows that elite wheat lines from CIMMYT or ICARDA are immediately useful for most wheat improvement programs worldwide and that their use saves a decade or more of cross-breeding for those programs. Moreover, far from representing a bottleneck in diversity, breeding stocks from the two centers have significantly enhanced the genetic diversity of improved wheat, particularly for critical traits like yield potential, grain processing quality, disease resistance, and early maturity, according to research cited by the authors (Warburton et al. 2006; Huang et al. 2015, pp. 13-14).

Finally, in contrast to the commonly-held belief that modern varieties are less resilient than farmers’ traditional varieties, the authors cite the study by Gollin (2006) showing that the increased use of improved wheat varieties over the past 40 years has made grain yields more stable and actually reduced farmers’ risk.

In addition to leading the world’s largest publicly-funded wheat improvement networks, CIMMYT and ICARDA delivering impact through extensive partnerships and longstanding research on productive and sustainable cropping practices. Crucial to their success are initiatives that foster farmers’ access to quality seed of new varieties and capacity-strengthening activities that target individuals and partner institutions. Notably, the two centers maintain, study, and share seed collections of wheat genetic diversity comprising nearly 200,000 unique samples wheat landraces, improved varieties, and wild relatives.

The new study proves that international collaboration on wheat research continues to provide the impressive returns on investments, as occurred during the 1960s-70s. Wheat breeding impacts at that time helped to spark the Green Revolution from which the 15-member CGIAR arose and to keep food prices at historically low levels for decades (Evenson and Gollin in Science, 2003).

Wheat farming in an age of changing climate and shifting markets

Although the costs of basic food commodities have fallen recently, they are still well above the decades-long, stable levels that preceded the 2008 food crisis. Worse, despite low grain prices, global stocks have shrunk 30% from levels at the outset of the millennium (Brown, L.R. 2012. Full Planet, Empty Plates; The New Geopolitics of Food Scarcity.). Reverberations of relatively local disturbances, like droughts or crop disease outbreaks, now cause inordinate price spikes and worsen food insecurity for the world’s poorest.

Looking forward, by 2050 the current global population of 7.3 billion is projected to grow 33 percent to 9.7 billion, according to the United Nations. Demand for food, driven by population, demographic changes and increasing global wealth, will rise more than 60 percent, according to a recent report from the Taskforce on Extreme Weather and Global Food System Resilience. Wheat farmers must meet this rising demand from the same or less land area, while confronting more extreme and erratic rainfall and temperatures and using inputs like water and fertilizer much more effectively.

As the world’s policymakers begin to acknowledge the interconnected nature of food, energy, water, and peace, every effort made to improve global food security is an investment in the future of humanity. Food insecurity drastically affect all sectors of society; either through hunger, high food prices, or social conflicts that send massive waves of desperate refugees in flight.

Farmers have met repeated food security challenges since the Industrial Revolution, with the support of science and focused development efforts, but science and development require investment. Wheat breeding and crop management research have long horizons – typically, for example, it takes much more than a decade for a variety to go from initial crosses to farmers’ fields.

The requisite research and institutional capacities for this work also take years to develop, but can be lost very quickly in the absence of committed policy support and consistent and secure funding. Publicly-funded wheat research barely has the resources to maintain the essential breeding and capacity building activities that underpin the impacts documented in this new publication, which will be released in November 2015 and aims to set the record straight on the magnitude of CGIAR contributions to global food supplies.

As of 2015, CIMMYT and ICARDA have agreed to operate their wheat research as a single joint program. They are struggling to find support for work on new technologies, such as advanced phenotyping platforms for heat and drought tolerance, or advanced global consortia focusing on traits that dramatically raise the genetic yield potential of wheat. Those and other tools and initiatives will be crucial for public wheat breeding research to partner effectively with the private sector and keep step with societal demands for food security and nutrition.

Funded through the CGIAR Wheat Research Program, the study is based on a survey sent to 94 countries that produce at least 5,000 tons of wheat each year. Responses came from 66 wheat-growing countries — 44 of them developing countries that account for nearly all the developing world’s wheat output. Survey data were complemented with information from published wheat varietal guides, figures on wheat varietal area insured or grown, papers in scientific journals, technical bulletins, and on-line sources including the US Department of Agriculture National Agricultural Statistics Services (USDA-NASS), the Annual Wheat Newsletter, and wheat area, production and yield statistics from the Food and Agriculture Organization of the United Nations (FAO). The study updates results of Lantican et al. (2005).

Lantican, M.A., T.S. Payne, K. Sonder, R. Singh, M. van Ginkel, M.Baum, H.J. Braun, and O. Erenstein. In press. Impacts of International Wheat Improvement Research in the World, 1994-2014. Mexico, D.F.: CIMMYT.

CIMMYT scientists make a splash on Australian radio show

The Australian Broadcasting Corporation broadcast its “Country Hour” program live from the International Wheat Conference at the Four Seasons Hotel in Sydney. The program features 2014 World Food Prize Laureate Sanjaya Rajaram and several CIMMYT scientists, including Sridhar Bhavani, David Hodson, Julio Huerta, Jessica Rutkoski and Hans Braun, director of the Global Wheat Program. Jeanie Borlaug Laube, the “first lady of wheat” and daughter of Nobel Peace Prize laureate and wheat breeder Norman Borlaug, is among interviewees selected by broadcaster Michael Condon.

