Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Combating malnutrition: a new zinc-rich variety of wheat

VeluBlogpic
A farmer feeds harvested wheat crop into a thresher as a woman collects de-husked wheat in a field at Kunwarpur village, Allahabad in India’s Uttar Pradesh website. Credit: Handout

V.K. Mishra and Ramash Chand are professors at Banaras Hindu University in Varanasi, India. Arun Joshi is a wheat breeder at CIMMYT. Any views expressed are their own.

One of the side-effects of the Green Revolution, which began in the 1960s and led to large increases in crop production, has been a change in the cropping patterns in many parts of India.

Farmers have shifted to crops with higher yields. In the Indo-Gangetic plains, for example, rice and wheat have replaced many other crops. This has reduced crop diversity, affected dietary patterns, and led to malnutrition due to a poor supply of proteins, vitamins, iron and zinc.

Wheat is the staple diet in Uttar Pradesh and Bihar. Farmers in those states typically have very small landholdings and consume about 70 per cent of the food they produce. One essential mineral missing from their diet is zinc. A zinc deficiency leads to malfunctioning of several proteins and enzymes, and manifests itself in a variety of diseases, including diarrhea, skin and respiratory disorders.

One way of making up for this kind of deficiency is to provide fortification by adding missing nutrients to food, but this is complex for several reasons, including price increases, the problem of quality control, and the possibility of adulteration.

We tested the genetic bio-fortification technology for enhancing the zinc content in wheat crops under the HarvestPlus project of CIMMYT and the International Center for Tropical Agriculture, funded by the Bill & Melinda Gates Foundation. Bio-fortification is a seed-driven technology that enables crops to extract a higher amount of zinc from the soil and store it in the edible parts.

Through cross-breeding, we produced several thousand wheat genotypes and screened them for high zinc content and high yield. In India, a new variety would be unacceptable if it does not deliver a higher yield than the varieties already under cultivation. We isolated several of these cross-bred varieties that had both high zinc and high yield, and put them through field trials. The existing varieties of wheat crop had 29 parts per million (ppm) of zinc and the varieties we selected had 40 to 45 ppm of zinc.

These field trials were conducted at 70 different locations. Two specific varieties of wheat were then distributed to about 5,000 farmers for cultivation.

The next stage is national trials, which will be conducted by the Indian Council of Agricultural Research (ICAR). The first thing that ICAR does is to put the recommended varieties to disease trial. The ICAR tests take about three years. One of the varieties, BHU-35, has recently cleared the disease-testing stage and is ready to be released in Uttar Pradesh for cultivation, after a few more regulatory clearances.

Seven other varieties are currently undergoing disease testing, and in the next few years, many other zinc-rich wheat crops will be ready for cultivation.

This story was originally published in The Indian Express.

Cereal systems in South Asia show diverse benefits of conservation agriculture

Conservation agriculture (field at right) protects wheat from damage due to water stagnation experienced in a conventional field, visible in the blackening of the wheat (left field). Photo: CIMMYT/ Sapkota
Conservation agriculture (field at right) protects wheat from damage due to water stagnation experienced in a conventional field, visible in the blackening of the wheat (left field). CIMMYT/Tek Sapkota

Julianna White is program manager for low emissions agriculture at the CGIAR Research Program on Climate Change, Agriculture and Food Security. Tek Sapkota is a scientist with the International Maize and Wheat Improvment Center and lead author of the study. Any opinions expressed are their own.

Research shows conservation agriculture increases the income of farmers, moderates canopy temperatures, improves irrigation productivity and reduces greenhouse gas emissions in cereal systems in the Indo-Gangetic plains.

Conservation agriculture practices are also climate-smart, meaning they help farmers adapt to climate change while minimizing greenhouse gas emissions, found researchers from CIMMYT, the Borlaug Institute for South Asia and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

In an August 2015 article in the Journal of Integrative Agriculture, researchers report that a comprehensive literature review and evidence collected from on-farm trials showed that conservation agriculture – defined as minimal soil disturbance and permanent soil cover combined with appropriate rotations – improved farmers’ income, helped crops sustain or adapt to heat and water stresses, and reduced agriculture’s contribution to greenhouse gas emissions in cereal systems in South Asia.

Farmer Ram Shubagh Chaudhary in his wheat fields, in the village of Pokhar Binda, Maharajganj district, Uttar Pradesh, India. He alternates wheat and rice, and has achieved a bumper wheat crop by retaining crop residues and employing zero tillage. He is one of the farmers working in partnership with the Cereal Systems Initiative for South Asia (CSISA). CIMMYT is one of the many partners involved in CSISA, a collaborative project designed to decrease hunger and increase food and income security for resource-poor farm families in South Asia through development and deployment of new varieties, sustainable management technologies, and policies, led by the International Rice Research Institute (IRRI) and funded by the Bill & Melinda Gates Foundation and the USAID. Chaudhary carries out many different experiments, including comparisons of varieties, sowing dates, herbicides, and other variables, and gives demonstrations of his fields to other farmers. Photo credit: CIMMYT.
Farmer Ram Shubagh Chaudhary in his wheat fields, in the village of Pokhar Binda, Maharajganj district, Uttar Pradesh, India. He alternates wheat and rice, and has achieved a bumper wheat crop by retaining crop residues and employing zero tillage. CIMMYT/Petr Kosina

Farmers reap economic benefits

Conservation agriculture recommends minimal soil disturbance, most commonly tillage. Farmers who practiced zero tillage saved 23 percent in production costs by avoiding preparatory tillage and reducing the number of times fields were irrigated, while reaping the same or slightly higher yields.

Minimizing heat stress

High temperatures during the maturity stage cause wheat to decrease grain size, lowering overall yields, a phenomenon known as “terminal heat effect.” Farmers who practice conservation agriculture avoid this heat stress because residues left on the surface of the field conserve soil moisture, enhancing transpiration and creating a cooling effect – thus avoiding reduced yields caused by terminal heat effect.

Efficient use of water resources

Researchers found multiple examples that the zero tillage component of conservation agriculture led to significant water savings in both rice and wheat systems. Water savings accrued across systems. In rice-wheat systems, retention of wheat residues reduces water use in rice, and retention of rice residues causes reduced water use in wheat. Non-requirement of preparatory tillage advances the planting times thereby increasing rainwater-use efficiency and utilizing residual moisture from the previous crop.

Decrease in greenhouse gas emissions

Minimizing soil disturbance allows for soil carbon to accumulate, causing a net soil carbon gain. Although scientists are still debating the extent of soil carbon sequestered through conservation agriculture, indirect emissions reductions are numerous: less power and fuel consumption due to decreased tillage in conservation agriculture, decreased labor from machines and humans, and slower depreciation of equipment.

