Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

A suite of simple, climate-smart farming practices predicated for years by agricultural scientists holds the key to resource conservation, climate change and reduced pollution in South Asia.
A suite of simple, climate-smart farming practices predicated for years by agricultural scientists holds the key to resource conservation, climate change and reduced pollution in South Asia. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) — Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

Scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.

Burning soils the air, depletes the soil

“Rice-wheat rotations in Bangladesh, India, Nepal and Pakistan account for nearly a quarter of the world’s food production and constitute a key source of grain and income in South Asia, home to more than 300 million undernourished people,” said Andy McDonald, a cropping systems agronomist at CIMMYT. “But unsustainable farming practices threaten the region’s productivity and are worsening global climate change.”

The burning of paddy straw is one example, according to expert studies. Besides triggering costly respiratory ailments in humans and animals in farm regions and urban centers like Delhi, burning rice residues depletes soil nutrients, with estimated yearly losses in Punjab alone of 3.9 million tons of organic carbon, 59,000 tons of nitrogen, 20,000 tons of phosphorus and 34,000 tons of potassium, according to M.L. Jat, a senior agronomist at CIMMYT, who leads CIMMYT’s contributions to “climate-smart” villages in South Asia, as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air. Inset: Agricultural engineer H.S. Sidhu (left), of the Borlaug Institute for South Asia (BISA), who has helped test and refine and the seeder, visits a zero tillage plot with Dr. B.S. Sidhu, agricultural commissioner of Punjab State. Photo: CIMMYT

Zero tillage: A lot to like

Traditional tillage for sowing wheat in northern India involves removing or burning rice straw and driving tractor-drawn implements back and forth over fields to rebuild a soil bed from the rice paddy, a costly and protracted process.

Zero tillage cuts farmers’ costs and provides better yields. By eliminating plowing, farmers can sow wheat up to two weeks earlier. This allows the crop to fill grain before India’s withering pre-Monsoon heat arrives — an advantage that is lost under conventional practices.

A 2016 study in Bihar state showed that farmers’ annual income increased by an average 6 percent when they used zero tillage to sow wheat, due both to better yields and savings in diesel fuel through reduced tractor use.

Zero tillage also diminishes farmers’ risk from erratic precipitation, according to Jat. “A new study in Haryana has shown that in wet years when conventionally-sown wheat fields are waterlogged, zero-tilled crops can produce 16 percent more grain.”

Environmental and climate change benefits include 93 kilograms less greenhouse gas emissions per hectare. “In the long run, retaining crop residues builds up soil organic matter and thereby reduces farming’s carbon footprint,” Jat explained.

Zero-tilled wheat also requires 20 to 35 percent less irrigation water, slowing depletion of the region’s rapidly-dwindling underground water reserves and putting money in farmers’ pockets by reducing their need to pump.

“It’s impressive that a single practice provides such a broad set of benefits,” said McDonald, who leads CIMMYT’s Cereal Systems Initiative for South Asia (CSISA).

Specialized seed planters sell slowly

Farmer awareness is growing, but putting aside the plow is not an easy proposition for some. In particular, zero tillage requires use of a special, tractor-mounted implement which, in a single pass, chops rice residues, opens a rut in the soil, and precisely deposits and covers the seed.

Development of this special seeder was first funded by the Australian Centre for International Agricultural Research (ACIAR) and led by Punjab Agricultural University, with contributions from CIMMYT and other organizations. The latest version, the Turbo Happy Seeder, costs $1,900 — an investment that many farmers still struggle to make.

“As an alternative, we’ve been saying that not all farmers need to own a seeder,” Jat observed. “Many can simply hire local service providers who have purchased the seeder and will sow on contract.” In Bihar and the neighboring state of Uttar Pradesh, the number of zero-tillage service providers rose from only 17 in 2012 to more than 1,900 in 2015, according to Jat.

Given New Delhi’s smog troubles, Haryana and Punjab policymakers are adding support to avoid burning rice straw. “The government of Haryana has taken a policy decision to aggressively promote the seeder for zero tillage and residue management and to provide 1,900 seeders on subsidy this year,” said Suresh Gehlawat, assistant director of agriculture for that state, in a recent statement.

On the horizon: Zero tillage for rice

As part of these efforts, CIMMYT scientists and partners are testing and promoting with farmers a suite of resource-conserving practices. These include precision land levelling, which saves water and improves productivity, as well as directly sowing rice into untilled, non-flooded plots.

“The practice of direct-seeded rice requires less labor, raising farmers’ profits by as much as $130 per hectare over paddy-grown rice,” said Jat. “Moreover, growing rice in non-flooded fields uses 25 percent less water and reduces the emission of methane, a greenhouse gas 200 times more powerful than carbon dioxide, by 20 kilograms per hectare.”

Agricultural biodiversity key to future crop improvement

The CGIAR is one of the biggest suppliers and conservers of crop genetic diversity. CIMMYT's genebank contains around 28,000 unique samples of maize seed—including more than 24,000 landraces; traditional, locally-adapted varieties that are rich in diversity—and 150,000 of wheat, including related species for both crops. Photo: X. Fonseca/CIMMYT.
The CGIAR is one of the biggest suppliers and conservers of crop genetic diversity. CIMMYT’s genebank contains around 28,000 unique samples of maize seed—including more than 24,000 landraces; traditional, locally-adapted varieties that are rich in diversity—and 150,000 of wheat, including related species for both crops. Photo: X. Fonseca/CIMMYT.

NEW DELHI — Conserving and using agricultural biodiversity to create better crops can help meet several sustainable development goals and stave off further species extinctions, according to scientists at the first International Agrobiodiversity Congress.

About 75 percent of plant genetic diversity worldwide has been lost since the beginning of the 20th century and 30 percent of livestock breeds are at risk of extinction, according to the Food and Agriculture Organization.  Meanwhile, humans only consume about 1.5 percent of edible plants and only three of these – rice, maize and wheat – contribute nearly 60 percent of calories and proteins obtained by humans from plants. This huge loss in biodiversity due to environmental degradation caused by humans – what many scientists refer to as earth’s “sixth extinction”– is detrimental to global food security and the environment.

“Just a 7-10 percent loss of any major food crop would result in prices quadrupling,” says Howarth Bouis, founder of HarvestPlus and 2016 World Food Prize winner. “Non-staple food prices in India have [already] risen by 50 percent over the past 30 years.” A lack of agricultural diversity puts the world’s entire food chain at risk if a shock – such as increased instances of drought or crop diseases due to rising temperatures from climate change – were to destroy a particular type of crop.

As part of a global response to these challenges, researchers in collaboration with farmers are gathering seed to conserve and protect in genebanks across the world for future generations. These banks are the foundation of agriculture, food security and dietary diversity.

“We don’t know what scientists will need in 30 years,” says Marie Haga, executive director of the Crop Trust. “We need to conserve the entire spectrum [of seeds]. If it’s not being used right now, that does not mean it won’t be critically important in the future.”

New advancements in DNA-sequencing and phenotyping technologies have also created an opportunity to actively use the genetic information of these seeds that did not exist just a few years ago. Crop breeders can now more rapidly and effectively identify seeds that have traits like enhanced nutritional qualities, drought or heat tolerance, or disease resistances to create better crops that withstand challenges related to malnutrition, climate change, disease and more.

For example, in 2012 approximately 23 percent of Kenya’s maize production was lost due to an outbreak of the disease Maize Lethal Necrosis (MLN). Thanks to the efforts of the International Maize and Wheat Improvement Center (CIMMYT) and other partners, there are now 13 hybrid varieties with tolerance to MLN – created in just four years.

Delegates to the congress also tackled issues regarding the effective and efficient management of genebanks, biosafety and biosecurity, intellectual property rights, access to germplasm, benefit sharing from use of germplasm, and farmers’ role in conservation of genetic resources and other related themes.

The Congress culminated with the adoption of “The Delhi Declaration on Agrobiodiversity Management” that recommended harmonizing multiple legal systems across countries to facilitate the safe transfer of genetic resources, developing and implementing an Agrobiodiversity Index to help monitor the conservation and use of agrobiodiversity in breeding programs, promoting conservation strategies for crop wild relatives and other strategies to strengthen agricultural biodiversity’s role in agricultural development.

