Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Fall armyworm devastates crops in sub-Saharan Africa: A quick and coordinated regional response is required

The recent appearance of the fall armyworm, an insect-pest that causes damage to more than 80 crop species in 14 countries in sub-Saharan Africa, poses a serious challenge and significant risk to the region’s food security.

In a recent interview, B.M. Prasanna, director of the Global Maize Program at International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on MAIZE, who is working at the forefront of CGIAR’s response, highlights the potential impact of the pest and how CGIAR researchers are contributing to a quick and coordinated response across the region.

Q: What is the fall armyworm and why is it so destructive?  

The fall armyworm (Spodoptera frugiperda) is an insect-pest which causes major damage to more than 80 crop species, including economically important crops, such as maize, rice, sorghum, wheat, sugarcane, several other vegetable crops and cotton.

It was first officially reported in Nigeria in early 2016 and has been officially confirmed in 11 and suspected in at least 14 other African countries, as of April 2017.

Q: What are the potential impacts of the pest in sub-Saharan Africa?

The fall armyworm poses a serious challenge and a significant, ongoing risk to Africa’s food security.

The pest’s ability to feed on a range of crop species means that smallholder farming systems in Africa, which are based on intercropping, are particularly vulnerable. Also, the rapid damage and migratory capacity of the pest, combined with its capacity to reproduce quickly in the right environmental conditions and its ability to rapidly evolve resistance to synthetic pesticides increase the region’s vulnerability.

In sub-Saharan Africa, where fall armyworm is currently devastating maize crops, estimates indicate 13.5 million tons of maize valued at $3 billion are at risk in 2017-2018, which is equivalent to over 20 percent of total production for the region (based on data from CABI, April 2017).

Q: What are the key challenges that countries in sub-Saharan Africa will face?

There is no doubt that smallholder farmers, particularly maize farmers, in sub-Saharan Africa will face a significant and ongoing risk from the fall armyworm. In particular, resource-poor smallholders will be severely affected due to their inability to control the pest using synthetic pesticides, currently the only way to effectively respond, which are very costly.

Q: What are three ways that countries in sub-Saharan African can strengthen resilience of food and agricultural systems to the potential effects of Fall Armyworm?

  1. Working groups need to be established quickly to develop and implement strategies to respond to the issue.  In particular, we need to develop a comprehensive, regional response centered on: Monitoring and early warning; Social and economic assessments of impacts, and forecasting; Integrated Pest Management (IPM); Development and dissemination of low-cost, effective and sustainable solutions and development of appropriate regulatory tools and policies to support the response.
  2. As this process unfolds, gaps, challenges and successes will need to be documented to inform capacity-building needs with a focus on understanding the capacity of individual countries to respond. While fall armyworm outbreaks across Africa is an emergency situation, it should also be an opportunity to review and understand regional food production and food security issues and as an opportunity to improve on systematic approaches to build capacity to prevent and respond to future threats of transboundary pests and pathogens in Africa.
  3. Strong coordination across different levels of government is required: “political coordination” (among the local governments, NPPOs, and sub-regional organizations), and “technical coordination” (fast-tracked testing and deployment of relevant technologies).

Q: What role do CIMMYT and CGIAR have in building capacity in the region’s ability to respond to Fall Armyworm?

CGIAR institutions, including CIMMYT and the International Institute of Tropical Agriculture (IITA), have significant strengths in building the region’s ability to respond to trans-boundary pathogens (e.g., previous examples include Maize Lethal Necrosis, wheat rust and insect-pests, such as fall armyworm.

Specific examples of CGIAR/CIMMYT expertise that will be important in the fall armyworm response include:

  1. Development and dissemination of crowd-source based tools and digital surveillance systems and analysis of the data collected across countries for a strong monitoring and early warning system.
  2. Systematic and large-scale assessment of the present and potential socio-economic impact of fall armyworm in Africa, and the development of forecasting tools to understand potential losses
  3. Review of the efficacy of different fall armyworm management options (learning from experiences of the United States, Brazil and Mexico), and adapting this information to the African context
  4. Determining the efficacy of cultural control options against fall armyworm, including early versus late planting of crops like maize, handpicking, soil and habitat management, crop hygiene, etc.
  5. Evaluating the impacts on-going integrated pest management (IPM) initiatives and the impacts of the fall armyworm invasion on the effectiveness of these interventions
  6. Developing and implementing appropriate insect resistance monitoring and management strategy in fall armyworm affected countries
  7. Analysis of the effects of conservation agriculture on fall armyworm management and the influence of fall armyworm incidence on diverse cropping systems
  8. Testing and introgression of conventionally-derived resistance (from identified CIMMYT and U.S. Department of Agriculture-Agricultural Research Service [USDA-ARS] germplasm sources) into Africa-adapted maize germplasm, followed by fast-tracked varietal release, seed scale-up and delivery of improved maize hybrids/varieties through public-private partnerships (e.g., MLN is a great example of this).
  9. Developing a “Fall Armyworm Information Portal”, similar to the MLN Information Portal and Wheat Rust Tracker (led by CIMMYT), as a one-stop portal for relevant information.

Q: CIMMYT recently co-hosted an emergency meeting on the strategy for effective management of fall armyworm in Africa. What were the key outcomes and next steps for the response to this issue?

The emergency meeting was an opportunity to assess the present and potential damage due to fall armyworm and to devise a holistic control strategy.

CIMMYT, Alliance for a Green Revolution in Africa (AGRA) and the U.N. Food and Agriculture Organization (FAO) jointly hosted a Stakeholders Consultation Meeting in Nairobi, Kenya (April 27-28, 2017). About 150 experts and stakeholders from 24 countries in Africa, and five outside Africa (Italy, Spain, Switzerland, Britain and the United States) participated, with participants from government, national plant protection agency, national agricultural research systems in Africa, as well as scientists from international agricultural research organizations, and representatives of service providers, non-governmental organizations, development partners, donor agencies and the media.

Discussions covered the present status of the pest in Africa as well as contingency plans to manage the pest, assessment of current control options being used. Experts from the U.S. and U.K. provided expertise and insight on the response to fall armyworm in the U.S. and Brazil.

Action points and recommendations on four key areas were developed to ensure an effective, coordinated response:

  • Contingency planning and awareness generation;
  • Fall armyworm monitoring and early warning;
  • Socio-economic impact assessments and modeling of potential losses;
  • Development and Dissemination of fall armyworm management options;
  • Coordination of Institutional Interventions for fall armyworm management in Africa.

FAO is expected to convene a regional workshop in early June to engage and coordinate with relevant regional organizations who will be involved in the response.

CIMMYT and CGIAR have responded and will continue to address the issue over the following months. For more information see these recent publications: Multi pronged approach key for effectively defeating fall army worm in Africa; Scientists tackle deadly fall armyworm infestation devastating maize in Southern Africa and Global experts and stakeholders meet to develop fall armyworm emergency strategy for Africa.

Similarly, international coverage of the fall armyworm crisis has been extensive and includes the following:

This article was originally posted by CGIAR.

 

As climate change threatens to increase the incidence of plant pests and diseases, action must be taken to protect smallholder farmers and global food security.

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Follow @CIMMYT on Twitter and Facebook for the latest updates.

New Publications: Sustainable agriculture boosts water savings in India

Farmer weeding maize field in Bihar, India. Photo: CIMMYT/M. DeFreese
Farmer weeding maize field in Bihar, India. Photo: CIMMYT/M. DeFreese

EL BATAN, Mexico (CIMMYT) — In northwestern India, growing maize is being advocated as an alternative to rice to address resource degradation challenges such as declining water tables and climate change induced variability in rainfall and temperature.

Sustainable agriculture practices have proven to increase farmer income, improve irrigation productivity and reduce greenhouse gas emissions in the cereal systems of the Indo-Gangetic plains (IGP), a fertile area extending over 2.5 million square kilometers across Bangladesh, India, Nepal and Pakistan.

The IGP currently abstracts 25 percent of global groundwater withdrawals, sustaining agricultural productivity across the region. However, aquifers are being depleted at rates faster than they can recharge, threatening food security for more than 500 million people.

In response, researchers from the International Maize and Wheat Improvement Center (CIMMYT) observed the impact of sustainable conservation agriculture practices like zero-tillage (ZT) and permanent bed planting (PB) in irrigated maize-based systems integrated with legumes in the IGP of northwestern India.

ZT and PB practices reduced irrigation water requirement by up to 65 and 98 hectares per millimeter, respectively, compared to conventional tillage systems, resulting in a water productivity boost of nearly 20 percent. Net profit from maize-based systems under ZT was over 30 percent higher than conventional systems.