Business-as-usual production practices such as conventional tillage and farmers’ nutrient and irrigation management systems are greenhouse gas-intensive, while zero tillage reduces energy consumption in land preparation and crop establishment and efficient use of water resources reduces energy needs from pumping. Leaving residues in the field increases soil health and fertility, thereby reducing the need for chemical fertilizers.

Researchers found that, on average, farmers could save 36 liters of diesel per hectare, equivalent to a reduction in 93 kg CO2 emission per hectare per year by practicing zero tillage for land preparation and crop establishment in the rice-wheat system typical on the Indo-Gangetic Plain. Given that 13.5 million hectares are under rice-wheat system cultivation in the region, this represents a reduction of 12.6 megatons of CO2 equivalent.

New technologies increase uptake of conservation agriculture

Despite excellent productivity, economic gains and environmental benefits, adoption of conservation agriculture in South Asia is still relatively slow, most likely due to various technological and socio-economic factors. It takes years and ample evidence for farmers to change the entrenched habit of tillage with planting. And it is a process.

For example, some farmers have adopted zero-tillage in wheat production, primarily to facilitate early planting, lower production costs and increase yields (and therefore profitabilitiy). However, these same farmers still prefer to practice tillage and puddling (wet-tillage) in their rice crops for weed control and reduction in percolation loss of water/nutrient. Also, farmers tend to burn crop residues to facilitate planting with the zero-tillage drill. To realize the full potential of conservation agriculture, all crops in rotation have to be brought under zero tillage, and crop residues will have to be used as soil surface mulch.

Due to the recent development of the “Turbo Happy Seeder,” which can drill seed and fertilizer directly through loose and anchored crop residues, farmers are gradually moving towards zero tillage across the agriculture system.

Farmers who practice conservation agriculture also must adjust their nutrient management systems in order to maximize crop productivity decrease costs. Conventional fertilizer recommendations have been calibrated based on tillage-based systems are thus not necessarily appropriate for conservation agriculture systems, including nutrient stewardship (applying the right source of fertilizer at the right time in right place using right method).

Crop residue management is essential for continuous coil cover, an important component of conservation agriculture, but farmers are faced with competing uses of crop residue as livestock feed, fuel, mulch and compost. Local adaptive research is needed to address strategic residue and nutrient management, weed control and scale-appropriate machinery development.

Such a paradigm shift in crop management requires a mindset transition among farmers and other value chain actors, including researchers, extension agents, market players and other institutions. Though it is recognized that transition takes time, recent progress and development in weed control and nutrient management systems signal that practice of conservation agriculture is growing across the region, including among different socio-economic groups and farm typologies.

CCAFS and CIMMYT continue research and implementation of low emissions agriculture across the globe. See also the regional focus on conservation and climate-smart agriculture in South Asia.

U.S. embassy in Pakistan highlights hybrid maize seed production

Pollination of maize. Photo courtesy of aip.cimmyt.org.
Pollination of maize. Photo courtesy of aip.cimmyt.org.

United States Agency for International Development (USAID) Mission Director John Groarke presented new varieties of maize seed to Pakistani research organizations and private-sector seed companies on 17 February at the National Agricultural Research Center in Islamabad, according to a U.S. embassy press release.

These varieties were developed by the Agricultural Innovation Program (AIP), a joint effort led by CIMMYT and supported by USAID, to jump-start the production of quality hybrid maize seed in Pakistan. The varieties distributed are resistant to drought and heat, have enhanced nutritional quality and increased tolerance to insect attacks and low soil nitrogen.

AIP for Pakistan is working to sustainably increase agricultural productivity and incomes in the agricultural sector through the promotion and dissemination of modern technologies/practices in the livestock, horticulture (fruits and vegetables) and cereals (wheat, maize and rice) sector. The $30 million initiative also collaborates with the International Livestock Research Institute (ILRI), the World Vegetable Center (AVRDC), the International Rice Research Institute (IRRI), the University of California – Davis and the Pakistan Agricultural Research Council (PARC).

Read the full press release here.

Educational video helps Kenya farmers learn benefits of drought-tolerant maize

Actors celebrating a fruitful harvest thanks to drought-tolerant maize. Photo: Brenda Wawa/CIMMYT
Actors celebrating a fruitful harvest thanks to drought-tolerant maize. Photo: Brenda Wawa/CIMMYT

KOLA, Kenya (CIMMYT) – A new video aimed at raising awareness among farmers about high-yielding, drought-tolerant maize varieties is set for distribution in eastern Kenya ahead of the long rains that begin in March 2016. In the video, which was made by Michigan State University, farmers discuss the challenges of food scarcity related to poor maize seeds that wither because of moderate drought conditions prevalent in the area. The climate, coupled with poor agronomic practices, results in very low yields that cannot sustain households, the video shows.

“The actors are local farmers who are known and trusted,” said Charles Steinfield, a professor at Michigan State University (MSU), who led the project, which focuses on Kola village in Machakos County, about 62 kilometers East of Nairobi.

“The context of the story is real, therefore, this approach comes out as more engaging, practical and has some entertaining bits to appeal to the audience.”

Additional cast members include a leader, an agro-dealer and an agronomic expert who guides the farmers to use improved drought-tolerant maize varieties and recommended agronomic management practices during land preparation, planting, harvesting and post-harvest.

The video was made in the farmers’ homesteads and farms, as a way of including them in the filming and encouraging them to become part of the process. David Kyule and Winfred Kyule were among the main actors. They said they found the experience exciting; adding that they think the video will encourage farmers to plant improved drought-tolerant seeds.

KDV6, a drought-tolerant maize variety was filmed among improved maize suitable for Kola location, in eastern Kenya. Photo: Brenda Wawa/CIMMYT
KDV6, a drought-tolerant maize variety was filmed among improved maize suitable for Kola location, in eastern Kenya. Photo: Brenda Wawa/CIMMYT

The videos will be shown to farmers in local meetings called barazas organized by Farm Input Promotions Africa (FIPS), which supports farmers in Kola and the greater eastern Kenya region to access improved farm inputs through a network of village-based advisors and network coordinators. Given the lack of electricity in the targeted areas, some of which are remote, the video will be screened using portable battery-operated projectors.

The plan is to screen the videos just before the farmers start their next planting season in March 2016, Steinfeld said. In addition to sharing information, farmers will be encouraged to engage in discussions about drought-tolerant varieties before and after they see the video. Any change in perception and adoption of these varieties in the coming planting season will be monitored. The screening will target at least 600 farmers in Kola location.