New Publications: Durum wheat is becoming more susceptible to rust globally

CIMMYT scientist Ravi Singh inspects wheat at the quarantined UG99 wheat stem rust screening nursery in Njoro, Kenya. Photo: D. Hansen/University of Minnesota
CIMMYT scientist Ravi Singh inspects wheat at the quarantined UG99 wheat stem rust screening nursery in Njoro, Kenya. Photo: D. Hansen/University of Minnesota

EL BATAN, Mexico — Leaf rust is increasingly having an impact on durum wheat production evidenced by the  appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide, according to a recent study published by researchers at the International Maize and Wheat Improvement Center (CIMMYT), the United States Department of Agriculture, North Dakota State University and University of Minnesota Twin Cities.

Durum wheat is a major staple food used for pasta, couscous, bread and more across the globe, especially in developing countries. It is particularly important in developing countries where it often represents a large portion of total wheat planted as well as a major staple food. It is also attractive to farmers due to its adaptability to arid climate conditions, marginal soils and relatively low water requirements.

Despite this broad adaptability, durum wheat production is often limited by various fungal diseases including rusts. And while durum wheat is considered generally more resistant to rust than other types of wheat, new races of the leaf rust pathogen, virulent to widely grown durum cultivars in several production areas, are increasingly impacting production.

In 2001, a virulent rust race emerged in northwestern Mexico, which overcame the resistance of widely adapted durum wheat cultivars from CIMMYT which had been previously been resistant to rust for over 25 years. Throughout the early 2000s, increased susceptibility of durum wheat to rust was measured globally, including the Mediterranean basin which produces over half the world’s durum wheat, and constitutes for over 75 percent of its growing area. The United States measured a race similar to that identified in Mexico in California and then in Kansas, suggesting the likely spread of the race to the northern Great Plains where over half of durum wheat is produced in the United States.

In response to the leaf rust epidemics in Mexico, extensive screening of the CIMMYT durum germplasm, resulted in the identification of several effective leaf rust resistance genes. The study “Genome-Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection” also identified 14 previously uncharacterized loci associated with leaf rust response in durum wheat. This discovery is a significant step in identifying useful sources of resistance that can be used to broaden the leaf rust resistance spectrum in durum wheat germplasm globally.

Learn more about this study and more from CIMMYT scientists, below.

  1. Dissection of heat tolerance mechanism in tropical maize. 2016. Dinesh, A.; Patil, A.; Zaidi, P.H.; Kuchanur, P.H.; Vinayan, M.T.; Seetharam, K.; Ameragouda. Research on Crops 17 (3): 462-467.
  2. Genetic diversity, linkage disequilibrium and population structure among CIMMYT maize inbred lines, selected for heat tolerance study. 2016. Dinesh, A.; Patil, A.; Zaidi, P.H.; Kuchanur, P.H.; Vinayan, M.T.; Seetharam, K. Maydica 61 (3): M29.
  3. Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in Sub-Saharan Africa. 2016. Wallace, J.G.; Zhang, X.; Beyene, Y.; Fentaye Kassa Semagn; Olsen, M.; Prasanna, B.M.; Buckler, E. Crop Science 56(5): 2365-2378.
  4. Line x testers analysis of tropical maize inbred lines under heat stress for grain yield and secondary traits. 2016. Dinesh, A.; Patil, A.; Zaidi, P.H.; Kuchanur, P.H.; Vinayan, M.T.; Seetharam, K. Maydica: 59.
  5. Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. 2016. Aoun, M.; Breiland, M.; Turner, M.K.; Loladze, A.; Shiaoman Chao; Xu, S.; Ammar, K.; Anderson, J.A.; Kolmer, J.A.; Acevedo, M. The Plant Genome 9 (3): 1-24.

receive newsletter

Sustainable agriculture poised to save Mayan rainforests from deforestation

Tour of field trials sown with MasAgro maize materials in Hopelchen, Campeche, Mexico. (Photo: CIMMYT)
Tour of field trials sown with MasAgro maize materials in Hopelchen, Campeche, Mexico. (Photo: CIMMYT)

EL BATAN, Mexico (CIMMYT) – Sustainable farming practices allow smallholder farmers to improve maize yields without increasing land, which has proven to reduce deforestation in Mexico’s Yucatan Peninsula according to an independent report commissioned by the Mexico REDD+ Alliance and The Nature Conservancy (TNC).

Conservation agriculture, a sustainable intensification technique that includes minimal soil movement, surface cover of crop residues and crop rotations, was successfully trialed in the south east of Mexico to protect biodiversity and counter rainforest loss caused by a creeping agricultural frontier, as part of a rural development project the Sustainable Modernization of Traditional Agriculture (MasAgro).

Over a year ago, the MasAgro project, led by the International Maize and Wheat Improvement Center (CIMMYT) and Mexico’s Secretariat of Agriculture (SAGARPA), partnered with local organization Pronatura Peninsula de Yucatan to test a sustainable intensification strategy in Hopelchen, a small community in the state of Campeche, where indigenous and Mennonite farmers grow maize following traditional farming practices.

Technician Vladimir May Tzun visits Santa Enna research platform to make fertility checks in Hopelchen, Campeche. (Photo: CIMMYT)
Technician Vladimir May Tzun visits Santa Enna research platform to make fertility checks in Hopelchen, Campeche. (Photo: CIMMYT)

Decades of plowing the fields without crop rotation and applying agrochemicals to control pests have degraded the soils in Hopelchen. As a result, farmers are prone to convert rainforest areas into growing fields to address diminishing crop yields. In an effort to curb this practice, MasAgro introduced conservation agriculture to improve soil fertility and water availability on the fields of five participant farmers.

A key moment during the project was when producers saw the benefits of conservation agriculture after two months of drought. Participant farmers achieved more developed maize cobs than those who did not, according to findings in the MasAgro case study featured in the report, “Experiences on sustainable rural development and biodiversity conservation in the Yucatan Peninsula.”

The positive results have sparked the interest of farmers from adjacent communities who want to get involved in the MasAgro project, said Pronatura’s field manager of sustainable agriculture, Carlos Cecilio Zi Dzib.

Maize growing in Santa Enna demonstration module in Hopelchen, Campeche, Mexico.
Maize growing in Santa Enna demonstration module in Hopelchen, Campeche, Mexico.

“MasAgro has been very successful in the Peninsula,” said Bram Govaerts, CIMMYT’s regional representative in Latin America. “In the course of its second year of implementation, MasAgro has established a research platform and offered training to 150 farmers, who have attended events organized in collaboration with TNC and Mexico’s Agriculture, Forestry and Livestock Research Institute.”

“This work is an effort to document the experiences of some of the sustainable rural initiatives and projects that contribute to reduce deforestation in the region, and thus make their contribution to the conservation and sustainable management of the Mayan Forest in the Yucatan Peninsula,” wrote report authors Carolina Cepeda and Ariel Amoroso.

SAGARPA and CIMMYT plan to present achievements of their MasAgro partnership, including the Hopelchen farmers’ success story, during the United Nations’ thirteenth meeting of the Conference of the Parties to the Convention on Biological Diversity (COP 13), which will take place from December 4 to 17 in Cancun, Mexico.

Improved genetic analysis offers faster, more precise results to crop breeders

CIMMYT representatives at IAC (L-R) Prashant Vikram, Ravi Singh, Cynthia O.R, Laura Bouvet, Sukhwinder-Singh, Martin Kroff, Kevin Pixley and Gilberto Salinas. Photo: CIMMYT
CIMMYT representatives at IAC (L-R) Prashant Vikram, Ravi Singh, Cynthia O.R, Laura Bouvet, Sukhwinder-Singh, Martin Kropff, Kevin Pixley and Gilberto Salinas. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – Researchers gathered last week at the International Agrobiodiversity Conference in New Delhi to improve global collaboration on harnessing genes in breeding that can help wheat withstand the effects of climate change.

