Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Call for Nominees for the 2019 Maize Youth Innovators Awards – Latin America

Nominations are now open for the 2019 MAIZE Youth Innovators Awards – Latin America!

These awards are part of the efforts that the CGIAR Research Program on Maize (MAIZE) is undertaking to promote youth participation in maize agri-food systems. These awards recognize the contributions of young women and men under 35 who are implementing innovations in Latin American maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

Latin America is the birthplace of maize and home to much of its genetic diversity. Maize is a main staple food across the continent and plays an important role in local culture and gastronomy. However, maize faces many challenges, from climate change-related stresses such as drought and heat to emerging pests and diseases. These challenges cannot be solved without the participation of young people at all levels of the maize value chain, from farmers to researchers and change agents. Over one-fourth of Latin America’s total population is between the ages of 15 and 29 – approximately 156 million people, the largest proportion of young people ever in the region’s history. By encouraging and empowering young people to develop innovative solutions to these challenges we can strengthen maize agri-food systems and improve food security in Latin America and across the world.

The MAIZE Youth Innovators Awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems. Part of the vision is to create a global network of young innovators in maize-based systems from around the world.

Award recipients will be invited to attend the 23rd Latin American Maize Reunion (XXIII Reunión Latinoamericana del Maíz) in Monteria, Colombia October 7-10 where they will receive their awards and be given the opportunity to present their work. The project meeting and award ceremony will also allow these young innovators to network and exchange experiences with MAIZE researchers and partners. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Latin America on implementing or furthering their innovations.

MAIZE invites young innovators to apply and CGIAR researchers and partners to nominate eligible applicants for any of the following three categories:

  • Researcher: Maize research for development (in any discipline)
  • Farmer: Maize farming systems in Latin America
  • Change agent: Maize value chains (i.e., extension agents, input and service suppliers, transformation agents).

We ask nominators/applicants to take into account the following criteria and related questions:

  1. Novelty and Innovative Spirit: To which specific novel findings or innovation(s) has this young person contributed? (in any of the three categories mentioned above)
  2. Present/Potential Impact: What is the present/potential benefit or impact of the innovation(s) in maize-based agri-food systems?

To apply:

Applications should be submitted online, through the Application Form by July 22, 2019.

Key dates:

Opening date for nominations: June 19, 2019

Closing date for nominations: July 22, 2019

Notification of winners: August 6, 2019

NOTE:  Nominations received after the closing date will not be considered.

Additional information:

A PDF version of this Call for Nominees is available here.

Nomination/Application Guidelines can be found here.

The Application Form can be found here and is also available on the MAIZE and YPARD websites.

For any questions or issues, contact us at maizecrp@cgiar.org

This award is sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with YPARD (Young Professionals for Agricultural Development).

Honoring the life and legacy of Fred Palmer

Fred Palmer, former CIMMYT maize agronomist, in his office at Egerton University, Kenya, in 1994.

With sorrow we report the passing on June 14 of Anthony F. E. (Fred) Palmer, former maize agronomist and physiologist who contributed notably to the International Maize and Wheat Improvement Center (CIMMYT) networking and capacity building during crucial periods.

A British national, Palmer joined CIMMYT as a post-doctoral fellow in 1968 and retired from the center in 1996. With undergraduate studies in Agronomy at the University of Reading, Palmer completed masters and doctoral degrees in Crop Physiology at Cornell University. His early years at CIMMYT headquarters included work in maize physiology, agronomy and training.

In 1972 Palmer moved to Pakistan, serving as a production agronomist in that key Green Revolution setting until 1978, when he returned to Mexico as a training officer. “Fred was a true gentleman as a researcher and trainer,” said Stephen Waddington, retired CIMMYT maize agronomist who worked with Fred in Africa. “He was a mentor and friend to many junior CIMMYT staff, including myself, and countless trainees and visiting scientists from partner countries.”

Capitalizing on his experience and accomplishments, in 1985 CIMMYT posted Palmer to Nairobi, Kenya, as the team leader of the East African Cereal Project, funded by the Canadian International Development Agency (CIDA). During the project’s third phase, Palmer helped to establish and guide an entry-level crop management training program, in conjunction with the Kenya Agricultural Research Institute (KARI) and Egerton University, targeting maize researchers from eastern and southern Africa. Based at the university’s Njoro campus, the effort included construction of training facilities and guest rooms and Palmer successfully prepared Egerton administrators and faculty to take over the program, according to Joel Ransom, a North Dakota State University professor who served as a CIMMYT maize agronomist in Asia and sub-Saharan Africa.