“Our key message in the video is on the benefit of Drought Tolerant varieties and we want farmers to simply try the varieties and see how they perform,” Steinfeld said.

“We are not asking farmers to throw away their local varieties, but giving them a chance to know and experiment the improved drought tolerant varieties that will give them much better yield. All they have to do is try the seeds.”

Through FIPS, the farmers will receive small packets of the drought-tolerant varieties to plant on a small portion of their land to see how it performs.

Plans are underway to air the videos by mid-February 2016 when farmers will be preparing to plant during the March-to-May long rains season.

The main cast of the film (from L to R) Winfred Kyule, Damaris Kyala, Boniface Kyala and David Kyule. Photo: Brenda Wawa/CIMMYT
The main cast of the film (from L to R) Winfred Kyule, Damaris Kyala, Boniface Kyala and David Kyule. Photo: Brenda Wawa/CIMMYT

Soon after the video screening, pre-recorded mobile phone voice messages will be sent to farmers to remind them to buy improved certified drought-tolerant varieties. The messages will be followed up in April by another voice message recommending required agronomic practices that include fertilizer or manure application and weeding. In August, farmers will receive messages including advice on drying and storing the maize harvest.

SEED ACCESS

After raising awareness about the drought-tolerant varieties, demand for the seed is expected to increase. The Drought Tolerant Maize for Seed Scaling project, run by CIMMYT is currently working with seed companies to increase availability of affordable drought-tolerant seed. Some of the varieties, which feature in the video, include DroughtTego, KDV2, KDV4 and KDV6 developed under International Maize and Wheat Improvement Center (CIMMYT) maize projects – Drought Tolerant Maize for Africa and Water Efficient Maize for Africa.

The participatory farmer video filming project in Kola location, Machakos County in eastern Kenya was developed by Michigan State University and funded by the U.S. Agency for International Development with support from FIPS and CIMMYT.

Scientists aim to adapt wheat to a warmer climate with less water

MReynoldsEL BATAN, Mexico (CIMMYT) – Scientists battling to increase wheat production by more than 60 percent over the next 35 years to meet projected demand are optimistic that they have begun to unravel the genetic mysteries that will lead to a more productive plant.

A recent study conducted at 26 international sites with a new generation of improved wheat breeding lines crossed and selected for superior physiological traits, resulted in yields that were on average 10 percent higher than other wheat varieties.

In the study, scientists identified many useful traits in the wheat plant suited to heat and drought adaptation, including: cooler canopy temperature indicating the ability of the plant to access subsoil water under drought and root proliferation under hot irrigated conditions.

They also discovered the plants have the ability to store sugars in the stem when conditions are good and the capacity to remobilize them to the grain when needed for seed filling if conditions do not permit enough photosynthesis. Leaf wax also plays a role by reflecting excess radiation and reducing evaporation from the leaf surface, lowering the risk of photo-inhibition and dehydration.

Additionally, scientists discovered that total aboveground biomass, a trait, which indicates overall plant fitness and with the right crossing strategy can be converted to produce higher grain yield.

“What we have revealed is a proof of concept – namely that designing crosses on the basis of wheat’s physiology results in a range of novel genotypes with significant improvements in yield and adaptation,” said Matthew Reynolds, a distinguished scientist and wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“We have a long road ahead, but we hope eventually this work will lead to the discovery of the best combinations of genes suited to specific heat and drought profiles.”

HEAT STRESS

Climate change poses considerable risks to food security and political stability. Wheat is a vital food staple providing 20 percent of the calories and protein consumed by people worldwide.

Projections indicate that it is very likely that rainfall will be more unpredictable and that heat waves will occur more often and last longer throughout the 21st century, according to a report from the Intergovernmental Panel on Climate Change (IPCC). Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the report said.

A recent comprehensive modeling exercise, which incorporated data from international heat stress trials led by CIMMYT’s wheat physiology team in the 1990s, shows that for each degree increase in average temperature, there is a 6 percent reduction in wheat yield, so an increase of 5 degrees would lead to a 30 percent reduction or more.

“A 30 percent yield reduction would be very harmful to food security because we know that wheat production must increase by 60 percent just to keep up with population projections,” Reynolds said. “Combined with predicted climate risks, the challenge increases – if this happens, we’ll need to double the yield capacity of our current varieties.”

While demand for wheat is projected to increase at a rate of 1.7 percent a year until 2015, global productivity increases at only 1.1 percent. Conventional breeding approaches achieve less than 1 percent per year, a yield barrier that scientists aim to break.

“If the relative rate of improvement in yields continues at its current pace, there will be a large gap between the amount of available wheat and the amount we need to feed the global population,” Reynolds said.

LESS THIRSTY PLANT

Research findings will be developed under the International Wheat Yield Partnership (IWYP) and the Heat and Drought Wheat Improvement Consortium (HeDWIC), aiding the development of molecular breeding methodologies which will complement the trait-based approach.

Under IWYP and HeDWIC scientists will be redesigning the wheat plant for adaptive traits relating to temperature extremes, photoperiod, soil depth, and other environmental factors. Other goals will include attempting to drastically increase radiation-use efficiency, and to understand how plants use signaling to coordinate their activities and respond to environmental fluxes.

Such crops as rice and triticale can be used as potential models for wheat redesign. Rice is similar to wheat in terms of its basic metabolism, but tolerates much higher temperatures, Reynolds said. Triticale could also be used as a model, since it almost never lodges – or falls over – and its spikes have a very high grain number, he added.

Scientists also aim to increase their understanding of the role of roots and their potential to boost yield and ability to adapt to stress.

Because roots are hidden and messy to work with their physiology has been largely ignored in comparison to the parts of the plant above ground, but new technologies are helping to overcome these disadvantages, Reynolds said.

Such challenges are now more feasible to tackle due to a new generation of genomics tools and other biotechnologies which become more powerful each year.

“The revolution in phenomics – work that the Wheat Physiology Group helped pioneer – especially remote sensing for temperature and spectral indices, which indicate specific physiological properties of the plant-, means that we can now evaluate a much larger numbers of lines than in the past,” Reynolds said.

“We’ve already screened 70,000 accessions from the World Wheat Collection in the CIMMYT Genebank, and have identified a veritable powerhouse of novel material to support this work related to breeding and gene discovery for decades to come. So although the challenge is enormous, we remain optimistic.”