Wheat is the most widely cultivated staple food in the world, providing 20 percent of the protein and calories consumed worldwide and up to 50 percent in developing countries. It is also particularly vulnerable to climate change, since the crop thrives in cooler conditions. Research has shown wheat yields drop 6 percent for each 1 degree Celsius rise in temperature, and that warming is already holding back yield gains in wheat-growing mega-regions like South Asia.

The International Maize and Wheat Improvement Center’s (CIMMYT) genebank serves as a vital source of genetic information and biodiversity. Breeders use this information to accelerate the development of wheat resilient to climate change by identifying varieties that display valuable traits like drought and heat-stress tolerance, which allow them to flourish despite stressful conditions.

However, all this genetic information is incredibly dense and requires filtering before breeders can efficiently use that information, according to Sukhwinder Singh, head of the wheat pre-breeding team at CIMMYT’s Seeds of Discovery (SeeD) initiative.

“Using new genes to improve wheat, or any crop, is incredibly difficult because often along with the desired traits, come numerous undesirable traits,” said Singh. “That’s where pre-breeding comes in – we essentially purify this huge pool of good and bad traits by identifying useful genes, like heat tolerance, then make these traits available in a form that’s easier for wheat breeders to access and use.”

Pre-breeding is done through cutting-edge, cost-effective technologies that characterize the genetic information of CIMMYT’s wheat genebank. Using these tools, nearly 40 percent of the 150,000 seed samples of wheat in the bank have undergone high-throughput genetic characterization, a process that allows pre-breeders to rapidly identify desirable traits in the varieties.

A recent successful example of pre-breeding was highlighted in a report that genetically characterized a collection of 8,400 centuries-old Mexican wheat landraces adapted to varied and sometimes extreme conditions, offering a treasure trove of potential genes to combat wheat’s climate-vulnerability.

“Pre-breeding helps us better understand and gather more information on what genetic traits are available in CIMMYT’s wheat genebank, so researchers can have more access to a wider variety of information than ever before,” said Prashant Vikram, wheat researcher who is also working with the pre-breeding team at CIMMYT.

However, as new genomics tools continue to develop, capacity building for researchers is necessary to ensure the potential impacts of the genebank’s biodiversity is fully realized and equitably accessible, said Kevin Pixley, SeeD project leader and program director of CIMMYT’s Genetic Resources Program.

During the IAC partners, scientists, students, and stakeholders from across the globe provided feedback on SeeD and pre-breeding initiatives, while CIMMYT led discussions on how to build genebank biodiversity for future food security and sustainable development. Increasing partnerships and multidisciplinary projects for stronger impact were identified as key needs for future initiatives.

Drought- and heat-tolerant maize tackles climate change in southern Africa

Appollonia Marutsvaka and Alice Chipato of Zaka District in Zimbabwe. If widely adopted, drought- and heat-tolerant maize varieties could help farmers cope with drought and heat stresses. Photo: J. Siamachira/CIMMYT
Appollonia Marutsvaka (left) and Alice Chipato of Zaka District in Zimbabwe. If widely adopted, drought- and heat-tolerant maize varieties could help farmers cope with drought and heat stresses. Photo: J. Siamachira/CIMMYT

HARARE (CIMMYT) — “We are no longer sure when to prepare the land for planting or when to start planting. It’s pretty much gambling with nature,” complains 62-year old Appollonia Marutsvaka of Zaka district, Masvingo province, Zimbabwe. “Most of the time the rains are not enough for crop production. If the situation persists, then most of us who have small farms will sink deeper into poverty, because we depend on agriculture for our livelihoods.”

Most farmers in Zaka argue that they only get one good harvest every five to six years. Changes in weather patterns have turned agriculture into a gamble with nature for smallholder farmers.

It is estimated that maize yields in Zimbabwe and South Africa’s Limpopo Province will decrease by approximately 20-50 percent between now and 2045. This predicted decline will pose a major problem, as maize is the region’s main staple food. Low yields in this region are largely associated with drought stress, low soil fertility, weeds, pests, diseases, low input availability, low input use, and inappropriate seeds.

After years of work on maize improvements projects, the United States Agency for International Development (USAID), through the International Maize and Wheat Improvement Center (CIMMYT), made a bigger commitment to researching, supporting and getting drought-tolerant maize into the hands of smallholder farmers. To date, with substantial support from the Bill & Melinda Gates Foundation, drought-tolerant varieties have been delivered to three million farmers across Africa.

“Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved seeds with tolerance to drought and heat stress and improved management practices,” says Jill Cairns, CIMMYT senior maize physiologist.

Cosmos Magorokosho, CIMMYT senior maize breeder, with new experimental hybrid maize on display at the Chiredzi Research Station, Zimbabwe. Scientists here have developed new heat- and drought-tolerant maize varieties. Photo: J. Siamachira/CIMMYT
Cosmos Magorokosho, CIMMYT senior maize breeder, with new experimental hybrid maize on display at the Chiredzi Research Station, Zimbabwe. Scientists here have developed new heat- and drought-tolerant maize varieties. Photo: J. Siamachira/CIMMYT

CIMMYT, together with partners under the CGIAR Research Program on Maize (MAIZE), developed drought- and heat-tolerant maize varieties through its breeding program in sub-Saharan Africa.

Heat tolerance was not previously a trait in African breeding programs. CGIAR Climate Change, Agriculture and Food Security (CCAFS)’s work highlighted the importance of heat tolerance in future climates, and in 2011 CIMMYT started breeding for this trait. During the past year, the El Niño induced drought has demonstrated the need for maize which is also heat-tolerant. If CIMMYT had not started working on these varieties in 2011, it would have taken until 2021 to have a drought and heat tolerant maize variety.

A recent media tour of Zaka and Chiredzi districts in Zimbabwe, where CIMMYT conducted regional on-farm variety trials for the new climate-proof seed varieties, revealed that the new drought- and heat-tolerant maize is an important way of combating climate-change induced food shortages. Research carried out by CIMMYT revealed that under experimental conditions, the new varieties doubled maize yields when compared to the yields of commercial varieties.

Smallholder farmer Marutsvaka, who participated in the on-farm variety trials, says: “In the past, I harvested nothing as my crops were literally burnt by the scorching heat. During the 2015-2016 growing season, I realized almost 200 kilograms of white grain.” One of the challenges of these new maize varieties is the time taken between testing and seed availability on the market. For example, some of these new maize varieties would only be on the market during the 2018-2019 agricultural season.

The 2014 African Agriculture Status Report states that the vital food producers face a risk of being overwhelmed by the pace and severity of climate change. The authors called for the adoption of climate-smart agriculture that will help make crops more resilient to future extreme weather events.

Appollonia Marutsvaka shows off her drought- and heat-tolerant maize cobs harvested through a CIMMYT project. Photo: J. Siamachira/CIMMYT
Appollonia Marutsvaka shows off her drought- and heat-tolerant maize cobs harvested through a CIMMYT project. Photo: J. Siamachira/CIMMYT

“For our farmers to be productive and ensure food security, we need to build resilience to help them mitigate the onset of climate change,” observed Cosmos Magorokosho, CIMMYT senior maize breeder. “We are talking about a situation when the rain does not come at the right time or the length of the [growing] season is shortened as a result of drought and other stresses, such as heat.”

He added that helping small-scale farmers adopt climate-smart farming techniques would “prepare them for even more serious challenges in the future… this means we need both to adapt agriculture to climate change and to mitigate climate change itself.’’

However, getting a new strain of maize out of the research station is not the same as getting it to the fields. Creating a distribution chain in Africa has been a bigger challenge than inventing the product itself.

Gabriel Chiduku, a sales and marketing representative for Klein Karoo, a private seed company which introduced the CIMMYT developed seed of drought-tolerant varieties to Zaka farmers, told the farmers that the seed is readily available.

With the drought- and heat-tolerant maize varieties, Zaka farmers are producing three tons per hectare of maize, up from less than a ton.