The study concludes that by adopting sustainable practices like ZT and PB, farmers can sustainably increase productivity throughout the IGP region.

Read the study “Conservation agriculture in irrigated intensive maize-based systems of north-western India: Effects on crop yields, water productivity and economic profitability,” and check out other new publications from CIMMYT staff, below.

  • Comparative performance of top-cross maize hybrids under managed drought stress and variable rainfed environments. 2016. Menkir, A., Meseka, S., Bossey, B. Ado, S., Obengantiwi, K., Yallou, C., Coulibaly, N., Olaoye, G., Alidu, H., Crossa, J. In: Euphytica, vol.212, p.455-472.
  • Conservation agriculture in irrigated intensive maize-based systems of north-western India: effects on crop yields, water productivity and economic profitability. 2016. Parihar, C.M., Jat, S.L., Singh, A.K., Kumar, B., Singh, Y., Pradhan, S., Pooniya, V., Dhauja, A., Chaudhary, V., Jat, M.L., Jat, R.K., Yadav, O.P. In: Field Crops Research, vol.193, p.104-116.
  • Control of Helminthosporium leaf blight of spring wheat using seed treatments and single foliar spray in Indo-Gangetic Plains of Nepal. 2016. Sharma-Poudyal, D., Sharma, R.C., Duveiller, E. In: Crop Protection, vol.88, p.161-166.
  • Dairy farm households, processor linkages and household income: the case of dairy hub linkages in East Africa. 2016. Rao, E.J.O., Omondi, I., Karimov, A., Baltenweck, I. In: The International Food and Agribusiness Management Review, vol. 19, no. 4, p. 95-108.
  • Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. 2016. Fetch, T.G., Zegeye, T., Park, R.F., Hodson, D.P., Wanyera, R. In: Plant Disease, vol. 100, no. 7, p. 1495.
  • Occurrence and population dynamics of the root lesion nematode Pratylenchus thornei (Sher and Allen) on wheat in Bolu, Turkey. 2017. Imren, M., Ciftci, V., Senol Yildiz, Kutuk, H., Dababat, A.A. In: Turkish Journal of Agriculture and Forestry, vol. 41, no. 1, p. 35-41.
  • Population structure and genetic diversity analysis of germplasm from the Winter Wheat Eastern European Regional Yield Trial (WWEERYT). 2017. Beil, C. T., Manmathan, H. K., Anderson, V. A., Morgounov, A.I., Haley, S. D. In: Crop Science, vol. 57, p. 1-9.
  • QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. 2017. Velu, G., Yusuf Tutus, Gomez-Becerra, H.F., Yuanfeng Hao, Demir, L., Kara, R., Crespo-Herrera, L.A., Orhan, S., Yazici, A., Singh, R.P., Cakmak, I. In: Plant and Soil, vol. 411, no. 1, p. 81–99.
  • Ratooning pigeonpea in maize-pigeonpea intercropping: productivity and seed cost reduction in eastern Tanzania. 2017. Rusinamhodzi, L., Makoko, B. Sariah, J. In: Field Crops Research, vol.203, p.24-32.

Moving zinc-enriched wheat into the mainstream

Agricultural scientists are calling on support to add zinc-biofortification as a core trait in the world's largest wheat breeding program. Photo: CIMMYT/ Peter Lowe
Agricultural scientists are calling for support to make zinc-biofortification a core trait in the world’s largest wheat breeding program. Photo: CIMMYT/ Peter Lowe

EL BATAN, Mexico (CIMMYT) – In an effort to stamp out hidden hunger, scientists are calling for support to make zinc-biofortification a core trait in the world’s largest wheat breeding program.

At least 2 billion people around the world suffer from micronutrient deficiency, or hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

Zinc deficiency remains a crucial health issue in sub-Saharan Africa and South Asia. As a key nutrient in red meat, it is prevalent in areas of high cereal and low animal food consumption.

It is vital in times of rapid human growth such as pregnancy, infancy and puberty. Compared to adults, children, adolescents as well as pregnant and lactating women have an increased need for zinc. Deficiency harms growth and development and can cause respiratory infections, diarrheal disease and a general weakening of the immune system.

One way to tackle hidden hunger is through biofortified crops, which have been bred to contain higher amounts of minerals and vitamins. These crops help to improve health in poor communities where other nutritional options are unavailable, limited or unaffordable.

As a key staple, wheat provides 20 percent of the world’s dietary energy and protein, therefore it’s an ideal vehicle for biofortification, said Velu Govindan, a wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT).

CIMMYT scientists are calling for funds to make increased zinc grain content a core trait in its global wheat breeding program. CIMMYT-derived wheat cultivars have contributed to more than half of the wheat varieties grown in developing countries.

“In wheat breeding, including zinc as core trait – as done with high and stable yield, drought and heat tolerance and disease resistance – would have huge health benefits in South Asia and sub-Saharan Africa,” said Ravi Singh, who leads CIMMYT’s wheat improvement program. “Around 70 percent of the wheat varieties grown in these regions derive from CIMMYT breeding research.”

In the early 2000s, scientists conducted large-scale screening for high zinc content in traditional wheat and their wild relatives from CIMMYT’s wheat germplasm bank. The search was successful, revealing diverse genetic resources with traits that became the building blocks for zinc-enriched wheat.

CIMMYT initiated biofortification breeding in 2006 and four biofortified wheat varieties have been released in South Asia. Promotion of zinc-biofortified wheat varieties in India and Pakistan is in the early stages and further testing and scaling out to other countries like Bangladesh, Nepal, Afghanistan and Ethiopia is underway, the scientists confirmed.

Studies in India have shown that regular consumption of zinc-enriched wheat improves the overall health of women and children, said Govindan.

Extensive global presence of CIMMYT-derived varieties means that, once the program adds enhanced grain zinc levels as a core trait, many wheat farmers and consumers throughout the developing world will automatically reap the benefits of better nutrition.

However, increased funding is needed to make the jump to full inclusion of high zinc content, according to Hans Braun, director of CIMMYT’s Global Wheat Program and CGIAR’s research program on wheat.

“Each added trait in a breeding program requires a significant increase in the number of breeding lines grown and evaluated, adding significant costs” Braun said.

CIMMYT’s wheat breeding program is currently funded at around $15 million per annum. In 2016, it distributed 14.5 tons of seed of experimental wheat lines in more than 500,000 small envelopes to nearly 300 partners in 83 countries. Globally, this makes CIMMYT the most important wheat germplasm provider together with the International Center for Agricultural Research in the Dry Areas (ICARDA).

For more information on zinc-biofortified wheat visit this science brief.

Maize lethal necrosis quarantine facility opens avenues for introducing novel maize germplasm in southern Africa

An aerial view of the MLN quarantine facility in Zimbabwe. Photo: Mainassara Zaman-Allah/CIMMYT
An aerial view of the MLN quarantine facility in Zimbabwe. Photo: Mainassara Zaman-Allah/CIMMYT

HARARE, Zimbabwe – The maize lethal necrosis (MLN) quarantine facility in southern Africa was officially opened in Zimbabwe on April 20, 2017 to enable safe introduction and exchange of novel maize germplasm from CIMMYT to partners in southern Africa.

Set up by the International Maize and Wheat Improvement Center (CIMMYT), with the approval of the government of Zimbabwe, the work for establishing the facility at the Plant Quarantine Station at Mazowe, outside Zimbabwe’s capital Harare, was initiated in the last quarter of 2015.  The five hectare MLN quarantine facility funded by the United States Agency for International Development, is the first of its kind in southern Africa and will be used to safely import elite maize breeding materials from CIMMYT to southern Africa.

MLN is a devastating disease that causes huge economic losses if it occurs, particularly for smallholder farmers who frequently do not have means to control it. MLN was first detected in Kenya in 2011, and has since been reported in Democratic Republic of the Congo, Ethiopia, Rwanda, Tanzania, and Uganda. It is caused by a double infection of maize plants by two viruses: the maize chlorotic mottle virus and the sugarcane mosaic virus. Severe infestation can result in total yield loss. MLN-causing viruses are transmitted not only by insect vectors, but also by seed. There is an urgent need to prevent the deadly disease from moving further south.

The MLN quarantine facility is now functional. To date, over two hectares of land have been planted successfully with maize breeding materials imported from Kenya for the purpose of proactively breeding for MLN while at the same time preventing movement of the disease from endemic areas. Personnel have been trained to safely conduct activities at the site. The facility operates under strict quarantine regulations and is closely monitored and approved by Zimbabwe’s Plant Quarantine Services to ensure that the maize materials introduced are MLN-free.