Follow @WheatPhysiology on Twitter

RELATED RESEARCH

International Wheat Yield Potential Proceedings

Physiological traits for improving heat tolerance in wheat 

Achieving yield gains in wheat

Translational research impacting on crop productivity in drought-prone environments

Knight of the Order of Agricultural Merit bestowed on WHEAT independent steering committee member

John R. Porter on the top floor of the French National Institute for Agricultural Research (INRA) building in Paris. Porter was honored as a Knight of the Order of Agricultural Merit at a ceremony on 1 March 2016 at the French Embassy in Denmark. Photo: John R. Porter
John R. Porter on the top floor of the French National Institute for Agricultural Research (INRA) building in Paris. Porter was honored as a Knight of the Order of Agricultural Merit at a ceremony on 1 March 2016 at the French Embassy in Denmark. Photo: John R. Porter

John R. Porter of The University of Copenhagen, the Natural Research Institute of the University of Greenwich, UK, and member of the WHEAT Independent Steering Committee, was granted Knight of the French Order of Agriculture Merit at a ceremony on 1 March.

The Order of Agricultural Merit is awarded to those that have made extraordinary contributions to agriculture via research or practice. The Order, which was established in 1883 by France’s Ministry of Agriculture, is one of the most important recognitions awarded in the country.

To become a knight, a person must be at least 30 years of age and have dedicated at least 15 years of service to the agricultural community, covering both developed and developing country farming.

“France has had an extremely important role in the development of agriculture and food production in Europe and the world. The production of food serves one of the most basic human needs, and this award and its history recognizes that fact,” said Porter in an acceptance speech at the French Embassy in Denmark. “I was extremely honored and surprised when I learned that I would be bestowed with this honor.”

Porter is best known for his pioneering work in the development of crop simulation models that are now regarded as being central to guiding research identifying new crop phenotypes, the impacts of and adaptation to climate change and carbon mitigation to the benefit of agriculture globally. He has also made major contributions to agriculture via his multi-disciplinary work in the response to arable crops, energy crops and complex agro-ecosystems to their environment with an emphasis on climate change, agronomy and ecosystem services.

Focusing on agriculture in the developing world, Porter took the initiative to bring the secretariat and hub of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), to his university in Copenhagen. He has also collaborated with European pasta manufacturers to develop methods to identify high quality sources of durum wheat prior to harvest by using a combination of models and remote sensing technologies.

Porter has published more than 140 papers in reviewed journals and has won three international prizes for his research and teaching. Apart from serving on the WHEAT Independent Steering Committee, he was appointed by the French Ministry of Agriculture and serves as a member of the Science Council of the French National Institute for Agricultural Research (INRA) and previously served as the president of the European Society for Agronomy.

Most recently, Porter was the lead author of a critically important chapter for the Intergovernmental Panel on Climate Change (IPCC) on food production systems and food security for the IPCC 5th Assessment Report, which was the scientific bedrock of the COP21 agreement, signed December 2015.

Congratulations to John R. Porter on this prestigious award!

Scientists unearth genetic treasures from Mexico’s Creole wheats

sukhinder
Sukhwinder Singh at a field of Punjab Agricultural University, India, with Mexican wheat landrace evaluation trial (foreground) and wheat lines derived from the landraces (background). Photo: Mike Listman

FOR IMMEDIATE RELEASE

Findings can help to boost wheat’s climate resilience worldwide

For the first time ever, a research team from China, India, Mexico, Uruguay, and the USA has genetically characterized a collection of 8,400 centuries-old Mexican wheat landraces adapted to varied and sometimes extreme conditions, offering a treasure trove of potential genes to combat wheat’s climate-vulnerability.

Published today in Nature Scientific Reports and led by scientists from the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), the study details critical genetic information about Mexican landraces for use in breeding to boost global wheat productivity.

This is essential, given the well-documented climate effects that imperil key wheat-growing areas, according to Sukhwinder Singh, CIMMYT wheat scientist and co-author of the report.

“The landraces, known as Creole wheats, were brought to Mexico as early as the 16th Century,” said Singh, who also credited the study to MasAgro, a long-term rural development project between Mexico and CIMMYT. “Wheat is not native to Mexico, but this gave the Creoles time to toughen in zones where late-season temperatures can hit highs of 40 degrees Centigrade (104 degrees Fahrenheit).”

Heat can wreak havoc with wheat’s ability to produce plump, well-filled grains. Research has shown that wheat yields plummet 6 percent for each 1-degree-Centigrade rise in temperature, and that warming is already holding back yield gains in wheat-growing mega-regions such as South Asia, home to more than 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.

“Typically, massive seed collections constitute ‘black boxes’ that scientists have long believed to harbor useful diversity but whose treasures have remained frustratingly inaccessible,” Singh explained. “New technology is helping to change that. As part of MasAgro’s ‘Seeds of Discovery Component,’ the team used the latest genotyping-by-sequencing technology and created unique sets of the landrace collections that together capture nearly 90 percent of the rare gene variants, known as ‘alleles.’ ”

According to Kevin Pixley, director of CIMMYT’s genetic resources program and an expert crop breeder, wheat scientists will be able to home in on groups of landraces from regions with conditions similar to those they presently target or will target in coming decades. “The next step is for breeders to identify seed samples and genes for their programs; say, alleles common to a set of landraces from a heat-stressed area, providing a valuable starting point to exploit this newly-revealed diversity.”

A pillar for global food security, wheat provides 20 percent of protein and calories consumed worldwide and up to 50% in developing countries. A 2015 World Bank report showed that, without action, climate change would likely spark higher agricultural prices and threaten food security in the world’s poorer regions.

For more information

Mike Listman, CIMMYT communications, email at m.listman@cgiar.org, mobile at +52 1 595 957 3490. Geneviève Renard, head of CIMMYT communications, email at g.renard@cgiar.org, mobile at +52 1 595 114 9880.

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT), is the global leader in research for development in wheat and maize and wheat- and maize-based farming systems. From its headquarters in Mexico and 14 global offices, CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat systems, thus contributing to better food security and livelihoods. CIMMYT is a member of the 15-member CGIAR Consortium and leads the CGIAR Research Programs on Wheat and Maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

The legacy of drought tolerant maize for Africa

Young lady carrying home flour from millers, Salina, Malawi. Photographer: Tsedeke Abate/ CIMMYT
Young lady carrying home flour from millers, Salina, Malawi. Photo: Tsedeke Abate/ CIMMYT

The Drought Tolerant Maize for Africa (DTMA) Project has contributed towards improving seed system in sub-Saharan Africa for almost nine years (2007–2015), through 233 varieties released including about 200 distinct drought-tolerant (DT) maize hybrids and open-pollinated varieties (OPV) developed to help farmers cope with drought constraint in maize farming.