Combating spread of MLN in Africa poses unique but surmountable challenges, seed health specialist says

Anne Wangui, a seed health technician at CIMMYT demonstrate DAS–ELISA method used for detecting MLN-causing viruses. B.Wawa/CIMMYT
Anne Wangui, a seed health technician at CIMMYT demonstrate DAS–ELISA method used for detecting MLN-causing viruses. B.Wawa/CIMMYT

NAIROBI, Kenya (CIMMYT) – The maize lethal necrosis (MLN) disease poses a major concern to researchers, seed companies and farmers in sub-Saharan Africa. The impact of MLN is massive in the affected countries, especially at the household level for smallholder farmers who can experience up to 100 percent yield loss.

Concerted regional efforts through a project funded by the U.S. Agency for International Development (USAID) over the past year have helped in prioritizing and targeting efforts to stop the spread of the disease  from the endemic to the non-endemic countries in sub-Saharan Africa. The project target countries are Ethiopia, Kenya, Rwanda, Tanzania and Uganda (currently MLN endemic), while Malawi, Zambia and Zimbabwe are MLN non-endemic but important commercial maize seed producing countries where the project implemented extensive MLN surveillance efforts.

Determining exactly how the MLN causing viruses, which include maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus, are transmitted in the field through insect-vectors, infected plants and seed lots, has made diagnosis a key element in the efforts to halt the spread of the disease.  If the viruses, in particular MCMV, the major causative agent, are introduced into a new area through contaminated seed and infected plants and not diagnosed and destroyed immediately, MLN can spread rapidly. Insect vectors in the field can play a significant role in transmitting viruses to the neighboring healthy maize fields.

In order to manage MLN at a regional level, partners in the project are developing harmonized diagnostic protocols to test, detect and prevent its spread through available mitigation measures. These were highlighted during the MLN Diagnostics and Management Project Review and Planning Meeting held in October, 2016 in Nairobi.

Monica Mezzalama, head of the CIMMYT Seed Health Laboratory  in  Mexico and a plant pathologist, shared her views on MLN testing and diagnostic methods that can be adopted to test maize plants and seed lots in the following interview.

Q: What is the role of diagnostics in managing MLN in Africa?

A: The role of sensitive, reliable, reproducible, affordable and standardized diagnostic tools is fundamental to the management of MLN in Africa. Only with an appropriate diagnosis tool, we can effectively detect and prevent further dispersal of the disease to the non-endemic areas through seed.

Q: What is the progress for detecting MLN in seed lots?

A: At the moment, detection in seed lots is still a weak link in the MLN management chain, although detection methods are available, such as ELISA and several versions of PCR, which are serological and molecular based, respectively, for the detection of MLN viruses. Extracting the pathogen from seed is more difficult than extracting it from leaf tissue, making it more time consuming to obtain clear and reliable results. Additionally, scientists are on the verge of resolving the significant issue of “sampling intensity,” which refers to the proportion of the seed sampled from the presented seed lots.

Q: What are some of the practices CIMMYT has adopted to ensure MLN-free seed production across regional centers in Africa?

A: Since 2013, CIMMYT has implemented several effective measures to ensure healthy MLN-free seed production and exchange. An aggressive strategy against the disease has been adopted at the main maize breeding station at Kenya Agricultural Livestock and Research Organization in Kiboko, by introducing a maize-free period of two months annually on the station as well as in the surrounding areas in close interaction with the farming communities in the neighboring villages. All this was possible thanks to the great collaboration between KALRO staff, CIMMYT colleagues, and the local farmers. This action taken for two consecutive years reduced drastically the incidence of MLN infected plants. In addition, a very thoughtful sensitization campaign was carried out, explaining how to effectively apply insecticide to control vectors, how to avoid the spread of the pathogen from one field to another by advising workers to change their clothes and shoes after working in an infected field. Also, management of planting dates has been implemented to avoid peaks of vectors populations or physically avoiding the arrival of the insects by planting according to the wind stream direction. In Zimbabwe, CIMMYT has also invested significant resources by establishing an MLN Quarantine Facility at Mazowe, near Harare to enable safe exchange of MLN virus-free breeding materials in southern Africa.

Q: Based on your experience with various diagnostic tools, what options would work for Africa’s seed companies and regulatory agencies to help detect MLN-causing viruses?

A: For detection of MLN viruses in green leaf tissue, I think immunostrips, ELISA and PCR techniques work very well and they can be adopted according to the level of specialization of the operator, infrastructure and financial resources available. As far as detection in dry seed is concerned, I think that at the moment the ELISA technique is the most reliable and affordable. PCR methods are available, but still some improvement needs to be done in the extraction of the viral RNA from the seed matrix.

Q: What factors do the relevant actors need to consider in the process of harmonizing diagnostic protocols across MLN-endemic and non-endemic countries?

A: Harmonization of protocols and procedures are needed not only for MLN, but also for effective design and implementation of phytosanitary aspects related to the exchange of commercial seed and vegetative material across borders. Unfortunately, it is not an easy task because of the number of actors involved, including national plant protection organizations, seed companies, seed traders, farmers, and policy makers. Nevertheless, the most important factors that, in my opinion, should be taken into consideration for consensus on harmonized protocols and where the efforts should focus on are: avoid the spread of the disease from country to country, and from the endemic to non-endemic areas within the same country; implement a well-coordinated and integrated package of practices for effective management of MLN in the endemic countries; reduce as much as possible economic losses due to the restriction on seed exchange; implement serious and effective seed testing and field inspections of the seed multiplication plots to prevent the incidence of MLN and for timely detection and elimination of infected plants.

View Meeting presentations  here

MLN Pathogen Diagnosis, MLN-free Seed Production and Safe Exchange to Non-Endemic Countries Brochure

Visit the MLN website for more information

The CIMMYT-led MLN Diagnostics and Management Project, funded by USAID East Africa Mission is coordinating the above work with objectives to: a) prevent the spread of MLN, especially Maize Chlorotic Mottle Virus (MCMV), from the MLN-endemic countries in eastern Africa to non-endemic countries in sub-Saharan Africa; b) support the commercial seed sector in the MLN-endemic countries in producing MCMV-free commercial seed and promote the use of clean hybrid seed by the farmers; and c) to establish and operate a MLN Phytosanitary Community of Practice in Africa, for sharing of learning, MLN diagnostic and surveillance protocols, and best management practices for MLN control in Africa.

receive newsletter

New Publications: With climate change, pests likely to spread to new agricultural areas

Wheat showing the "white head" condition typically produced by stem-boring insects, in this case caused by wheat stem maggot (Meromyza americana). Photo: CIMMYT
Wheat showing the “white head” condition typically produced by stem-boring insects, in this case caused by wheat stem maggot (Meromyza americana). Photo: CIMMYT

EL BATAN, Mexico – Agriculture faces many threats from climate change – drought, heat, irregular weather among other environmental challenges. However, the spread of insects to new regions as the world’s climate changes is an additional threat to farmers globally, especially in Africa where climate-change effects are projected to be some of the most severe in the world.

Most agricultural pests are expected to respond to climate change. To predict what areas will face the greatest threat of the spread of pests, scientists from The International Maize and Wheat Improvement Center (CIMMYT) modeled the current and future habitat suitability under changing climatic conditions for Tuta absolutaCeratitis cosyra and Bactrocera invadens, three important insect pests that are common across some parts of Africa and responsible for immense agricultural losses.

The scientists found that habitat suitability for the three insect pests is partially increasing across the continent, especially in those areas already overlapping with or close to most suitable sites under current climate conditions. The three pests are likely to have an impact on productive agricultural areas under future climatic conditions.

Read the full study “Future risks of pest species under changing climatic conditions,” and check out the other latest publications from CIMMYT scientists, below.