“This modern quarantine facility is expected to uphold safety when importing maize breeding materials to southern Africa, and to facilitate local and regional institutions to proactively breed for resistance against the MLN disease,” said Zimbabwe’s Minister for Agriculture, Mechanization and Irrigation Development, Joseph Made, while officially opening the facility.

Dr Made also said “I am confident that the quarantine facility will play a significant role in curbing the spread of MLN, while at the same time facilitating on-going work of developing new maize varieties that are resistant to the disease.”

“This MLN quarantine facility, and the collaborative efforts between institutions of the government of Zimbabwe, especially the Department of Research and Specialist Services (DR&SS) and CIMMYT-Southern Africa Regional Office, are key to prevent the possible spread of MLN in southern Africa, and to develop and deploy elite maize varieties with MLN resistance and other farmer-preferred traits,” said B.M. Prasanna, Director of the CIMMYT Global Maize Program and CGIAR Research Program MAIZE, while speaking at the same occasion.

CIMMYT Global Maize Program Director and CGIAR Research Program MAIZE Director B.M. Prasanna, shakes hands with Zimbabwe’s Minister for Agriculture, Joseph Made, after the official opening of the MLN quarantine facility. Photo: Johnson Siamachira/CIMMYT.
CIMMYT Global Maize Program Director and CGIAR Research Program MAIZE Director B.M. Prasanna, shakes hands with Zimbabwe’s Minister for Agriculture, Joseph Made, after the official opening of the MLN quarantine facility. Photo: Johnson Siamachira/CIMMYT.

CIMMYT and the government of Zimbabwe have so far conducted two nation-wide MLN surveys. In the first, no incidence of MLN was recorded. Results of the second survey are still being assessed. To strengthen the phytosanitary work at this MLN quarantine facility, CIMMYT will also offer capacity building to DR&SS researchers through trainings, technical assistance, and advisory services.

MLN is a reality that cannot be ignored. Partners have to work together to control its spread through finding practical solutions to tackle this complex challenge, including strengthening MLN disease diagnostic and surveillance capacity. In addition, intensive inter-institutional efforts to develop and deploy improved maize varieties that incorporate MLN resistance should be continued. The commercial seed sector must also play a key role by producing and delivering MLN-free healthy seed to farmers.

Until seed companies in the MLN-endemic countries have produced 100 percent MLN-free, clean commercial seed, and have necessary certification from the national plant protection offices, the potential risk of MLN entering southern Africa and the consequent damage to maize producers from significantly outweighs the benefits of commercial seed trade.

MLN can only be effectively prevented and tackled through concerted inter-institutional and multi-disciplinary action. The key actions include: enforcement of synchronized maize plantings and a maize-free period of at least three to four months in a year in severely affected areas; creation of an extension corps specifically dedicated to creating awareness on MLN management among the farming communities and monitoring and implementation of standard operating procedures for production of MLN-free clean seed at various points along the seed value chain, to be used by all players in the seed industry.

CIMMYT developed and released, through national partners in eastern Africa, nine MLN-tolerant maize hybrids in the last three years. Four among these hybrids are already being seed scaled-up and commercialized by seed company partners in Uganda, Kenya and Tanzania. As many as 19 MLN-tolerant hybrids are under national performance trials in eastern Africa.

New Publications: Maize variety replacement lags in sub-Saharan Africa

Sarah Nyamai, a farmer from Kalimoni Village in Machakos County, Kenya, harvests drought tolerant maize. Photo: B. Wawa/CIMMYT
Sarah Nyamai, a farmer from Kalimoni Village in Machakos County, Kenya, harvests drought tolerant maize. Photo: B. Wawa/CIMMYT

NAIROBI (CIMMYT) — A new study has revealed that sub-Saharan Africa’s maize variety turnover continues to fall behind the rest of the world.

The study – which observed nearly 500 maize varieties grown across 13 African countries during the 2013-2014 main crop season – found that the average age of maize seed being planted in the region is 15 years, compared to 3 to 5 years in the U.S. and other world regions such as Latin America and Asia, making sub-Saharan Africa slower in maize variety turnover.

“We have witnessed a positive and accelerated trend over the last decade, but the performance of maize is still much lower than what could be achieved with improved varieties and good agronomic management practices,” said Tsedeke Abate, lead author of the study.

The current low yield and slow variety turnover of the region contrasts sharply with the tremendous progress made to develop and release significant numbers of varieties. A record annual rate of 73 varieties were released from 2000-2014, compared to 12 varieties per year in the preceding five decades combined.

According to Abate, a major challenge is ensuring these newly released varieties are widely adopted by farmers, which is key for successful variety renewal and replacement. The study found adoption rates for hybrids and open pollinated varieties (OPVs) were just 37 and 21 percent, respectively, across the surveyed countries. Critical to successful adoption is sound government policy that facilitates increased investments in agriculture, availability and affordability of inputs like seeds and fertilizer, a strong extension system and market access for products, the authors of the study argue.

“This information should inform our breeding strategies to look at adaptability of the varieties in different agroecologies, and how this affects resources currently being used in breeding programs in the region,” said Abate. Maize provides more calories than any other crop for over 200 million people in sub-Saharan Africa, so ensuring high-quality, improved seed is being grown is vital for ensuring food security in the region.

The study also indicates that many farmers have higher preference for open pollinated varieties due to affordability, ease of storage, high poundability, high flour-to-grain ratio and favorable taste. The study emphasizes the importance of incorporating production, processing and consumption traits that are valued by farmers, not just yield and stress tolerance. This can allow national breeding efforts to rid biased and inappropriate varietal promotions, and therefore low adoption of new varieties.

One of the key recommendations the study suggests is that all varieties older than 10 years should be eligible for replacement, to reverse the current slow varietal turnover.

Read the full study “Characteristics of maize cultivars in Africa: How modern are they and how many do smallholder farmers grow?” and learn more about CIMMYT’s latest publications below.

  • But what do rural consumers in Africa think about GM Food? 2016. De Groote, H., Gitonga, Z., Kimenju, S.C., Keter, F., Ngigi, O. In: AgBioForum, vol.19, no.1, p.54-65.
  • By-laws formulation and enforcement in natural resource management: lessons from the highlands of eastern Africa. 2016. Mowo, J., Masuki, K., Lyamchai, C., Tanui, J., Adimassu, Z., Kamugisha, R. In: Forests, Trees and Livelihoods, vol.25, no.2, p.120-131.
  • Characterization of Research Nodes: an integrative approach through indexing. 2016. Das, K.K., Bhattacharya, P.M., Ghosh, A.K., Dhar, T., Pradhan, K., Chowdhury, A.K., Joshi, P.K., Gathala, M.K. In: International Journal of Bio-resource and Stress Management, vol.7, no.5, p.1083-1092.
  • Combined linkage and association mapping identifies a major QTL (qRtsc8‑1), conferring tar spot complex resistance in maize. 2016. Mahuku, G., Jiafa Chen, Shrestha, R., Narro, L., Osorio Guerrero, K.V., Arcos, A.L., Yunbi Xu. In: Theoretical and Applied Genetics, vol.129, p.1217-1229.
  • Identification and mapping of adult plant resistance loci to leaf rust and stripe rust in common wheat cultivar kundan. 2017. Ren, Y., Singh, R.P., Basnet, B.R., Caixia Lan, Huerta-Espino, J., Lagudah, E.S., Ponce-Molina, L.J. In: Plant Disease, vol.101, no.3, p.456-463.
  • Identification of genomic regions for grain yield and yield stability and their epistatic interactions. 2017. Sehgal, D., Autrique, E., Singh, R.P., Ellis, M., Sukhwinder-Singh, Dreisigacker, S. In: Nature Scientific reports, vol. 7, no. 41578.
  • Integrating islands of knowledge for greater synergy and efficiency in crop research. 2017. Borrell, A., Reynolds, M.P., In: Food and energy security vol. 6, no. 7, p. 26–32.
  • Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. 2017. Ritzema, R.S., Frelat, R., Douxchamps, S., Silvestri, S., Rufino, M.C., Herrero, M., Giller, K.E., Lopez-Ridaura, S., Teufel, N., Paul, B., Wijk, M.T. van. In: Food Security, vol. 9, no. 1, p. 115–131.
  • Maize market participation among female- and male-headed households in Ethiopia. 2017. Marenya, P., Kassie, M., Jaleta Debello Moti, Dil Bahadur Rahut. In: Journal of Development Studies, vol.53, no,4, p.1-14.