The main purpose of DTMA was to increase the food and income security of smallholder farmers through the development and dissemination of drought tolerant, well-adapted DT hybrids and OPV maize varieties. The project was jointly implemented among the National Agricultural Research systems by CIMMYT (eastern and southern Africa) and the International Institute of Tropical Agriculture in West Africa and concluded at the end of December 2015.

Since its inception, the project has supported production of nearly 54,000 tons of certified DT maize seed benefiting an estimated 5.4 million households – or 43 million people – across the DTMA countries (Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia and Zimbabwe).

The new DT maize varieties are adapted to the various agro-ecologies in each of the target countries. Most of them have been commercialized or are in the process of being commercialized. These varieties produce the same or better yields as the currently available commercial varieties. All of them are resistant to major diseases. In addition, several of them are tolerant to the parasitic weed Striga hermonthica and nitrogen-use efficient.

Africa’s food security is on a positive trajectory, and DTMA is contributing to this progress. The strong partnership developed with over 90 small – and – medium seed companies currently stocking DT varieties will facilitate continued production and supply of certified DT seed to reach many more smallholders in Africa.

Related Articles

Final DT Maize Bulletin, December 2015

Maize Variety Options for Africa Narratives and Pictures for 13 DTMA target countries

DTMA country pictures Flickr Album

The scorecard, as marathon maize project winds up after eight years

Kenya gives conditional approval to grow genetically-transformed maize

Kenyan farmers to realize full yield potential and harvest better quality maize from Bt maize.  Photograher: CIMMYT/B.Wawa
Kenyan farmers to realize full yield potential and harvest better quality maize from Bt maize. Photo: CIMMYT/B.Wawa

NAIROBI – The Kenya Agricultural and Livestock Research Organization (KALRO) announced it received official approval from Kenya’s National Biosafety Authority (NBA) to conduct National Performance Trials (NPTs) in Kenya using genetically-transformed, insect resistant maize on Feb. 9.

This is the first time Kenyan authorities have approved the environmental release of genetically-transformed maize, meaning the varieties can be grown in non-restricted field conditions like any other variety.

The approval comes as a result of an application submitted to NBA in April 2015 by KALRO and the African Agricultural Technology Foundation (AATF), as part of the Water Efficient Maize for Africa (WEMA) Project, for field testing of WEMA maize that carries genes from Bacillus thuringiensis (Bt). The genes confer targeted resistance to particular insect species that attack maize in the field, causing annual losses in Kenya’s maize harvest of up to 400,000 tons.

The approval paves the way for the eventual release, registration, and marketing through local seed companies of Bt maize varieties, in the same manner as any other variety.

As part of the approval, WEMA partners are required to conduct environmental and social impact studies, submit a product stewardship management plan, and carry out compositional analyses of Bt maize grain.

Led by the AATF, WEMA includes KALRO and CIMMYT among its partners. The project already has a stewardship plan, is consulting with relevant regulatory institutions to begin the studies required, and would enter at least four maize varieties in NPTs.

Maize with Bt genes has been grown for nearly 20 years in 25 countries worldwide.

For more information about CIMMYT’s work in WEMA: Brenda Wawa, CIMMYT communications officer.

Q+A: Ignore preconceptions, stake claim on science, CIMMYT’s Natalia Palacios tells women, girls

CIMMYT scientist Natalia Palacios pinpoints discrimination as the main hurdle to gender balance in science. Photographer: Alfonso Cortés Arredondo/ CIMMYT
CIMMYT scientist Natalia Palacios pinpoints discrimination as the main hurdle to gender balance in science. Photo: Alfonso Cortés Arredondo/ CIMMYT

EL BATAN, Mexico (CIMMYT) – Discrimination in the science sector remains a significant challenge to achieving gender balance in education and professional research, said a top maize researcher.
“Unfortunately there is still discrimination, from the education level to the professional environment, and therefore there are still some areas that are largely dominated by men,” said Natalia Palacios, maize nutrition quality specialist at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT).
Gender balance is essential in science as it provides a range of perspectives that contribute to better solutions, Palacios said. She has been fascinated by nature and its workings since girlhood growing up in a small farming town in Colombia. Putting this fascination into action proved the possibilities a career in science could have, she said.
“I grew up in a very small farming town and I was always exposed to small farmers and agriculture. But it was when I did my undergrad internship at the International Center for Tropical Agriculture (CIAT) in Colombia that I realized the scope of potential contributing through science and agriculture has.”
However, a U.N. study conducted in 14 countries indicates that woman and girls remain underrepresented in scientific fields. The probability for female students graduating with a bachelor’s, master’s or doctoral degree in a science-related field are 19, 8 and 2 percent respectively, while the percentages of male students are 37, 18 and 6, it said.
In an effort to address gender disparity, in December, U.N. member states adopted a resolution to establish an annual international day to mark the crucial role women and girls play in science and technological communities celebrated for the first time on Feb. 11 this year. The aim of the International Day for Women and Girls in Science is to further the access of women and girls and their participation in science, technology, engineering and mathematics education, training and research activities.
Palacios pursued her passion for science by studying microbiology at Andes University in Bogota, Colombia, continuing with doctoral studies in plant biochemistry at University of East Anglia and the John Innes Center in Norwich, England. She completed two postdoctoral degrees at the University of Dublin and at the Max Planck Institute for molecular plant physiology in Germany.
She has worked as nutritional quality specialist at CIMMYT since 2005 and is currently head of the maize nutritional quality laboratory. Her main focus is the development of maize germplasm with high nutritional quality, including high-quality protein maize, high zinc and high pro-vitamin A maize. This includes assessment of nutritional quality of food products and phenotyping of genetic diversity for nutritional, end-use quality and culinary quality of maize.
She has more than 40 journal articles published, seven book chapters and more than 10 science magazines and brochures.
Palacios shared her views on women and girls in the science sector in the following interview.
Q: Why is it important to have more woman and girls studying as well as working in scientific fields?
Having women and girls in science is as equally as important as having men – you can’t have one without the other. We all have the same potential and we all can contribute to solve problems in science. Whether it’s women, men, people from different cultural backgrounds, each have their own unique and different perspective and all of them contribute to creating better solutions when they work together.
Q: What challenges do women and girls face with regard to science today?
Unfortunately there is still discrimination, from the education level to the professional environment, and therefore there are still some areas that are largely dominated by men. There are still many pre-conceptual ideas that people uses to generalize the sexes. For example, the perception may be that women have less flexibility or that men are better working in the field. We just have to be open, hold back judgments and refrain from using one-size-fits-all methodologies, you will be surprised how wrong some of those paradigms can be. Let’s not close the doors due to gender before giving people the opportunity to prove themselves.
Q. How does your research improve the lives of women and girls in the developing world?
I am part of a team working on developing maize with enhanced nutritional, end-use and culinary quality. I hope this research will lead to better diets and greater opportunities for everyone. However, our research is significantly important for mothers, who are more prone to malnutrition as their diets rely on only staple crops, which has a negative impact on their children. Malnutrition has an impact on their ability to study or work and limits their life opportunities. By ensuring that the end-use and culinary quality of maize is high, we expect to ease the process of cooking or processing it at home and for small-scale enterprises and create new income opportunities. This way, people can save time and money that then can be used for education and other more rewarding activities.
I also try to take any opportunity to encourage youth and women that have a passion for science to follow it and contribute to society based on their passion.
Q: What is your advice to young aspiring female scientists?
To follow dreams and aspirations. Keep working hard, believe in yourself and pursue the passion for science. Gender or cultural background should not limit such a passion.