  • Evaluation of grain yield and quality traits of bread wheat genotypes cultivated in Northwest Turkey. 2016. Bilgin, O.; Guzman, C.; Baser, I.; Crossa, J.; Kayıhan Zahit Korkut; Balkan, A. Crop Science 56 (1): 73-84.
  • Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. 2016. Mondal, S.; Rutkoski, J.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzman, C.; Bhavani, S.; Caixia Lan; Xinyao He; Singh, R.P. Frontiers in Plant Science 7 (991):  1-15.
  • Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. 2016. Guzman, C.; Yonggui Xiao; Crossa, J.; González-Santoyo, H.; Huerta-Espino, J.; Singh, R.P.; Dreisigacker, S. Euphytica 209: 689-692.
  • Unlocking the genetic diversity of Creole wheats. 2016. Vikram, P.; Franco-Barrera, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Sneller, C.; Tattaris, M.; Guzman, C.; Sansaloni, C.P.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Singh, P.K.; Payne, T.S.; Wenzl, P.; Sharma, A.; Bains, N.; Gyanendra Pratap Singh; Crossa, J.; Sukhwinder-Singh. Nature Scientific Reports 6: No. 23092
  • Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. 2016. Guzman, C.; Alvarez, J.B. Theoretical and Applied Genetics 129 (1): 1-16.
  • Climate change impacts and potential benefits of heat-tolerant maize in South Asia. 2016. Kindie Tesfaye Fantaye; Zaidi, P.H.; Gbegbelegbe, S.D.; Bober, C.; Dil Bahadur Rahut; Getaneh, F.; Seetharam, K.; Erenstein, O.; Stirling, C. Theoretical and Applied Climatology. In press.
  • Diversity of phenotypic (plant and grain morphological) and genotypic (glutenin alleles in Glu-1 and Glu-3 loci) traits of wheat landraces (Triticum aestivum) from Andalusia (Southern Spain). 2016. Ayala, M.; Guzman, C.; Peña-Bautista, R.J.; Alvarez, J.B. Genetic Resources and Crop Evolution 63: 465-475.
  • Future risks of pest species under changing climatic conditions. 2016. iber-Freudenberger, L.; Ziemacki, J.; Tonnang, H.; Borgemeister, C. PLoS One 11 (4): e0153237.
  • Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. 2016. Battenfield, S.D.; Guzman, C.; Gaynor, C.; Singh, R.P.; Peña-Bautista, R.J.; Dreisigacker, S.; Fritz, A.K.; Poland, J. The Plant Genome 9 (2): 1-12.
  • Participation in rural land rental markets in Sub-Saharan Africa: who benefits and by how much? evidence from Malawi and Zambia. 2016. Chamberlin, J.; Ricker-Gilbert, J. American Journal of Agricultural Economics 98 (5): 1507-1528.

Improved drought tolerant maize varieties: a sustainable solution to climate change

Rodney Lunduka speaking at the AFSC. Photo: K. Kaimenyi/CIMMYT
Rodney Lunduka, CIMMYT socioeconomist, speaking at the AFSC. Photo: K. Kaimenyi/CIMMYT

NAIROBI, Kenya (CIMMYT) — Is there too much talk and not enough action regarding food security in Africa? For two days, stakeholders in the agricultural sector met in Nairobi, Kenya, for the 4th Africa Food Security Conference (AFSC), held at the Crowne Plaza Hotel on 12 and 13 October 2016. Experts in crop production, nutrition, agricultural inputs, global development and even microfinance, chimed in on the seemingly endless task of making Africa food secure. Speakers at the event called for a lasting solution to this challenge, citing low crop productivity, food loss, and wastage from under-developed food value chains as some of the biggest impediments to food security. However, climate change and variability remain the most devastating occurrences to farmers across the globe, and sub-Sahara Africa in particular.

According to a FAO report on global food losses and food waste, the food currently lost in Africa could feed 300 million people. The report also mentions that food waste and losses in developing countries occur at early stages of the food value chain, where constraints in harvesting techniques, finances and technical know-how exist. Further, 40 percent of losses in developing countries occur at post-harvest and processing levels, translating into lost income for small farmers and higher prices for poor consumers.

While infrastructure investments in the food value chain can help reduce the amount of food lost or wasted, and in effect feed more people, achieving a truly food secure Africa means building resilience to climate change. To do so, it is critical that production technologies are developed to adapt to the changing climate, natural resources such as land and water are properly utilized, and the environment left intact.

In the last decade, the International Maize and Wheat Improvement Center (CIMMYT) has responded swiftly to the ravages of climate change, developing responses that are accessible and affordable to smallholder farmers in sub-Sahara Africa, in whose farms the bulk of food consumed is grown.

In his presentation at the AFSC, Rodney Lunduka, socioeconomist at CIMMYT, shared that in addition to loss of yield in moderate drought, maize yield losses double when temperatures exceed 30°C, severely affecting farmers’ productivity.

The CIMMYT booth at AFSC. Photo: K. Kaimenyi/CIMMYT
The CIMMYT booth at AFSC. Photo: K. Kaimenyi/CIMMYT

“CIMMYT’s two major solutions to building farmers’ resilience to climate change are a combination of drought tolerant (DT) maize varieties, and good agronomic practices, which our studies show are being quickly adopted,” Lunduka says, adding: “this combined approach has the potential to double farmers’ yields, translating to more food and income at household level.”

Preliminary results from a household survey on the impact of DT maize in southern Africa reveal that a simple switch from non-DT maize varieties to DT maize varieties can increase farmers’ total maize production by 0.7 tons per hectare (ha) on average. The study spanned 4,700 households in Angola, Malawi, Mozambique, Zambia and Zimbabwe between 2013 and 2015. In Zimbabwe, farmers would produce 0.6 tons more yield/ha with DT maize, where the average is about 0.8 to one ton per hectare (t/ha) with non-DT maize. In Malawi, farmers were able to produce one ton more per ha – on average 1.3 to 1.5 t/ha – when DT varieties and good agronomic practices were combined.

“Good farm practices such as residue retention and intercropping with legumes are popular, the former for its simplicity, and the latter for its income potential,” says Lunduka on adopting good agronomic practices. “It is common to see maize intercropped with soya beans, cow peas, groundnuts, or pigeon peas, which most farmers can afford and have the skills to plant.”

While uptake of DT maize varieties is gradually increasing in sub-Sahara Africa, there still exist some barriers to total adoption, notably unfavorable government policies, and production and purchase of old varieties by seed producers and farmers respectively. Government policies can encourage replacement of old varieties, for instance, by offering subsidies on seed production to companies that produce improved varieties.

Read Lunduka’s presentation at the AFSC here.

receive newsletter

First drought tolerant and insect resistant “stacked” transgenic maize harvested in Kenya

A maize stem infested by the African stem borer that is predominant in the highlands. B.Wawa/CIMMYT
A maize stem infested by the African stem borer that is predominant in the highlands. B.Wawa/CIMMYT

NAIROBI, Kenya (CIMMYT) – Life has become more difficult in Kenya for the intrepid stem borer. For the first time, transgenic maize hybrids that combine insect resistance and drought tolerance have been harvested from confined field trials, as part of a public-private partnership to combat the insect, which costs Kenya $90 million dollars in maize crop losses a year.

Conducted at the Kenya Agricultural and Livestock Research Organization (KALRO) centers in Kitale and Kiboko in April and May, the experiments were managed by the Water Efficient Maize for Africa (WEMA) project, a collaboration led by the African Agricultural Technology Foundation (AATF).  The test crop successfully weathered intense, researcher-controlled infestations of two highly-aggressive Kenyan insect pests— the spotted stem borer and African stem borer.

The maize is referred to as “stacked” because it carries more than one inserted gene for resilience; in this case, genes from the common soil microbe Bacillus thuringiensis (Bt) that confers resistance to certain species of stem borer, and another from Bacillus subtilis that enhances drought tolerance.

Bt hybrid maize showed better resistance to the stem borer compared to the conventional commercial maize. F. Maritim/KALRO
Bt hybrid maize showed better resistance to the stem borer compared to the conventional commercial maize. F. Maritim/KALRO

First time maize resists two-pest attack

WEMA partners from KALRO, the International Maize and Wheat Improvement Center (CIMMYT), U.S. seeds company Monsanto and the African Agricultural Technology Foundation (AATF) hope that, given the successful results of this experiment, they will soon be able to test the new maize in national trials.