Breaking Ground: Hands on experience gives Carolina Camacho insight into farming best practices

TwitterCamachoEL BATAN, Mexico (CIMMYT) – Tending her own crops gives Carolina Camacho insights into the challenges farmers face that she could never have learned in a classroom.

Growing up in the metropolis of Mexico City, the historical and political importance of agriculture was never lost on Camacho, who works as a principal researcher at the International Maize and Wheat Improvement Center (CIMMYT).

“As a teenager, I would debate my sister over the most pressing issue that faced our country, Mexico. For me it was always in agriculture,” Camacho said. “I strongly believe if we are to improve our country, we must improve the lives of our campesinos (smallholder farmers).”

With no knowledge of farming, but with a passion to bring about change, she took to the field, studying crop science at Chapingo University, on the outskirts of the city in the State of Mexico. Having to brave early morning starts, she learned the basics of agriculture, and a love for the genetic diversity of maize.

Mexico, considered the birthplace of maize, is home to a rich diversity of varieties that has evolved over years of domestication by farmers. Camacho was introduced to this diversity firsthand, interning at CIMMYT’s maize germplasm bank as an undergraduate.

Interested in discovering how conserving maize diversity played out in farmers’ fields she gravitated towards an on-farm conservation project in rural Mexico. Working with indigenous farmers, Camacho learned how traditional knowledge and practices relate to environmental management, agricultural production and the diversity of native maize varieties.

After earning a master’s degree in the conservation and utilization of genetic resources, Camacho felt that crop science was isolated from the daily life of farmers. Thus, in a move to study the relationship between humans and plants, she embarked on a multidisciplinary doctoral in the sociology of rural development at Wageningen University in the Netherlands.

While conducting her research, Camacho lived with indigenous farmers in Mexico’s Lacandon rainforest in the state of Chiapas. Alongside local Mayan farmers she cultivated her own milpa – a farming system used by indigenous farmers in Latin America, which typically involves intercropping maize, beans and squash. Her hands-on fieldwork allowed her to study cultivation practices outside the scope of purely agronomic activities, but also as political, social and cultural actions.

“Farming alongside the Tzeltal people, I saw how my own cultivation practices were interwoven with everyday life,” said Camacho. “Farming was influenced by religious ceremonies, health and family affairs as well as political struggles for land. It had to cope, adapt and overcome these challenges.”

Today, these lessons learned guide Camacho as she investigates how agricultural innovations, including drought-tolerant crops, fertilizer and land management approaches can be farmer inclusive and tailored to local contexts as part of CIMMYT’s sustainable intensification strategy for Latin America.

Sustainable intensification aims to enhance the productivity of labor, land and capital. They offer the potential to simultaneously address a number of pressing development objectives, including unlocking the agricultural potential to adapt production systems to climate change, sustainably manage land, soil, nutrient and water resources, improved food and nutrition security, and ultimately reduce rural poverty.

CIMMYT principal researcher Carolina Camacho studies how innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages.
CIMMYT principal researcher Carolina Camacho studies how agricultural innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages. Photo: CIMMYT/ Courtesy of Carolina Camacho

Smallholder farmers, who manage small plots of land and handle limited amounts of productive resources, produce 80 percent of the world’s food. The United Nations calls on these farmers to adopt agricultural innovations in order to sustainably increase food production and help achieve the “Zero Hunger” U.N. Sustainable Development Goal. However, these farmers seldom benefit from new techniques to shore up efforts to meet the goal.

“An agricultural scientist can tell a farmer when and how to plant for optimal results, but they do not farm in a bubble, their practice is affected by the ups and downs of daily life – not only by climate and agronomy but also by social and cultural complexities,” Camacho said.

“One of the biggest challenge is to recognize the heterogeneity of farmers and leave behind the idea of one size solution to their diverse problems and needs,” said Camacho. By understanding a farmer’s lifestyle, including access to resources and information, levels of decision making in the community and the role of agriculture in their livelihood strategy, researchers can best identify complementary farming practices and techniques that not only boost productivity but also improve livelihoods.

“It’s important to think about agricultural innovations as social processes for change in which technologies, like improved seeds or agronomic practices, are only one element,” said Camacho. “It is key that we recognize that changes will not only occur in the farmer’s field but also in the behavior of other actors in the value chain, such as input suppliers, traders, government officials and even researchers.”

Camacho studies how innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages.

When working with indigenous communities, she ensures cultural values of the milpa system are taken into account, thus promoting the agricultural tools and techniques that do not detract from the importance of the traditions associated with the milpa practice.

“The milpa system is a clear example of how agriculture in general and maize in particular contribute to the construction of the cultural identities of indigenous people. We should be aware of the consequences that innovations will have not only for environmental sustainability but also for the sustainability of the Mayan Culture,” she said.

“Let’s not forget, we can’t separate culture from agriculture,” Camacho finished.

 

Camacho studies the process in which researchers promote agricultural innovations and how farmers adopt them through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, supported by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA). Together with other researchers, Camacho has documented how MasAgro is promoting innovations in different regions of Mexico by responding to specific regional challenges and opportunities. Currently she is supporting scaling efforts for these innovations by ensuring that they will be sustainable and inclusive.

In the same line of inclusiveness, Camacho is working with two projects in the milpa system. The first one is the Buena Milpa project funded by U.S. Agency for International Development’s Feed the Future program and in collaboration with the Guatemala Agricultural Science and Technology Institute. The second one is the Milpa de Yucatan project sponsored by a private Mexican foundation in Yucatan Peninsula. Both projects promote sustainable intensification innovations in the milpa systems.

 

 

New Publications: Biological control program brings long-term benefits to pest resistance

A young maize tassel is opened up to reveal stem borers hidden inside, and damage caused by their feeding, in a farmer's field in Embu district, Kenya. Stem borers are a class of insect pest, made up of a number of moth species distributed around the world, which lay their eggs at night on the underside of emerging leaves of young maize plants. The larvae, or caterpillars, that hatch from the eggs - i.e. the borers - quickly make their way inside the plant, where they feed undisturbed by predators. Young larvae feed on foliar tissue in the whorl, leading to perforations in unfolding leaves, and potential destruction of the growing point, while older larvae burrow into the stem, where they starve the growing plant of nutrients and can cause lodging. They feed extensively on tassels, ears, and stems. Borers' stealthy habits make them one of the most damaging pests for maize in Africa, and yet virtually invisible to farmers, who tend to attribute the damage to their crops to more visible pests. “Many farmers in Kenya don’t even know their maize fields have a stem borer problem, yet these insects cost them some 400,000 tons in lost harvest each year,” says CIMMYT maize breeder Stephen Mugo. Chemical pesticides can control borers, but must be applied soon after planting, and are difficult for resource-poor farmers to afford. “Even farmers who know about stem borers only notice the damage after it’s too late for chemical control. A seed-based technology is what we need,” says Mugo. In ongoing research, CIMMYT is collaborating with the Kenya Agricultural Research Institute (KARI) to develop maize varieties that are resistant to stem borers, and to disseminate these to resource-poor smallholder farmers. “Maize that resists stem borer damage would take the guesswork out of stem borer pesticide usage by eliminating it altogether,” says Mugo. The work is part of the Insect Resistant Maize for Africa (IRMA) project. For more information about stem borers in Kenya and CIMMY
A young maize tassel is opened up to reveal stem borers hidden inside, and damage caused by their feeding, in a farmer’s field in Embu district, Kenya. Photo: CIMMYT

MEXICO CITY (CIMMYT) – A new review of a biological control (BC) program for control of stem borers implemented from 1993 to 2008, in an effort to reduce cereal yield losses due to stemborer attacks in East and Southern Africa, highlights the potential for BC programs to lift a large number of people out of poverty and create greater returns for consumers and producers.

In 1993 the International Centre of Insect Physiology and Ecology program released four biological control agents to control the economically important stem borer pests Busseola fusca, Chilo partellus and Sesamia calamistis. Two of the natural enemies that were released were established and spread throughout the region. The researchers used an economic surplus approach, using bio-agents related data and market data from Kenya, Mozambique and Zambia, to determine the benefits of BC for producers and consumers.

More than 135,000 people were estimated to be lifted out of poverty annually due to the BC intervention, contributing an aggregate monetary surplus of $1.4 billion to the economies of the three countries, with 84 percent from maize production. The study also found that BC research and intervention is very efficient, with an internal rate of return of 67 percent – compared to the considered discount rate of 10 percent – and an estimated benefit-cost ratio of 33:1.

The authors of the study argue that these successful findings underscore the need for increased investment in BC research to sustain cereal production and improve poor living conditions.