Q+A: How women and girls can succeed in science, according to CIMMYT’s Sarah Hearne

CIMMYT scientist Sarah Hearne talks about gender equality in science. (Photo: Alfonso Cortés Arredondo/ CIMMYT)
CIMMYT scientist Sarah Hearne talks about gender equality in science. (Photo: Alfonso Cortés Arredondo/ CIMMYT)

EL BATAN, Mexico (CIMMYT) – Scientific change requires innovation and the best solutions emerge when a wide range of perspectives have been considered, if you don’t have representation from half of the population the scope for innovation is narrowed, said a leading molecular geneticist on the International Day of Women and Girls in Science.

“Women often look at problems from a different angle from men – not better, just different – and like men we have a different gender perspective – all perspectives are valid and of value,” said Sarah Hearne, who leads the maize component of the Seeds of Discovery project at the International Center for Maize and Wheat Improvement.

Her passion for science began in girlhood, stemming from a curiosity about how things work.

“I loved experimenting and figuring out how and why things happen; I used to dissect my grandma’s fish when they died to try to work out why they were floating in the tank – I was six at the time,” she said. “Thankfully my parents weren’t horrified by this and over the years my requests for microscopes, chemistry sets and supplies of organs to dissect were realized by Santa and the village butcher.”

Not all girls receive such encouragement. A study conducted in 14 countries found the probability for female students graduating with a bachelor’s, master’s or doctoral degree in a science-related field are 19, 8 and 2 percent respectively, while the percentages of male students are 37, 18 and 6, according to the United Nations.

In response, in December, U.N. member states adopted a resolution to establish an annual international day to mark the crucial role women and girls play in science and technological communities celebrated for the first time on Feb. 11 this year. The aim is to further the access of women and girls and their participation in science, technology, engineering and mathematics education, training and research activities.

She kicked off her career in adulthood by earning a Bachelor of Science degree in Applied Plant Science at the University of Manchester and a doctoral degree at the University of Sheffield where she focused on work based across the University of Sheffield, the John Innes Center and Syngenta. Since graduating she has worked at two CGIAR centers in Latin America and East and West Africa.

She currently works with CIMMYT in the Seeds of Discovery project where she develops and applies tools to identify and enable the use of the valuable genetic variation present in genebanks for the benefit of farmers and consumers around the world.

She shared her views on women and girls in science in the following interview.

Q: Why is it important to have an increased number of woman and girls studying as well as working in scientific fields?

Girls rock!

Half the population is female but in science careers we are underrepresented, this imbalance becomes increasingly acute as you move up in career structures towards positions of more decision making.

Gender-balanced companies tend to have higher profitability and rank higher in terms of institutional health. This translates to the non-profit sector – impact instead of profitability is the measure of success. More women are needed in scientific research and development at all levels of organizations. This ideal requires a gender-balanced pool of potential applicants – something that is hard to obtain when women are underrepresented in sciences from school to university.

Q: What inspired you to follow a career in science and agriculture?

I grew up in Yorkshire, a rural area in the UK, my dad was an agricultural engineer and my mum still runs her own shop. Farming was an integral part of our community and our lives.

I loved science at school and was one of the few who studied chemistry and physics. Indeed, I was the only girl who studied the four sciences on offer. I enjoyed studying biology and environmental science the most, and after leaving school I deliberated whether to study genetics or plant science at university, eventually deciding to do a degree in applied plant science.

I spent my third year at university working with Zeneca – now Syngenta. My fellow interns and I were plunged into the deep end of applied research with very limited supervision; I LOVED IT! I got to research design, test, evaluate and develop tools and resources that mattered to the company and to farmers; my boss was very supportive and he encouraged me to try out some of my more “wacky” ideas…I was allowed to fail and learn from failure, developing better methods as a result. After earning my B.Sc. I applied for Ph.Ds., all the Ph.Ds. I applied for were focused on different aspects of crop improvement – I wanted to work with plant science that had an impact on people’s lives. The Ph.D. I chose was on maize molecular genetics and physiology working on Striga (a parasitic weed endemic to Africa) and drought. My Ph.D. experiences importantly gave me first-hand experience of the hard reality of the precariousness of food and nutritional security across vast swathes of the human population. When completing my Ph.D. I decided I wanted to be able to contribute to food security through research but I didn’t want to do this within a university setting- I thought that was too far from farmers. I came to know CIMMYT through my doctoral research and I have been working in the CGIAR system of agricultural researchers ever since completing my Ph.D.

Q: What challenges do women and girls face with regard to science today?

Perceptions: Women can face direct sexism related to their choice of class/degree/career not being considered gender appropriate, this often has cultural influence so while a girl may be more or less accepted in one culture she is not in another. Role models also pose a challenge. There are few female role models in many areas; those that exist have often sacrificed much personal life to be where they are. This gives a skewed picture to girls in an image-obsessed world where people are expected to be perfect in all aspects of life. Science is still very male dominated, especially agricultural science. Overt and unintentional sexism is rife in many organizations – women can be made to feel like a “token” staff member..

Being assertive and focused is often viewed very negatively when women display this behavior with gender-specific terms being used. I have been called “bossy, bitchy, emotional, aggressive, ice queen, scary, etc.”, my male colleagues exhibiting the same behavior are “driven, focused, tough, go-getters, etc.” I have never heard them being called bossy….

Inequality at home results in inequality in science. Women still tend to bear the brunt of home and childcare activities and this creates real or perceived impacts. Institutions and national governments don’t always help – shared maternity/paternity leave would be a good starting point.

Q: What is your advice to young aspiring female scientists?