“This is the first planting season of the stacked materials and, from the initial data, there was a clear difference between the plants containing the stem borer resistance traits and the conventional commercial maize grown for comparison, which showed a lot of damage,” said Murenga Mwimali, WEMA coordinator at KALRO.

The maize in the Kiboko experiment was infested with the spotted stem borer (Chilo partellus, by its scientific name), a pest found mostly in the lowlands. At Kitale, the scientists besieged the crops with the African stem borer (Busseola fusca), the predominant maize pest in the highlands. This was the first time that Bt maize had been tested in the field against Busseola fusca, according to Stephen Mugo, regional representative for CIMMYT in Africa and leader of the center’s WEMA team.

“From our observations, this is the first time that stacked Bt genes provided control for both Chilo partellus and Busseola fusca in maize,Mugo said, adding that stem borers annually chew their way through 13.5 percent of Kenya’s maize, representing a loss of 0.4 million tons of grain.

“Losses can reach 80 percent in drought years, when maize stands are weakened from a lack of water and insect infestation,” he explained. Although the impact of the stem borer in the field often goes unnoticed because the insects sometimes destroy the plant from the root, the loss is significant for a country that depends on maize for food.

The new maize was developed using lines from Monsanto and CIMMYT-led conventional breeding for drought tolerance.

A Bt hybrid maize with resistance to the African stem borer and tolerant to drought harvested at Kitale research center, Kenya. B.Wawa/CIMMYT
A Bt hybrid maize with resistance to the African stem borer and tolerant to drought harvested at Kitale research center, Kenya. B.Wawa/CIMMYT

Seeking approval for widespread testing and use

Trial harvesting took place under close supervision by inspectors from the Kenya Plant Health Inspectorate Services (KEPHIS) and the National Biosafety Authority (NBA), strictly in line with regulatory requirements for handling genetically modified crops in Kenya.

The NBA has given partial approval to KALRO and AATF for open cultivation of the stacked transgenic hybrid maize. Once full approval is given, the varieties can be grown in non-restricted field conditions like any other variety and the Bt maize can be tested in the official national performance trials organized by KEPHIS to test and certify varieties for eventual use by farmers.

“The data we are generating in this trial will support further applications for transgenic work in Kenya, particularly for open cultivation,” Mwimali said.

Promoting drought tolerant maize seed in southern Africa

The orange maize was showcased at a seed fair in Mutoko district, Zimbabwe. In addition to high yielding, disease resistant and drought-tolerant, the maize variety reduces farmers’ vulnerability to the effects of drought and other stresses, such as heat. Photo: J. Siamachira/CIMMYT.
The orange maize was showcased at a seed fair in Mutoko district, Zimbabwe. In addition to high yielding, disease resistant and drought-tolerant, the maize variety reduces farmers’ vulnerability to the effects of drought and other stresses, such as heat. Photo: J. Siamachira/CIMMYT.

HARARE (CIMMYT) — In its continuing efforts to increase the productivity of maize systems in southern Africa, CIMMYT held seed fairs in two districts of Zimbabwe in September to promote the sharing of information and knowledge about new seed options for farmers and to encourage farmer-to-farmer information exchange.

At the seed fairs, which are like trade fairs, farmers, seed companies, government agencies and non-governmental organizations displayed seed and technological products. The idea of the seed fairs arose out of the problem of suitable dryland crop varieties for the climate in most parts of Zimbabwe.

The main aim of the seed fairs, held in Mutoko and Murewa districts in Mashonaland East Province, was to help smallholder farmers access information that would help them make informed decisions in coping with drought and climate change adaptation. This included awareness on various drought tolerant seeds, and a new variety of nutritious pro-vitamin A maize seed available on the market. Another focus of the seed fairs was to promote good agricultural practices, including sustainable intensification practices such as conservation agriculture.

Funded by the Technical Centre for Agricultural and Rural Cooperation (CTA), the seed fairs were attended by more than 1,400 smallholder farmers from the two districts, eight seed companies, traditional leaders, local government officials, non-governmental organizations and policy makers, as well as CIMMYT’s regional partners from Malawi, South Africa and Zambia. Regional participation is an important component of CIMMYT’s information exchange initiative.

The seed fairs helped establish linkages among farmers, seed companies, researchers, extension agents and agro-dealers. In addition, the seed fairs provided an important avenue for stakeholders to share critical information for informed decision-making at different levels. This has boosted the farmers’ confidence and increased the sense of ownership of their own activities.

“By bringing multiple stakeholders together, the fairs helped stimulate information sharing networks that are beneficial to all stakeholders,” said Peter Setimela, CIMMYT senior seed systems specialist. He added: “Planting wrong seeds lowers harvests and threatens food and nutritional security of the smallholder farmers. In our breeding for stress tolerance, we have tested and evaluated maize varieties from different areas of Zimbabwe under local conditions, incorporated various desirable traits and developed suitable varieties for local climatic conditions.”

Mutoko and Murewa districts were selected as the first beneficiaries of this information dissemination initiative. The fairs sought to build on progress achieved in the CIMMYT on-farm trials conducted in the two districts under a different project – Drought Tolerant Maize for Africa.

Although the main focus was drought tolerant and pro-vitamin A maize, other crop seeds such as finger millet, pearl millet, sorghum, beans, Bambara nuts, pumpkin and ground nut, were also exhibited by farmers.

International Livestock Research Institute (ILRI) research officer Irenie Chakoma (extreme right) and CIMMYT research associate Angeline Mujeyi are inundated by requests for information from smallholder farmers at the Mutoko seed fair. Photo: J. Siamachira/CIMMYT.
International Livestock Research Institute (ILRI) research officer Irenie Chakoma (extreme right) and CIMMYT research associate Angeline Mujeyi are inundated by requests for information from smallholder farmers at the Mutoko seed fair. Photo: J. Siamachira/CIMMYT.

The farmers were given space to exhibit their own seeds. This was critical in providing an avenue for farmers to exchange seeds that are not marketed through the formal systems but which farmers like. The objective of these demonstrations was to revive local seed varieties, share information on them and acknowledge that these crops thrive in local conditions, and that they could contribute to food and nutritional security.

Mutoko smallholder farmer Anna Chirere, who actively participated in the seed fair, said: “We now know that knowledge is power. So we are going to copy this knowledge from our fellow farmers and seed houses here present.”

CIMMYT plans to make the seed fairs an annual event. This would help the farmers to continue learning from one another and enhance cooperation among the community members. Maize seed on exhibition was drought-tolerant and also included the newly released pro-vitamin A maize that is orange in color, hence the name ‘orange maize’.

In Zimbabwe, nearly one in five children under the age of five is vitamin A deficient. This deficiency can lead to lower IQ, stunting, blindness, increased susceptibility to diseases and higher health risks to mothers – and their infants – during childbirth. According to the World Bank, malnourished children are more likely to drop out of school, and have lower incomes as adults, reducing overall economic growth.

Thokhozile Ndhlela, CIMMYT maize breeder, said many people in rural Zimbabwe cannot afford expensive vitamin A-rich foods such as yellow, orange and red pigmented fruits, dark leafy vegetables, or animal products such as milk, eggs, liver and cheese.

Pro-vitamin A maize, when eaten as a staple, could provide half of the average daily requirement of vitamin A for women and children. In addition to its nutritional benefits, pro-vitamin A maize is bred to yield higher than conventional varieties and is disease resistant and drought tolerant.

Ndhlela said there were 11 varieties of the pro-vitamin A maize in southern African, six of which were already in commercial production in Zambia after a successful launch of an initial three hybrids in 2012.

receive newsletter

About The Centre for Agricultural and Rural Cooperation (CTA)

The Technical Centre for Agricultural and Rural Cooperation (CTA) is a joint international institution of the African, Caribbean and Pacific (ACP) Group of States and the European Union (EU). The organization also works with a wide network of ACP-EU public and private sector bodies as well as international organizations around the world. CTA’s mission is to advance food and nutritional security, increase prosperity and support sound natural resource management through information, communication and knowledge management, multi-stakeholder engagement, capacity-building and empowerment of agricultural and rural development organizations and networks in ACP countries.