Learn more about the study “Assessing the long-term welfare effects of the biological control of cereal stemborer pests in East and Southern Africa: Evidence from Kenya, Mozambique and Zambia” and check out other new publications from CIMMYT scientists, below.

  • Access to safe drinking water and human health: empirical evidence from rural Bhutan. 2016. Dil Bahadur Rahut, Ali, A., Nar Bahadur Chhetri Behera, B., Pradyot Ranjan Jena. In: Water Science and Technology. Vol. 16, no. 5, p. 1349-1360.
  • Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria. 2016. Awotide, B. A., Karimov, A., Diagne, A. In: Agricultural and food economics. Vol. 4, no. 3.
  • Agrobiodiversity: prospects for a genetic approach to In situ conservation of crop landraces. 2016. Qualset, C.O., Castillo-Gonzales, F., Morgounov, A.I., Keser, M., Ozdemir, F. In: Indian Journal of Plant Genetic Resources. Vol. 29, issue 3, p. 278-280.
  • An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. 2016. Yongping Zhao, Congsheng Zhang, Wenwen Liu, Wei Gao, Changlin Liu, Gaoyuan Song, Wen-Xue Li, Long Mao, Beijiu Chen, Yunbi Xu, Xinhai Li, Chuanxiao Xie. In: Nature Scientific reports. 2016., vol.6, no. 23890.
  • Assessing the long-term welfare effects of the biological control of cereal stemborer pests in East and Southern Africa:  Evidence from Kenya, Mozambique and Zambia. 2016. Midingoy, S. G., Affognon, H. D. Macharia, I. Ong’amo, G. Abonyo, E. Ogola, G. De Groote, H. LeRu, B. In: Agriculture, Ecosystems and Environment. Vol. 23, p. 10-23.
  • Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. 2017. Cheng Xu, Yonghong Ren, Yinqiao Jian, Zifeng Guo, Zhang Yan, Chuanxiao Xie, Junjie Fu, Hongwu Wang, Guoying Wang, Yunbi Xu, Zhang Li-Ping, Cheng Zou. In: Molecular Breeding. Vol.37, no.20, p.1-12.
  • Development of a multiple-hybrid population for genome-wide association studies: theoretical consideration and genetic mapping of flowering traits in maize. 2017. Hui Wang, Cheng Xu, Xiaogang Liu, Zifeng Guo, Xiaojie Xu, Shanhong Wang, Chuanxiao Xie, Wen-Xue Li, Cheng Zou, Yunbi Xu. In: Nature Scientific reports. Vol.7, no. 40239.
  • Elite Haplotypes of a Protein Kinase Gene TaSnRK2.3 associated with important agronomic traits in Common Wheat. 2017. Lili Miao, Xinguo Mao, Jingyi Wang, Zicheng Liu, Bin Zhang, Weiyu Li, Xiaoping Chang, Reynolds, M.P., Zhenhua Wang, Ruilian Jing. In: Frontiers in Plant Science. v.8, no.368.
  • Evaluation of the APSIM model in cropping systems of Asia. 2017. Gaydon, D.S., Singh, B., Wang, E., Poulton, P.L., Ahmad, B., Ahmed, F., Akhter, S., Ali, I., Amarasingha, R., Chaki, A.K., Chen, C., Choudhury, B.U., Darai, R., Das, A., Hochman, Z., Horan, H., Hosang, E.Y., Vijaya Kumar, P., Khan, A.S.M.M.R., Laing, A.M., Liu, L., Malaviachichi, M.A.P.W.K., Mohapatra, K.P., Muttaleb, M.A., Power, B., Radanielson, A.M., Rai, G.S., Rashid, M.H., Rathanayake, W.M.U.K., Sarker, M.M.R., Sena, D.R., Shamim, M., Subash, N., Suriadi, A., Suriyagoda, L.D.B., Wang, G., Wang, J., Yadav, R.K., Roth, C.H. In: Field Crops Research. Vol.204, p.52-75.
  • Farmers’ prioritization of climate-smart agriculture (CSA) technologies. 2017. Khatri-Chhetri, A., Aggarwal, P.K., Joshi, P.K., Vyas, A.K. In: Agricultural Systems. Vol.151, p.184-191.

 

New Publications: Consumer preference for GM food in Pakistan

A day laborer in Islamabad, Pakistan pauses from his work of harvesting wheat by hand. Photo: A. Yaqub/CIMMYT
A day laborer in Islamabad, Pakistan pauses from his work of harvesting wheat by hand. Photo: A. Yaqub/CIMMYT

MEXICO CITY (CIMMYT) – While genetically modified (GM) foods continue to be a topic of debate in much of the developed world, few studies have focused on consumers’ acceptance of GM food in developing countries.

A new study from researchers at the International Maize and Wheat Improvement Center (CIMMYT) used a comprehensive primary dataset collected from 320 consumers in 2013 from Pakistan to analyze the determinants of consumer acceptability of GM foods in the country.

The researchers found that GM foods were more accepted among female consumers as compared to male consumers. In addition, older consumers were more willing to accept GM food compared to young consumers. The acceptability of GM foods was also higher among wealthier households. Low price is the key factor leading to the acceptability of GM foods.

Read the full study “Acceptability of GM Foods among Pakistani Consumers” here and check out other new publications from CIMMYT staff below.

  • A study of allelic diversity underlying flowering-time adaptation in maize landraces. 2017. Romero Navarro, J. A., Wilcox, M. Burgueño, J. Romay, C. Swarts, K. Trachsel, S. Preciado, E. Terron, A. Vallejo, H. Vidal, V. Ortega, A. Espinoza Banda, A. Gomez, N. Ortiz-Monasterio, I. San Vicente, F.M. Guadarrama, A. Atlin, G.N. Wenzl, P. Hearne, S. Buckler, E. In: Nature genetics, vol. 49, p. 476-480. http://www.nature.com/ng/journal/v49/n3/full/ng.3784.html
  • Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem. 2017. Parihar, C.M., Jat, S.L. Singh, A.K. Majumdar, K. Jat, M.L. Saharawat, Y.S. Pradhan, S. Kuri, B.R. In: Energy, vol.119, p.245-256. http://www.sciencedirect.com/science/article/pii/S0360544216318746
  • Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. 2017. Rutkoski, J., Poland, J. Mondal, S. Autrique, E. Gonzalez-Perez, L. Reynolds, M.P. Singh, R.P. Crossa, J. In: G3, vol. 7, no. 2. http://www.g3journal.org/content/suppl/. 2016./07/06/g3.116.032888.DC1
  • Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. 2017. Maiorano, A., Martre, P. Asseng, S. Ewert, F. MĂŒller, C. Rotter, R. Ruane, A.C. Semenov, M.A. Wallach, D. Wang, E. Alderman, P.D. Kassie, B.T. Biernath, C. Basso, B. Cammarano, D. Challinor, A.J. Doltra, J. Dumont, B. Eyshi Rezaei, E. Gayler, S. Kersebaum, K.C. Kimball, B.A. Koehler, A.K. Bing Liu O’Leary, G.J. Olesen, J.E. Ottman, M.J. Priesack, E. Reynolds, M.P. Stratonovitch, P. Streck, T. Thorburn, P.J. Waha, K. Wall, G.W. White, J.W. Zhigan Zhao Zhu, Y. In: Field Crops Research, vol.202, p.5-20. http://www.sciencedirect.com/science/article/pii/S0378429016301368
  • A genomic bayesian multi-trait and multi-environment model. 2016. Montesinos-Lopez, O.A., Montesinos-LĂłpez, A. Toledo, F.H. PĂ©rez-HernĂĄndez, O. Eskridge, K. Rutkoski, J. Crossa, J. In: G3, vol.6, p.2725-2744. http://www.g3journal.org/content/early/. 2016./06/23/g3.116.032359.full.pdf+html
  • A hierarchical bayesian estimation model for multienvironment plant breeding trials in successive years. 2016. JarquĂ­n, D., Perez-Elizalde, S. Burgueño, J. Crossa, J. In: Crop Science, vol. 56, p. 1-17. https://dl.sciencesocieties.org/publications/cs/abstracts/56/5/2260?search-result=1
  • A predetermined proportional gains eigen selection index method. 2016. Ceron Rojas, J.J., Toledo, F.H. SahagĂșn-Castellanos, J. Crossa, J. In: Crop Science, vol.56, p.1-12. https://dl.sciencesocieties.org/publications/cs/abstracts/56/5/2436
  • ABCs of diversifying information resources among rice smallholders of Ghana. 2016. Misiko, M., Halm, E. In: The Journal of Agricultural Education and Extension, vol.22, no.3, p.271-289. http://dx.doi.org/10.1080/1389224X.2015.1038281
  • Acceptability of GM Foods among Pakistani Consumers. 2016. Ali, A., Dil Bahadur Rahut Imtiaz, M. In: Forests, Trees and Livelihoods, vol.7, no.2. http://www.tandfonline.com/doi/full/10.1080/21645698.2016.1211216?scroll=top&needAccess=true

New Publications: Wheat stem rust resistance identified in Kazakhstan and Russia

Examining Ug99 stem rust symptoms on wheat. Photo: Petr Kosina/CIMMYT
Examining Ug99 stem rust symptoms on wheat. Photo: Petr Kosina/CIMMYT

EL BATAN, Mexico (CIMMYT) – Stem rusts have proven to be a challenge to wheat farmers in Kazakhstan and Russia, particularly with higher rainfall in recent years.