Click here to listen to podcast.

CIMMYT scientists make a splash on Australian radio show

The Australian Broadcasting Corporation broadcast its “Country Hour” program live from the International Wheat Conference at the Four Seasons Hotel in Sydney. The program features 2014 World Food Prize Laureate Sanjaya Rajaram and several CIMMYT scientists, including Sridhar Bhavani, David Hodson, Julio Huerta, Jessica Rutkoski and Hans Braun, director of the Global Wheat Program. Jeanie Borlaug Laube, the “first lady of wheat” and daughter of Nobel Peace Prize laureate and wheat breeder Norman Borlaug, is among interviewees selected by broadcaster Michael Condon.

Click here to listen to podcast.

 

Replacing gender myths and assumptions with knowledge

CIMMYT Director General Martin Kropff speaks on the topic of ‘Wheat and the role of gender in the developing world’ prior to the 2015 Women in Triticum Awards at the Borlaug Global Rust Initiative Workshop in Sydney on 19 September.

If we are to be truly successful in improving the lives of farmers and consumers in the developing world, we need to base our interventions on the best evidence available. If we act based only on our assumptions, we may not be as effective as we could be or, even worse, actively cause harm.

One example is the common perception that women are not involved in the important wheat farming systems of North Africa and South Asia. By recognizing and engaging with these myths, we are beginning to build a more sophisticated understanding of how agriculture works as a social practice.

Currently, there are only a few published studies that take a closer examination of the roles played by women in wheat-based farming systems. These studies have found that, in some cases, men are responsible for land preparation and planting, and women for weeding and post-harvest activities, with harvest and transport duties being shared. Between different districts in India, huge variations may be found in the amount of time that women are actively involved in wheat agriculture. This shows that some careful study into the complexities of gender and agricultural labor may hold important lessons when intervening in any particular situation.

We must also never assume that, just because women are not as involved in agriculture in a particular context, they can not benefit from more information. In a survey carried out by CIMMYT researcher Surabhi Mittal in parts of rural India, it was found that women used a local cellphone agricultural advisory service just as much as men, and that this knowledge helped them get more involved in farming-related decision-making.

Gender is not just about women

For all that it is important to include women, along with other identity groups in project planning, implementation and data collection, it is important not to get into the trap of thinking that gender-integrated approaches are just about targeting women.

For example, the World Health Organization estimates that micronutrient deficiency affects at least two billion people around the world, causing poor health and development problems in the young. The effects of micronutrient deficiency start in the womb, and are most severe from then through to the first two years of life. Therefore it would make sense to target women of childbearing age and mothers with staple varieties that have been bio-fortified to contain high levels of important micronutrients such as zinc, iron or vitamin A.

However, to do so risks ignoring the process in which the decision to change the crop grown or the food eaten in the household is taken. Both men and women will be involved in that decision, and any intervention must therefore take the influence of gender norms and relations, involving both women and men, into account.

The way ahead

To move forward, each component of the strategy for research into wheat farming systems at CIMMYT also has a gender dimension, whether focused on improving the evidence base, responding to the fact that both women and men can be end users or beneficiaries of new seeds and other technologies, or ensuring that gender is considered as a part of capacity-building efforts.

Already, 20 of our largest projects are actively integrating gender into their work, helping to ensure that women are included in agricultural interventions and share in the benefits they bring, supplying a constant stream of data for future improvement.

We have also experienced great success in targeting marginalized groups. For instance, the Hill Maize Research Project in Nepal, funded by the Swiss Agency for Development and Cooperation (SDC) alongside the U.S. Agency for International Development (USAID), focused on food-insecure people facing discrimination due to their gender or social group. By supporting them to produce improved maize varieties in community groups, the project managed not only to greatly increase their incomes, but also to improve their self-confidence and recognition in society.

CIMMYT researchers are also among the leaders of a global push to encode gender into agricultural research together with other international research partnerships. In over 125 agricultural communities in 26 countries, a field study of gender norms, agency and agricultural innovation, known as GENNOVATE, is now underway. The huge evidence base generated will help spur the necessary transformation in how gender is included in agricultural research for development.

Further information:

The Borlaug Global Rust Initiative, chaired by Jeanie Borlaug Laube, has the overarching objective of systematically reducing the world’s vulnerability to stem, yellow, and leaf rusts of wheat and advocating/facilitating the evolution of a sustainable international system to contain the threat of wheat rusts and continue the enhancements in productivity required to withstand future global threats to wheat. This international network of scientists, breeders and national wheat improvement programs came together in 2005, at Norman Borlaug’s insistence, to combat Ug99. The Durable Rust Resistance in Wheat (DRRW) project at Cornell University serves as the secretariat for the BGRI. The DRRW, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA) and the FAO helped establish the BGRI a decade ago. Funding is provided by the UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation. For more information, please visit www.globalrust.org.

CIMMYT is the global leader in research for development in wheat and maize and related farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat to improve food security and livelihoods. CIMMYT belongs to the 15-member CGIAR Consortium and leads the Consortium Research Programs on wheat and maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

Follow the #BGRI2015 hashtag on social media

Twitter: @CIMMYT, @KropffMartin and @GlobalRust