National maize stem borer mass rearing laboratory inaugurated in Pakistan

Islamabad (CIMMYT) — CIMMYT, in partnership with the Pakistan Agricultural Research Council (PARC), inaugurated the first national maize stem borer (Chilo partellus) mass rearing laboratory at the National Agricultural Research Center in Islamabad on 25 October 2016.

Unveiling the inaugural plaque of the first national maize stem borer mass rearing laboratory in Pakistan. Photo: CIMMYT

Maize stem borer (Chilo partellus) is a destructive insect pest of maize in Pakistan. Yield losses because of this pest are estimated to reach 10-40% and in some severe incidences up to 60% losses have been reported. Application of insecticides is one of the practices mostly used by resource-rich farmers. However, cash-trapped small scale farmers have to face the yield losses unless they apply cultural practices which vary from place to place. The other alternative, perhaps the better option, is the use of tolerant varieties. Maize germplasms that have inherent resistance/tolerance to maize stem borer not only save farmers money from the lower use of pesticides, but also help to have a greener agriculture by reducing greenhouse gas emissions.

Ribbon cutting ceremony by Nadeem Amjad, acting Chairman of PARC. Photo: CIMMYT
Ribbon cutting ceremony by Nadeem Amjad, acting Chairman of PARC. Photo: CIMMYT

Identification of host-plant resistance in maize is part of the commissioned projects under the Agricultural Innovation Program (AIP) for Pakistan. Under AIP, stem borer resistance maize varieties sourced from the International Institute of Tropical Agriculture (IITA) are being screened to identify the varieties best adapted to Pakistan’s maize growing ecology.

Habib Iqbal, maize entomologist, explaining about the maize stem borer mass rearing facility. Photo: CIMMYT
Habib Iqbal, maize entomologist, explaining about the maize stem borer mass rearing facility. Photo: CIMMYT

To accelerate this screening process, it was necessary to have a stem borer mass rearing facility where larvae could be produced in mass and thereafter released in maize varieties as a form of artificial infestation. “Until recently, it was not possible to conduct such activities in Pakistan due to the non-availability of such a facility. Thanks to the collaboration of PARC and CIMMYT and the generous support from USAID, we are now officially opening the first stem borer mass rearing laboratory in Pakistan,” said M. Imtiaz, CIMMYT’s Country Representative and AIP Project Leader, during his inaugural speech.

Opening address by Md. Imtiaz, CIMMYT’s country representative in Pakistan. Photo: CIMMYT
Opening address by Md. Imtiaz, CIMMYT’s country representative in Pakistan. Photo: CIMMYT

Nadeem Amjad, acting Chairman of PARC, said: “During the last couple of years, we have seen very promising results under the AIP maize program. The introduction of high yielding climate resilient maize germplasm, the distribution of protein enriched maize seeds to farmers, testing of pro-vitamin A and zinc enriched maize hybrids and the introduction of biotic stress tolerant maize varieties are among the unique interventions which were not well addressed by Pakistan’s maize sector for long.” During his concluding remarks, Amjad also added that the inauguration of the laboratory will further cement PARC’s decade’s long collaborations with CIMMYT. He thanked CIMMYT and USAID for their generous support.

Nadeem Amjad, acting chairman of PARC, delivering his closing speech. Photo: CIMMYT
Nadeem Amjad, acting chairman of PARC, delivering his closing speech. Photo: CIMMYT

The field screening under artificial infestation is showing encouraging results where some entries show more than 90% survival rate by resisting the pest attack. “We need to document the results and further check in upcoming seasons to confirm these preliminary results so that tolerant germplasm can be available to end users in the shortest time possible,” says AbduRahman Beshir, CIMMYT’s Maize Improvement and Seed Systems Specialist. The inauguration ceremony was attended by scientists and stakeholders from the public and private sector and USAID. During the inauguration, it was announced that the national laboratory will serve as a training and research center for students and researchers from the public and private sector of Pakistan.

receive newsletter

Growing more with less: Improving productivity, resilience and sustainability in Africa

HARARE, Zimbabwe (CIMMYT) – “Rain patterns have changed tremendously,” says Dyless Kasawala, a smallholder farmer in Kasungu district, Malawi. “It’s different from the old days when you would be sure of a great harvest after the rains.”

For more than three decades now, life has not been easy for Kasawala and thousands of other smallholder farmers in this harsh, dry environment. Kasawala’s story is common throughout eastern and southern Africa. Observations by smallholder farmers confirm scientific evidence that shows climate change is occurring at an alarming rate, and could leave 50 million people in the region hungry by 2050.

CIMMYT technician Herbert Chipara inspects maize devastated by drought in Mutoko district, Zimbabwe. Photo: P. Lowe/CIMMYT
CIMMYT technician Herbert Chipara inspects maize devastated by drought in Mutoko district, Zimbabwe. CIMMYT/P. Lowe

From 1900 to 2013, droughts killed close to one million people in Africa, with economic damages of about $3 billion affecting over 360 million people. Such droughts are a clear sign of the high yield variability that impedes escape from poverty and hunger for millions of Africans. Climate change could also result in a 40 percent increase in the number of malnourished people in sub-Saharan Africa by 2050, according to the Alliance for a Green Revolution in Africa.

Sub-Saharan Africa must become resilient to climate change effects like variable and severe drought and rainfall to ensure future food security. Practicing sustainable farming techniques can help small-scale farmers adapt to these challenges.

Across the world, more farmers are beginning to practice sustainable intensification (SI), which offers the potential to simultaneously adapt farming systems to climate change, sustainably manage land, soil, nutrient and water resources, improve food and nutrition security, and ultimately reduce rural poverty.

In practice, SI involves such conservation agriculture (CA) practices as minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It contributes to improved soil function and quality, which can improve resilience to climate variability. The cropping systems CIMMYT promotes can be labelled as climate-resilient, according to the U.N. Intergovernmental Panel on Climate Change.

Husband and wife farmers Elphas Chinyanga (right) and Rita Gatsi tend their conservation agriculture demonstration plot in Pindukai village, Shamva district, Zimbabwe. Photo: P. Lowe/CIMMYT
Husband and wife farmers Elphas Chinyanga (right) and Rita Gatsi tend their conservation agriculture demonstration plot in Pindukai village, Shamva district, Zimbabwe. CIMMYT/P. Lowe

“We received little rain this year, but we’ll still have enough food,” says Kasawala, who is participating in a project led by the International Maize and Wheat Improvement Center (CIMMYT), which aims to increase farm-level food security and productivity through SI.

Kasawala was one of the first farmers to practice sustainable intensification in her district in 2010. She has managed to improve soil fertility in her fields, increase her maize yield and improve her household food security.

“Farmers have a number of technological options, but ultimately they have to make informed decisions on which technologies to adopt,” said Eric Craswell, co-chair of CIMMYT’s Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project steering committee. Such farmers as Kasawala who practice CA through SIMLESA participate in on-farm trials, which compare CA to conventional farming practices, test different levels of herbicide use and maize-legume crop rotations.

Maize farmers participating in SIMLESA are increasing yields and profits through sustainable intensification by increasing rotating and intercropping their maize with legumes. Above, smallholder farmer Lughano Mwangonde and sustainable intensification farmer in her conservation agriculture demonstration plot in Balaka district, Malawi. Photo: J. Siamachira/CIMMYT
Maize farmers participating in SIMLESA are increasing yields and profits through sustainable intensification by increasing rotating and intercropping their maize with legumes. Above, smallholder farmer Lughano Mwangonde and sustainable intensification farmer in her conservation agriculture demonstration plot in Balaka district, Malawi. CIMMYT/J. Siamachira

According to SIMLESA’s project leader Mulugetta Mekuria, there is evidence that shows new drought-tolerant maize varieties when coupled with SI bring even greater benefits to farmers. For example, combining elite drought-tolerant maize with direct seeding systems can improve the performance of maize by more than 80 percent. Now, nearly 650 maize and legume varieties, approved by farmers and selected by over 40 local seed companies, are being commercially distributed in the five SIMLESA countries (Ethiopia, Kenya, Malawi, Mozambique and Tanzania).