Western Siberia in Russia and northern Kazakhstan grow more than 15 million hectares (ha) of wheat, and is expected to have an important impact on global food security as part of the “Eurasian wheat belt” – the only region in the world with a significant amount of uncultivated arable land that is at the same time experiencing rising agricultural productivity.

Wheat stem rust disease is highly mobile and has the capacity to turn a healthy looking crop, only weeks away from harvest, into nothing more than a tangle of black stems and shriveled grains at harvest. Stem rust was not considered a threat until 2015, when a local epidemic occurred in Russia and neighboring areas of Kazakhstan, affecting more than 1 million ha. It occurred again in 2016 though the spread, severity and losses were less.

In response, scientists at the International Maize and Wheat Improvement Center (CIMMYT) with partners characterized a set of 146 spring wheat varieties and breeding lines identified as stem rust resistant in Kenya and the Kazakhstan–Siberia region for the presence of major genes. Over nine genes with resistance were identified, and adult plant resistance to stem rust was observed in 26 genotypes.

Learn more about the study “Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99” and check out other new publications from CIMMYT staff, below.

  • Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem. 2017. Parihar, C.M.; Jat, S.L.; Singh, A.K.; Majumdar, K.; Jat, M.L.; Saharawat, Y.S.; Pradhan, S.; Kuri, B.R. Energy 119 : 245-256.
  • From stakeholders’ narratives to modelling plausible future agricultural systems. Integrated assessment of scenarios for Camargue, Southern France. 2017. Delmotte, S.; Couderc, V.; Mouret, J.C.; Lopez-Ridaura, S.; Barbier, J.M.; Hossard, L. European Journal of Agronomy 82 : 292-307.
  • Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. 2017. Ritzema, R.S.; Frelat, R.; Douxchamps, S.; Silvestri, S.; Rufino, M.C.; Herrero, M.; Giller, K.E.; Lopez-Ridaura, S.; Teufel, N.; Paul, B. ; Wijk, M.T. van. Food Security 9 (1) : 115–131.
  • Planting date and yield benefits from conservation agriculture practices across Southern Africa. 2017. Nyagumbo, I.; Mkuhlani, S.; Mupangwa, W.; Rodriguez, D. Agricultural Systems 150 : 21-33.
  • Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential. 2017. Krupnik, T.J.; Schulthess, U.; Zia Ahmed; McDonald, A. Land Use Policy 60 : 206-222.
  • Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii. 2016. Kalia, B.; Wilson, D.L.; Bowden, R.L.; Singh, R.P.; Gill, B. Genetic Resources and Crop Evolution. Online First.
  • Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. 2016. Fetch, T.G.; Zegeye, T.; Park, R.F.; Hodson, D.P.; Wanyera, R. Plant Disease 100 (7) : 1495.
  • Disease impact on wheat yield potential and prospects of genetic control. 2016. Singh, R.P.; Singh, P.K.; Rutkoski, J.; Hodson, D.P.; Xinyao He; Jorgensen, L.N.; Hovmoller, M.S.; Huerta-Espino, J. Annual Review of Phytopathology 54 : 303-322.
  • Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. 2016. Shamanin, V.; Salina, E.; Wanyera, R.; Zelenskiy, Y.; Olivera, P.; Morgounov, A.I. Euphytica 212 (2) 287-296.
  • Genome-wide association study in wheat identifies resistance to the cereal cyst nematode Heterodera Filipjevi. 2016. Pariyar, S.R.; Dababat, A.A.; Sannemann, W.; Erginbas-Orakci, G.; Elashry, A.; Siddique, S.; Morgounov, A.I.; Leon, J.; Grundler, F. Phytopathology 106 (10) : 1128-1138.

“Young Scientist Award” winner fights hidden hunger with high zinc wheat

Velu Govindan, a wheat breeder who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits, has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research. (Photo: Xochiquetzal Fonseca/CIMMYT)
Velu Govindan, a wheat breeder who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits, has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research. (Photo: Xochiquetzal Fonseca/CIMMYT)

EL BATAN, Mexico (CIMMYT) – A scientist who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research.

Velu Govindan, a wheat breeder from India working with the HarvestPlus project at the International Maize and Wheat Improvement Center (CIMMYT), received the award last week for high-yielding, nutritious wheat varieties tolerant to rust diseases and climate change-induced heat and drought stress.

“I’m so honored,” said Govindan. “It’s a terrific vote of confidence for the work we’re doing at CIMMYT and through HarvestPlus to develop nutritious staple crops that significantly reduce hidden hunger and help millions of people lead better, more productive lives in the global south.”

CIMMYT scientists tackle micronutrient deficiency or “hidden hunger” by biofortifying crops to boost nutrition in poor communities where nutritional options are unavailable, limited or unaffordable. About 2 billion people worldwide suffer from hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The wheat component of HarvestPlus, which is part of the Agriculture for Nutrition and Health program managed by the CGIAR global agricultural research project, involves developing and distributing wheat varieties with high zinc levels.

Govindan has been actively involved in the recently released wheat variety Zinc Shakthi – meaning “more power” – which has been adopted by some 50,000 smallholder farmers in India. In addition, two new varieties are projected soon to be widely adopted throughout the fertile northwestern Indo-Gangetic Plains of India.

“We’ve released ‘best bet’ varieties in India and Pakistan to ensure fast-track adoption of high zinc wheat,” Govindan said. “Farmers are adopting it, not only for its nutritional benefit, but also for its superior agronomic features like competitive yield, rust resistance and other farmer preferred traits.”

Before joining CIMMYT eight years ago, Govindan worked at the International Crops Institute for the Semi-Arid Tropics (ICRISAT), where he initiated the development of an iron-rich pearl millet called Dhanashakti – meaning “prosperity and strength” – which was commercialized in 2012 in the Indian state of Maharashtra, where it is now used by more than 100,000 smallholder farmers.

In addition to his primary responsibility of breeding nutrient-rich wheat varieties, Govindan works with the Global Wheat Program’s spring wheat breeding team at CIMMYT. The spring bread wheat program develops high yielding and climate resilient varieties, which are distributed to more than 80 countries in the wheat growing regions of the developing world.

Through its annual awards ceremony, the Society for Plant Research, which has also produced the international journal Vegetos since 1988, recognizes individual contributions from across a broad spectrum of plant-based research, including agriculture, biotechnology, industrial botany and basic plant sciences.

Stronger African seed sector to benefit smallholder farmers and economy

Good road networks to facilitate smallholders to access agricultural and seed markets is critical for higher food production both for consumption and investment. Source: CIMMYT
Good road networks to facilitate smallholders to access agricultural and seed markets is critical for higher food production both for consumption and investment. Above, the distance that it takes for most smallholder farmers in Mozambique to access different supply chain services. Source: CIMMYT

NAIROBI, Kenya (CIMMYT) – Africa’s agriculture sector is driven by smallholder farmers who also account for 70 percent of people directly reliant on agriculture for their livelihoods. Despite its large-scale impact across the continent, smallholder farming  largely remains a low technology, subsistence activity.

Constructively engaging smallholders as investors as well as producers can help attract better investment into the sector, engaging farmers to produce bigger crops for sale rather than only for consumption at the household level. To achieve this goal, bigger financial investments are required to raise the standard of engagement and consequently that of Africa’s agricultural sector, according to Paswel Marenya, a social scientist who works with the International Maize and Wheat Improvement Center (CIMMYT),

Three recent studies conducted by CIMMYT scientists and their collaborators in eastern and southern Africa assessed potential interventions to address current inefficiencies in seed supply chains. They also explored how low purchasing power has hobbled smallholders trying to gain access to maize and legume seed markets. Even though these markets have recently expanded as more private companies invest in maize and legume businesses, smallholders have not benefited despite their significant role in the sector.