Wow, there are lots of wisdom picked up and passed on I could share, here are a few I have found the most useful:

Personal: Check your own prejudice and ensure you treat others in an equal way. I get tired of hearing statements like “men can’t multi-task”… it is as offensive as “women can’t read maps”. If we want equality we have to ensure we model it ourselves.

Work on self-confidence, self-esteem and develop a good, self-depreciating sense of humor. Build a support network to help maintain these things and give you honest feedback. Don’t be afraid to ask questions; ask lots of questions.

Don’t stress about titles, positions or detailed career paths – career paths don’t usually follow a straight or planned path and you discover more fulfilling things on the journey. Give yourself time to explore and discover an area of science you love and are inspired by; believe me it is worth every second invested. Happiness is more important that a title on a business card.

Pick your partners carefully, life is full of surprises and striving for equality shouldn’t stop in the classroom or workplace.

In school/the workplace, do not accept gender loaded statements; “you are bossy” should be quickly but firmly rebuked with “not bossy, simply assertive”. Speak out about gender bias –be it female, male, bi -or trans gender – and enable and support others to speak out. If someone says something that makes you feel uncomfortable, articulate this to them. In addition, I would advise that you should never, ever accept sexual harassment of yourself or others in the workplace. Report it and if needed shout and scream about it. It is a good idea to build a financial/family safety net for yourself so that you have the freedom to leave situations where there is unwillingness of employers to deal with sexual harassment.

Learn to program Python and a bit of Java. Data is getting easier to capture and as a result the volume of data we are processing grows year on year. Having the skills to manipulate and analyze this is increasingly critical – off the shelf solutions no longer work. Being able to program is an increasingly valuable skill and one many girls are not encouraged to explore.

Try to understand the gender climate of the organization you are working for – or want to work for – and seek out allies to navigate and – hopefully – start to influence the climate to a more gender neutral workplace.

Don’t view every decision as having gender bias – sometimes there really isn’t any- you just don’t like the decision.

Apply for jobs even when you don’t meet all of the requirements – if you can do half of the things well and can learn the others then apply- nothing ventured nothing gained (and few candidates, male or female, tick all of the boxes).

Learn how to negotiate and try not to enter a situation in which you are unaware of the facts about what you are arguing for. Women often feel uncomfortable to negotiate salaries – you feel worse when you realize a male colleague doing the same job is being paid more.

Don’t let anyone shout at you, and don’t let anyone talk over you – calmly, quietly, and privately explain how you want to be treated – if the shouting continues walk away from the situation.

Consider family issues whether you have a family or not; do you need to send an urgent request to someone at 5pm on a Friday? -This helps all colleagues – men have families too and we all need work-life balance.

 

MasAgro named a project transforming Mexico by leading university

MasAgro named a project transforming Mexico. Photographer: MasAgro/CIMMYT
MasAgro named a project transforming Mexico. Photographer: MasAgro/CIMMYT


MONTERREY, Mexico – The Sustainable Modernization of Traditional Agriculture (MasAgro) project of Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food, in close collaboration with the International Maize and Wheat Improvement Center (CIMMYT), was recognized by Universidad Tecnológico y Estudios Superiores de Monterrey (ITESM) as being one of “10 projects that are transforming Mexico.”

“This project is transforming Mexico and, four years after its launch, it has benefited more than 200,000 farmers,” said Silverio García Lara, professor at ITESM’s School of Engineering and Science, Monterrey campus. “The project focuses on the base of the productive and economic pyramid,” explained the researcher, who favors “developing cutting-edge technologies to regenerate and renew Mexican farming.”

ITESM is involved in a project focusing on biotechnology for food security that applies cutting-edge technologies to analyze MasAgro’s new maize varieties and ensure they meet the nutrition and processing quality parameters of the Mexican market, explained Natalia Palacios, the person responsible for CIMMYT’s Maize Quality Laboratory, in an information bulletin that was broadcast when the winning project was presented at the 46th Research and Development Congress held on 20-22 January at ITESM’s Student Center, Monterrey campus.

“We are very proud of MasAgro because its results in the lab and especially in farmers’ fields have been widely recognized both nationally and internationally; today ITESM, a research partner that has collaborated with us since the beginning, also recognizes the project,” said Bram Govaerts, Leader of CIMMYT’s Sustainable Intensification Strategy for Latin America.

Among MasAgro’s main achievements, Govaerts highlighted the adoption of sustainable intensification of basic grain production on half a million hectares. He also emphasized the development of 20 high yielding maize hybrids which, combined with MasAgro’s sustainable agronomic practices, have increased rainfed maize farmers’ income by 9-31%. According to Govaerts, 16 precision machines for use in different production situations, from subsistence to intensive or commercial farming, and different postharvest storage solutions are among the technologies that MasAgro offers.

“Our farmers out in the fields are very interested in innovating and obtaining new technologies coming from the labs and from international research institutions such as CIMMYT,” stated García Lara when presenting ITESM’s award for the work done by MasAgro.

Researchers race to rescue wheat sample in war-torn Syria

After wheat seeds are planted in the greenhouse, the samples are then harvested and prepared to be sent to the laboratory for DNA extraction and genotyping. Photo: Carolina Sansaloni/CIMMYT

EL BATAN, Mexico (CIMMYT) – With Syria torn apart by civil war, a team of scientists in Mexico and Morocco are rushing to save a vital sample of wheat’s ancient and massive genetic diversity, sealed in seed collections of an international research center formerly based in Aleppo but forced to leave during 2012-13.

The researchers are restoring and genetically characterizing more than 30,000 unique seed collections of wheat from the Syrian genebank of the International Center for Agricultural Research in the Dry Areas (ICARDA), which has relocated its headquarters to Beirut, Lebanon, and backed up its 150,000 collections of barley, fava bean, lentil and wheat seed with partners and in the Global Seed Vault at Svalbard, Norway.

In March 2015, scientists at ICARDA were awarded The Gregor Mendel Foundation Innovation Prize for their courage in securing and preserving their seed collections at Svalbard, by continuing work and keeping the genebank operational in Syria even amidst war.

“With war raging in Syria, this project is incredibly important,” said Carolina Sansaloni, genotyping and DNA sequencing specialist at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), which is leading work to analyze the samples and locate genes for breeding high-yield, climate resilient wheats. “It would be amazing if we could be just a small part of reintroducing varieties that have been lost in war-torn regions.”

Treasure from wheat’s cradle to feed the future

Much of wheat seed comes from the Fertile Crescent, a region whose early nations developed and depended on wheat as the vital grain of their civilizations. The collections could hold the key for future breeding to feed an expanding world population, according to Sansaloni.