Zero tillage – a CA practice that directly sows seeds into unplowed soil and the residues of previous crops – has helped farmers cut planting time in half, allowing them to engage in other economic activities.

“Sustainable intensification is the only option to feed the extra two billion people by 2050, when resources are limited,” said John Dixon, principal advisor/research and program manager for the Australian Centre for International Agricultural Research (ACIAR)’s Cropping Systems and Economics program. ‘’Now is the time to scale-up by taking our research to farmers through extension, non-governmental organizations and farmers’ associations.”

Through 2018, CIMMYT will focus on bringing sustainable intensification to even more farmers throughout eastern and southern Africa. Collaborative work with farmers, extension agencies, non-governmental organizations, universities and agribusiness is expected to improve maize and legume productivity by 30 percent and reduce expected yield risk by 30 percent in about 650,000 rural households over a period of 10 years.

CIMMYT’s Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project is funded by the Australian Centre for International Agricultural Research (ACIAR) with strong collaboration from National Agricultural Research Systems (NARS) and a wide range of private, university, public sector and non-governmental organizations. It aims at increasing farm-level food security and productivity in the context of climate risk and change.

receive newsletter

Gazing into the crystal ball at the future of food: Nutrient-dense maize and wheat

A scientist examines wheat grain. CIMMYT/Nathan Russell
A scientist examines wheat grain. CIMMYT/Nathan Russell

Gideon Kruseman is CIMMYT’s ex-ante and foresight specialist.

Over the next few decades, projections indicate global population will grow from more than 7 billion to more than 9 billion people by 2050. A large proportion of that world population will be living in low- and middle-income countries in urban environments – often huge — cities.

In India, the country with the largest rural population, for instance, the percentage of urban population is expected to increase from 37 percent in 2011 to 56 percent by 2050. Globally it will grow from 55 percent in 2011 to 70 percent in 2050. The trends we anticipate in India are comparable to Africa as a whole where urban population is projected to increase from less than 40 percent to around 55 percent, although there are differences between countries and regions.

Meeting the sustainable development goals (SDGs) established in 2015 by the United Nations and the global community will be challenging. The 17 goals with 169 targets aim to solve problems related to climate change, hunger, education, gender equality, sanitation, jobs, justice and shared peace by 2030.

In particular, SDG 2, which aspires to eliminate hunger, and SDG 3, which aims to establish good health and well-being, will be challenging even if we concentrate only on climatic, environmental and biophysical constraints. If we also take into account all the implications of urbanization and economic growth on diets and dietary change a new dimension of complexity becomes apparent.

Whether model calculations are based on current consumption patterns and trends, healthy diets or a variety of ecological sustainability criteria, maize and wheat will play a significant dietary role. Currently, these two staple crops feed two-thirds of the world population and will continue to be the main supply of energy in human diets in all scenarios.

However, scenarios for maize and wheat will not ensure decrease in quantitative and qualitative malnutrition unless we act upon projected future demands now. Diets, dietary change and their effects on health and nutritional status form complex interactions with socio-economic and environmental drivers.

In the future, diets will inevitably change as they have in previous decades. Basic commodities in food consumed in urban areas require different traits than food consumed in rural areas where the chain between production and consumption is shorter. The reason for this is that in rural areas in low and middle income countries staple grains are milled and processed locally, while in urban areas people tend to eat industrialized processed or pre-processed food.

In urban areas in Africa and South Asia wheat-based products are starting to replace traditional staples such as maize and rice to some extent. Moreover, research reveals that in urban centers people tend to eat energy dense food, which can help prevent quantitative malnutrition in terms of calorie intake, but does not ensure a healthy diet. Healthy eating requires a wide range of nutrients that traditionally are found in diverse foods. When people opt for less diversity and more convenience, this requires nutrient-dense as well as calorie-dense food. A significant trend that points to convenience food is the increased consumption levels of snacks and fast food, in low- and middle-income countries.

Maize-based snacks are important components of urban diets. Moreover, maize is a key ingredient found in convenience food made by the food industry in the form of starch and syrup. Ensuring that maize and wheat can meet nutritional demands in less diverse diets requires the introduction of new traits into the varieties comparable to the ongoing efforts of maize and wheat biofortification at the International Maize and Wheat Improvement Center (CIMMYT).

The development of nutrient-dense varieties takes time since they must also incorporate traits that address environmental conditions, climate change and resistance to pests and diseases as well as feature favorable post-harvest characteristics such as milling and processing quality.

Crucial to this process are the genetic resources that allow the traits to be combined in the breeding done at CIMMYT.

How do we do this? Billions of seeds, expertly and carefully conserved for humankind, are housed in our seed bank. They are freely available to breeders and other researchers around the world who may use them to uncover solutions to some of the challenges that face humanity in the future. Any one seed could help secure the food of our future.

While the potentially desirable traits hidden in the seeds in the seed bank are very valuable, there are costs involved in maintaining this diversity. Diversity is important for finding traits that will allow maize and wheat to be more nutritious than they are already today and so aid in meeting the demands of the future. Today, everyone can be part of this future by joining the save a seed movement.

Changing the conversation surrounding food and agriculture with Tamar Haspel

MEXICO CITY (CIMMYT) — A few hands jabbed into the air. Tamar Haspel, a columnist for the Washington Post, had asked a room of more than 1,000 scientists, researchers, economists and agriculture experts a simple question: “Who here has changed their mind on an issue in the past year?”

SAMSUNG CSC
Tamar Haspel, Washington Post columnist, addresses the crowd during her keynote speech at the CIMMYT 50 conference.

Haspel, author of “Unearthed,” a column in the Washington Post newspaper that focuses thematically on the intersection between food and science, was delivering a keynote address at a three-day conference hosted by the International Maize and Wheat Improvement Center (CIMMYT) to celebrate the nonprofit’s 50th anniversary.

Haspel’s speech urged those in the science-agricultural industry to take a closer look at opinions unlike their own and to have constructive conversations in hopes to improve and change the current public conversation about agriculture.

Q: When did you first start writing about food, science and agriculture?

I’ve been writing about food for 20 years, really focusing on nutrition and health, but about five years ago my husband and I moved from New York City to Cape Cod (Massachusetts) and we started raising livestock, growing food and fishing. We even started a commercialized farm and because of that I know what it’s like to lose 80 percent of a crop. It behooves anybody who writes about growing food to stay connected to the idea that it has to come from somewhere and to understand the hard work and risk.

Q: What is the key message you try to push at conferences?  

The thing that I increasingly believe to be most important and really push is to get people who disagree in the same room. The best thing in the world is to be proven wrong – it means you won’t make the same mistake again. In agriculture there are so many issues people disagree on. Take the green revolution, for example, it is widely discussed within the scientific community with people on both sides of the argument giving compelling statements. Both sides may not have equal truth to them, but certainly there is some truth on both sides. I think we have to engage with people who don’t see the world the way we do, especially in the agricultural community. We have an urgent problem right now trying to feed a growing population. It’s very important we get past these stupid disagreements.

Q: Why do you think your message is received so well by scientists?  

I personally think that scientists are in the business of trying to find out what’s true. If you present something that resonates with them and they think they haven’t thought about it before it brings them some happiness. I know that for me, coming to grips with the fact that I’m an imperfect decision maker helped me and I thought that this message would resonate well within the scientific community.

Q: When did you first realize you were an imperfect decision maker?

I read “The Righteous Mind” five years ago and it was very compelling and persuasive. It completely changed the way I think about my opinions. It made me extremely careful when canvassing information and made me much more tolerant of opinions I disagree with, even if they are beyond the scientific pale.

I don’t think you can go out in the world and credibly say that genetically modified crops are dangerous to eat. But I do think the people going out in the world saying that are among the most concerned about our food system. I would love to have a constructive conversation with those people. We need people who care because honestly the road to an environmentally unfriendly food system is consumers who do not care.

We seek sources of information that share our values and confirm our views. So I say find the smartest person who disagrees with you and listen.

View Haspel’s presentation delivered at CIMMYT’s 50th anniversary conference here.