A key component of improving agricultural practices is to bolster seed systems to give smallholders better access to high-yielding, stress tolerant seeds. For example, in Tanzania, a weak seed supply chain led to smallholders recycling hybrid maize seeds up to three years in a row in some cases. The main source of legume seeds was often from seed saved from previous harvest.

Elsewhere, in Mozambique, smallholders surveyed were accessing only three improved varieties in 2014 despite the release of over 30 improved maize and legume varieties that year. In a country where 95 percent of the population is dependent on maize and legumes, which particularly for rural families provide the most important source of proteins, deep changes are needed to facilitate access to improved seeds.

The studies determined that ineffective seed distribution contributed significantly to limiting smallholder access to improved varieties. Additionally, low seed production from the few approved seed companies in the country has worsened the situation due to soaring costs, putting improved seed beyond the reach of millions of smallholders.

As a result, approximately 70 percent of Mozambican farmers use local maize varieties with poor resistance to pests and diseases and low productivity potential.

To address these issues, the studies unanimously recommend investments in rural roads to connect isolated communities with agricultural and seed markets and to make it more cost effective for seed distributors to reach far flung communities. Secondly, investments in storage facilities in Mozambique and a more effective national seed system are needed to facilitate adequate foundation seed for seed companies. In addition to favorable policies that attract more private seed and fertilizer companies, a stronger public agricultural extension system is required.

On a broader scale, government policymakers must take advantage of the burgeoning seed sector and  mushrooming interest from private sector players.

“Regulatory agencies in the seed sector should take up a bigger role to facilitate and encourage competition that will widen seed access and bring down seed costs,” Marenya said. “This is the most sustainable solution that ensures the private sector is involved, farmers drive seed demand, and profit prospects are good.”

Rising food demand and projected growth of African food markets present a real opportunity for African farmers, Marenya added. In 2011, for example, sub-Saharan Africa imported $43 billion worth of such basic agricultural commodities as wheat, rice, maize, vegetable oil and sugar. Additionally, research estimates from Germany’s Deutsche Bank show that urban food markets will quadruple and that food and beverage markets are projected to grow to about $1 trillion by 2030 leading to bigger economic benefits overall.

While staple crop markets in the eastern and southern Africa region are relatively vibrant, many farmers gain access to these markets through informal links. Structured value chains, which include dependable and transparent information systems, quality storage facilities and supportive financial or credit services would enhance farmers’ role in the markets.

“Real change will occur when efforts be made to enable farmers and traders to profitably invest in superior pre- and post-harvest quality management as well as engage in contract-based supply chains to exploit opportunities brought about by increasing urbanization and trade,” Marenya said.

Read more about the three studies:

Scientists tackle deadly fall armyworm infestation devastating maize in southern Africa

A stakeholders consultation meeting co-organized by the Alliance for a Green Revolution in Africa, The FAO Subregional Office for Southern Africa and CIMMYT on the Fall Armyworm in Africa will be held April 27 and 28, 2017 in Nairobi, Kenya. Delegates will discuss status and strategy for effective management.

NAIROBI, Kenya (CIMMYT) – Smallholder farmers in eastern and southern Africa are facing a new threat as a plague of intrepid fall armyworms creeps across the region, so far damaging an estimated 287,000 hectares of maize.

Since mid-2016, scientists with the International Maize and Wheat Improvement Center (CIMMYT) and national agricultural research partners have been monitoring reports of sightings of the fall armyworm in Kenya, Tanzania and Uganda. Surveys conducted in farmers’ fields last year confirmed its presence in Kenya. The threat of the pest spreading into other eastern Africa countries is a significant risk due to similar planting seasons across the region.

To date, Zambia has confirmed reports that almost 90,000 hectares of maize have been affected, Malawi reports some 17,000 hectares have been hit, Zimbabwe reports a potential 130,000 hectares affected, while in Namibia, approximately 50,000 hectares of maize and millet have been damaged, according to the Food and Agriculture Organisation (FAO) of the United Nations.

FAO hosted an emergency meeting in Harare, Zimbabwe, last week to determine the best possible ways to manage the pest, which is native to the Americas and was first reported in Africa in January 2016.

In consultation and closely aligned with national partners in eastern and southern Africa, CIMMYT advises that Integrated Pest Management (IPM) is the best possible solution to effectively tackle the pest in both the short and long term.

A range of measures, including host plant resistance, chemical control, pheromone traps, biological control, habitat management, intercropping with legumes and diversification of farming systems can be effective. Fall armyworm infestations have been reduced by 20 to 30 percent on maize intercropped with beans compared to maize alone, research shows.

Maize plants damaged by fall armyworm in a farmer's field in southern Malawi in Balaka District. CIMMYT/Christian Thierfelder
Maize plants damaged by fall armyworm in a farmer’s field in southern Malawi in Balaka District. CIMMYT/Christian Thierfelder

“Urgent collaborative efforts from CGIAR centers, national research partners and other research and development institutions in Africa must be deployed to design and develop an integrated pest management strategy, which can provide sustainable solutions to effectively tackle the adverse effects of the fall armyworm,” said Martin Kropff, CIMMYT’s director general. “The strategy should also include early warning systems that track the movements of the pest.”

“Scientists at CIMMYT are currently researching available breeding resources characterized with potential resistance to fall armyworm and screening elite maize germplasm to identify possible sources of resistance,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE. “Maize lines with partial resistance to fall armyworm were developed in the past, but the work was not scaled-up given the need to focus breeding programs on other high priority traits, including drought tolerance, heat tolerance, and resistance to major diseases, such as maize lethal necrosis (MLN).”

“Breeding for fall armyworm resistant elite maize hybrids adapted to sub-Saharan Africa would require intensive germplasm screening and collaborative work with public and private sector partners,” Prasanna added, explaining that CIMMYT can mobilize its vast germplasm resources as well as modern breeding tools to speed up the breeding process, in a similar manner to the efforts being undertaken to tackle the menace of MLN in eastern Africa.

ArmywormImage
Graphic designed by Gerardo Mejia/CIMMYT

Why is the Fall Armyworm so destructive?

The fall armyworm – Spodoptera frugiperda – was first reported on the African continent in Nigeria. It subsequently appeared across parts of West and Central Africa, before extensively invading farmers’ fields in southern Africa in December 2016. The destructive activities of the fall armyworm have only served to add to devastation caused by the native African armyworm (Spodoptera exempta) and severe drought caused by an El Nino weather system in 2015-2016.

The larvae of the pest proliferate mainly due to wind dispersal and on host plants from eggs laid by moths. The pest can cause crop losses of up to 73 percent and once it is at an advanced larval development stage can become difficult to control with pesticides.

In the United States, the fall armyworm ranks second among seven of the most damaging agricultural pests leading to significant economic losses both on crops and wild plant species. A study estimates that total losses in the United States range from $39 million to $297 million annually and that related annual maize yield loss is 2 percent.

How the pest was introduced in Africa from its native habitat in the Americas is unclear. However, such invasive pests as the fall armyworm are known to cross continents either through infested commercial grain or through jet streams across oceans. Many fall armyworm moths have been collected in the Gulf of Mexico as far as 250 km from land, indicating the possibility of seasonal trans-Gulf migration between the United States and the tropics.

“We need to understand better the behavioral ecology of the fall armyworm in the Africa context. How it breeds, travels and feeds on crops, as this is critical for effectively managing the devastation this pest can cause and its major risk to food security,” Martin Kropff cautioned.

It is particularly hard to control, as the moths are strong flyers, breed at an exponential rate, and the larvae can feed on a wide variety of plant species. In addition, it can quickly develop resistance to pesticides if they are not used judiciously. The larvae burrow into the growing point of the maize plants and destroy the growth potential of plants or clip the leaves. They also burrow into the ear and feed on kernels.

CIMMYT scientists respond to some Frequently Asked Questions (FAQs) regarding fall armyworm:

Q: Is the presence of fall armyworm confirmed in Kenya?

A: Yes. A survey carried out from June to August 2016 in Embu and Kisii counties showed fall armyworm infestation. Although the infestation is still low in comparison to other parts of the region, the situation could change. Scientists from the University of Nairobi also reported sightings of fall armyworm maize damage in Machakos County. Anani Bruce, CIMMYT Maize Entomologist, Nairobi, Kenya

Q: Does CIMMYT have fall armyworm-resistant maize varieties?

A: We do have a few CIMMYT maize inbred lines that can potentially offer partial resistance to the fall armyworm, but intensive breeding efforts are needed to identify more sources of resistance and to develop Africa-adapted improved maize hybrids with resistance to fall armyworm, including other relevant traits required by smallholders in the continent. B.M Prasanna, director of CIMMYT’s Global Maize Program & CGIAR Research Program MAIZE.