“An ancient variety bred out over time could contain a gene for resistance to a deadly wheat disease or for tolerance to climate change effects like heat and drought, which are expected to become more severe in developing countries where smallholder farmers and their families depend on wheat,” she explained.

Cross-region partners, global benefits

Sansaloni’s team has been sequencing DNA from as many as 2,000 seed samples a week, as well as deriving molecular markers for breeder- and farmer-valued traits, such as disease resistance, drought or heat tolerance and qualities that contribute to higher yields and grain quality.

They are using a high-end DNA sequencing system located at the Genetic Analysis Service for Agriculture (SAGA), a partnership between CIMMYT and Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), and with the support of a private company from Australia, Diversity Arrays Technology.

The sequencer at SAGA can read 1600 samples of seed at once and develops more data than ever before. The HiSeq 2500 boils down data and shows the information at a “sequence level”, for example, height variations among wheat varieties.

Worldwide, there are few other machines that produce this kind of data and most are owned by private companies, explained Sansaloni. This was the first non-Latin American based project used by the HiSeq 2500.

“The success of this project shows what a fantastic opportunity for international collaboration we now have,” Sansaloni said. “I can’t even put a value on the importance of the data we have collected from this project. It’s priceless.”

After data has been collected, seed samples will be “regenerated” by ICARDA and CIMMYT. That is, the process of restoring old seed samples with healthy new seeds.

ICARDA and CIMMYT will share seed and data from the project and make these results available worldwide.

“With these new seeds, we hope to reconstruct ICARDA’s active and base collection of seeds over the next five years in new genebank facilities in Lebanon and Morocco,” said Fawzy Nawar, senior genebank documentation specialist, ICARDA.

Funded through the CGIAR Research Program on Wheat, the effort benefits both of the international centers, as well as wheat breeding programs worldwide, said Tom Payne, head of CIMMYT’s Wheat Germplasm Bank. “ICARDA is in a difficult situation, with a lack of easy access to their seeds and no facilities to perform genotyping,” he explained. “This was the perfect opportunity to collaborate.”

Maize lethal necrosis field day demonstrates promising maize germplasm

Participants see a demonstration of artificial inoculation at MLN screening site. photo K. Kaimenyi /CIMMYT
Participants see a demonstration of artificial inoculation at MLN screening site. Photo: K. Kaimenyi/CIMMYT

NAIROBI — Since maize lethal necrosis (MLN) was first reported in Kenya in 2011, CIMMYT and its partners, including Kenya Agricultural and Livestock Research Organization (KALRO), have been intensively engaged in breeding for resistance to the disease, which was later confirmed to be present in D.R. Congo, Ethiopia, Rwanda, Tanzania and Uganda.

KALRO and CIMMYT invited public and private sector partners in eastern Africa to a MLN field day at the screening facility at KALRO-Naivasha on 20 January 2016. KALRO Director General Eliud Kireger officially opened the field day, which was attended by about 70 participants from national agricultural research organizations, multinational, regional and national seed companies, national plant protection agencies, international institutions, the United States Agency for International Development (USAID) and CIMMYT.

The field day demonstrated 21,074 maize germplasm entries from 16 institutions, including public and private sector partners. Several promising inbred lines and pre-commercial hybrids with tolerance/ resistance to MLN were on display in the field blocks. These included MLN tolerant/resistant hybrids that are currently undergoing national performance trials (NPTs) in eastern Africa.

Kireger expressed his appreciation for the work being done at the facility and pointed out, “Last year there were very few germplasm entries offering promise against MLN at the screening site. Today we have seen materials that have potential to be released in the next two years or less.”

“Within the next few years, we can reach out to the farmers in eastern Africa with seed of MLN resistant varieties. We can now confidently tell farmers and the ministries of agriculture that there is a strong ray of hope,” he added.

Using molecular marker assisted breeding, CIMMYT is currently working on more than 25 elite inbred lines that are susceptible to MLN but are parental lines of several prominent commercial maize hybrids in sub-Saharan Africa.

“Our vision of replacing a large set of commercial MLN-susceptible varieties with MLN-resistant hybrids is well on track. Within three or four years we hope to have at least 20 to 25 MLN-resistant hybrids released, scaled up and delivered to farmers in eastern Africa with the help of our seed company partners,” stated B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE.

Collaborative work at the MLN facility will continue to help partners identify MLN-resistant germplasm, including inbred lines and hybrids. “The work being done at the MLN screening facility is critical in successfully responding to the MLN epidemic in eastern Africa,” said L.M. Suresh , CIMMYT maize pathologist and manager of the MLN screening facility.

Participants also visited a seed treatment trial, where seed care treatments from Syngenta and Bayer are being evaluated for their effectiveness on a selected set of six hybrids. “Today we have not only seen excellent work on breeding for MLN resistance, but also very good research work being done on seed treatments. This is very important for seed companies,” said Maarten van Ginkel, consultant breeder, SeedCo. “From the trials we have seen today, we are assured that in the near future we will have MLN resistance introgressed in all our hybrids, enabling seed companies to improve the quality of seed delivered to the market.”

FAO has its finger on the ‘pulse’ when it comes to food security

The Food and Agriculture Organization of the United Nations (FAO) has declared 2016 the International Year of Pulses under the motto “Nutritious seeds for a sustainable future.” Pulses, an annual leguminous crop yielding from one to 12 seeds (dry beans, kidney beans, dry peas, lentils and others), have been named by the FAO as essential in the fight for food security for their nutrient value and their key role in crop rotations through the ability to fix nitrogen.

When we plant the same species on the same land every year, we are engaging in what is called monoculture. Monoculture has unfavorable consequences for production, since it increases the incidence of weeds, pests and diseases, which become resistant to control methods.

To counteract this, one of the principles of Conservation Agriculture (CA) is crop rotation, which involves planting different crops in the same field in a specific order. Crop rotation reduces the incidence of pests and diseases by interrupting their life cycles; it also maintains weed control and promotes more appropriate nutrient distribution in the soil profile (crops that have deeper roots extract nutrients at a greater depth) and helps reduce the economic risk when an unforeseen event affects one of the crops. It also enables farmers to balance residue production because crops that produce few residues can be rotated with crops that produce a large amount.

Crop rotation should include pulses (leguminous crops) that make efficient use of water and provide soil nutrients (such as nitrogen) that are extracted by grains.

The year will be a unique opportunity to foster connections all along the food chain in order to benefit more from proteins derived from pulses, increase pulse production worldwide, make better use of crop rotation and face the challenges of commercializing pulses.