Q: There are reports of transgenic maize with resistance to fall armyworm; has this been confirmed?

A: A transgenic maize trial (under Confined Field Trials) was attacked by the fall armyworm in Namulonge and Kassesse (Uganda) during the first and second cropping seasons in 2016. The MON810 Bt maize entries showed resistance to the fall armyworm compared to non-transgenic maize materials. This however, needs to be further confirmed through additional experiments. Anani Bruce, CIMMYT Maize Entomologist

(Editing by Julie Mollins)

Pakistan releases first quality protein maize varieties

Field evaluation of QPM hybrids by team of experts in Harappa, Punjab. Photo: M. Waheed Anwar
Field evaluation of QPM hybrids by team of experts in Harappa, Punjab. Photo: M. Waheed Anwar

ISLAMABAD (CIMMYT) – For the first time, Pakistan will release quality protein maize (QPM) varieties for commercial consumption, which could help boost nutrition across the country where nearly half of all children are chronically malnourished.

In January 2017, Pakistan’s maize variety evaluation committee approved QPHM200 and QPHM300, two QPM hybrids, for large-scale cultivation in Pakistan. Developed by the International Maize and Wheat Improvement Center (CIMMYT) in Colombia and evaluated and selected in Pakistan by the National Agricultural Research Center (NARC), these QPM hybrids can potentially yield up to 15 tons per hectare (ha) – over three times the national average – and can be provided to farmers for less than half the price of currently imported hybrid seeds.

Field evaluation of QPHM200 at Rawalakot, AJK, Pakistan. Photo: Muhammad Ashraf/NARC
Muhammad Hafiz (left) inside his QPHM300 field. Photo: M. Waheed Anwar

Maize is Pakistan’s third most important cereal following wheat and rice, producing one of the highest average grain yields in South Asia. While the majority of Pakistan’s maize is used for poultry feed, it is a major food source in Khyber Pakhtunkhwa, Gilgit Baltistan and the territories of Azad Jammu and Kashmir (AJK). These areas experience some of the highest rates of child malnutrition.

Normal maize is deficient in essential amino acids lysine and tryptophan, key protein building blocks that can’t be synthesized by human body and must be acquired from food sources. As a result, when human diets are comprised mainly of maize, consumers face a risk of malnutrition, particularly those with high protein requirements like young children, pregnant or lactating women. Conventionally bred QPM grain, which has been shown to improve nutritional status, has enhanced levels of lysine and tryptophan while the kernels have a favorable texture and flavor.

QPM was recently introduced to Pakistan through the CIMMYT-led Agricultural Innovation Program (AIP) in collaboration with national partners with support from the United States Agency for International Development. The commercialization of the two QPM hybrids was aimed at boosting nutrition by alleviating protein deficiency, particularly for low income communities where affording protein rich diets is difficult.

Field evaluation of QPHM200 at Rawalakot, AJK, Pakistan. Photo: Muhammad Ashraf/NARC
Field evaluation of QPHM200 at Rawalakot, AJK, Pakistan. Photo: Muhammad Ashraf/NARC

In addition, providing low cost feed like QPM to the poultry industry can also enhance the nutritional status of the country, an industry that is growing 8 to 10 percent annually.

“The taste of the cob is unique, it’s good quality,” said Muhammad Hafiz, a QPM grower from Pindi Bhattain area in central Punjab who participated in pre-commercialization trials of the hybrids.

The QPM hybrids were primarily selected based on their yield advantage. Farmers were open to adopting them since they performed better in many locations than normal commercial hybrids. The added benefit of quality protein will also help promote the hybrids while combating malnutrition.

The continued production of quality seed through retention of protein quality complemented by effective delivery mechanisms to farmers are important steps to scale up use of the hybrids. An active role by NARC and other value chain actors in Pakistan can help make seeds more easily accessible and available.

Radio broadcast highlights maize improvement in Pakistan

AIP maize radio talk show panelists. Photo: Amina Nasim Khan
AIP maize radio talk show panelists. Photo: Amina Nasim Khan

ISLAMABAD (CIMMYT) — Public and private sector maize stakeholders came together to discuss the International Maize and Wheat Improvement Center’s (CIMMYT) maize interventions and innovations in Pakistan during a recent radio talk show hosted by the Pakistan Broadcasting Corporation.

The radio talk show was organized by the United States Agency for International Development (USAID) and focused on maize development under the CIMMYT-led Agricultural Innovation Program (AIP), supported by USAID in collaboration with national partners. The Pakistan Broadcasting Corporation conducted the show in Urdu and English and aired it throughout the country.

One of the show panelists, Zahid Shafique, program leader from Pakistan’s National Agricultural Research Center, gave an overview of AIP’s interventions and expressed the hope that the program will help Pakistan develop affordable hybrid maize seed, which is currently sold for $6-8 per kilogram, one of the highest prices in South Asia.

Faisal Hayat, deputy manager of the seed company Jullundur Private Limited, noted that CIMMYT’s joint evaluation of hybrids and open-pollinated varieties (OPVs) with AIP maize partners has helped the private sector develop improved hybrids and OPVs that are better adapted to Pakistan’s diverse climates. Capacity building efforts to ensure quality seed production is key to ensuring the sustainability of AIP after its completion said Nazim Ali, an agricultural economist with USAID.

CIMMYT was represented by maize improvement and seed systems specialist AbduRahman Beshir, who briefed the panelists about the introduction and nationwide testing of diverse germplasm and the allocation of well adapted maize hybrids and OPVs to partners.

Ugandan farmer boosts profits from improved maize

Olum looks at the WE2115 variety that has transformed his microfinance business. Photo: B.Wawa/CIMMYT

LIRA, Uganda (CIMMYT) – Sam Olum started commercial maize farming three years ago in Lira District, situated approximately 340 km north of Uganda’s capital, Kampala.

As an out-grower, Olum owns and manages 25 acres of land, which he has been planting with hybrid maize for sale to seed companies. He was able to earn more profit using hybrid varieties, which yield more, and put this money into his microfinance business – Aninolal Investment Ltd.

A large number of seed companies in Africa use out-growers, also known as contract farmers, who ensure there will be supply for the companies’ agricultural products. Out-growers produce seed on their own land under contract with the seed company, and are guaranteed purchase of the produce.

Olum first came across hybrid maize two years ago when his uncle Gilbert Owuor introduced him to Otis Garden Seed Company that produces and markets improved drought tolerant varieties WE2114, WE2115, UH5051 and Longe 7H. Olum decided to invest his entire 25 acres of land on WE2115, and hasn’t looked back since.

“I have faithfully planted this variety for two years since it got into the market and the amount of yield I harvest each season is worth the money put into this work,” said Olum. Every season he planted WE2115 his farm was filled with at minimum 350 bags of 120 kg each.

His biggest praise for this variety is that it matures fast, the cobs are big and it is high yielding. In addition, given that Otis Garden Company provides Olum with a ready market for his produce, he is guaranteed a stable income that has transformed him into a successful businessman.

Returns from the WE2115 yield have enabled Olum to bolster his microfinance business that is now worth UGX 200 million (approximately $55,000).

Olum with his uncle Owuor who introduced him to the WE2115 variety, and James Olwi, seed production officer at Otis Garden Seed Company. Photo: B.Wawa/CIMMYT

“The profits from this variety have made a very big difference in my business,” Olum said. He has expanded his clientele beyond his hometown and now reaches farmers from other districts. “At the moment we loan out between 50 and 80 million shillings ($ 14,000 and 22,000) to about 200 farmers in Amolatar, Dokolo, Lira, Masindi and Oyam,” added Olum.

The interest of eight percent he charges on the loans is quite affordable for many farmers compared to the interest rates charged by other financial institutions that range from 12 to 15 percent. Besides supporting farmers, Olum has created job opportunities for 15 people employed full time at his company.

WE2115 along with 15 other improved drought tolerant varieties are reaching smallholders in Uganda through seed companies with access to breeding resources to produce these high yielding varieties. This has been made possible through close collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the African Agricultural Technology Foundation (AATF) and the National Agricultural Research Organisation (NARO).

WE2115 and other similar varieties are marketed under the brand name DroughtTEGO, currently grown in four other countries in Africa (Kenya, Mozambique, South Africa and Tanzania). In 2016, Uganda’s national variety release committee approved the release of an additional four DroughtTEGO varieties: WE1101, WE3103, WE3106 and WE3109, expected to get into the market by 2018.