“Scores of young agronomists mastered the fundamentals of on-farm research through that program,” Ransom said. “Palmer’s mentoring, training, and leadership greatly advanced the professional development of African maize and wheat scientists.”

Matthew Reynolds, CIMMYT distinguished scientist and wheat physiologist, recalls talking to Palmer about the latter’s efforts to apply fledgling tools for measuring photosynthesis in the field, a topic in which he had specialized at Cornell. “Fred was a very kind and unassuming man who treated everyone with respect, qualities that made him a great training officer and a well-regarded colleague,” said Reynolds.

Palmer firmly believed that national partners needed the capacity to train staff, particularly those fresh out of university studies, strengthening both their knowledge and professional linkages.

“By bringing young scientists together and working with them as a multidisciplinary research team,” Palmer wrote in a report on CIMMYT training in eastern and southern Africa, “it is anticipated that these scientists will learn to value each other’s work as essential to successful research.”

The CIMMYT community sends its warmest condolences to the Palmer family.

Modern wheat breeding benefits high- and low-input farmers, study shows

Farmer Gashu Lema’s son harvests improved variety “Kubsa” wheat, Gadulla village, Mojo, Ethiopia. (Photo: P. Lowe/CIMMYT/P. Lowe

A recent article in the journal Nature Plants validates the work of wheat breeders who produce yield-boosting varieties for farmers across a range of incomes and environments.

Based on a rigorous large-scale study spanning five decades of wheat breeding progress under cropping systems with low, medium and high fertilizer and chemical plant protection usage, the authors conclude that modern wheat breeding practices aimed at high-input farming systems have promoted genetic gains and yield stability across a wide range of environments and management conditions.

In other words, wheat breeding benefits not only large-scale and high-input farmers but also resource-poor, smallholder farmers who do not use large amounts of fertilizer, fungicide, and other inputs.

This finding underscores the efficiency of a centralized breeding effort to improve livelihoods across the globe – the philosophy behind the breeding programs of the International Maize and Wheat Improvement Center (CIMMYT) over the past 50 years.

It also contradicts a commonly held belief that breeding for intensive systems is detrimental to performance under more marginal growing environments, and refutes an argument by Green Revolution critics that breeding should be targeted to resource-poor farmers.

In a commentary published in the same Nature Plants issue, two CIMMYT scientists — Hans Braun, director of CIMMYT’s global wheat program and the CGIAR Research Program on Wheat, and Matthew Reynolds, CIMMYT wheat physiologist — note the significance of the study.

“Given that wheat is the most widely grown crop in the world, sown annually on around 220 million ha and providing approximately 20% of human calories and protein, the social and economic implications are large,“ they state.

Among other implications:

  • The study found that modern breeding has reduced groups of genes (haplotypes) with negative or neutral effects – a finding which will help breeders combine positive haplotypes in the future, including for hybrid breeding.
  • The study demonstrates the benefits of breeding for overall yield potential, which — given that wheat is grown over a wider range of environments, altitudes and latitudes than any other crop, with widely ranging agronomic inputs – has significant cost-saving implications.

Braun and Reynolds acknowledge that the longstanding beliefs challenged by this study have a range of influences, from concern about rural livelihoods, to the role of corporate agribusiness and the capacity of Earth’s natural resources to sustain 10 billion people.

While they welcome the conclusions as a validation of their work, they warn against seeing the study as “a rubber stamp for all things ‘high-input’” and encourage openness to new ideas as the need arises.

“If the climate worsens, as it seems destined to, we must certainly be open to new ways of doing business in crop improvement, while having the common sense to embrace proven technologies,” they conclude.

The case for rushing farmer access to BARI Gom 33

In 2016, the emergence of wheat blast, a devastating seed- and wind-borne pathogen, threatened an already precarious food security situation in Bangladesh and South Asia.

In a bid to limit the disease’s impact in the region, the Bangladesh Agricultural Research Institute (BARI) collaborated with the International Maize and Wheat Improvement Center (CIMMYT) and researchers from nearly a dozen institutions worldwide to quickly develop a long-term, sustainable solution.

The result is BARI Gom 33, a new blast-resistant, high-yielding, zinc-fortified wheat variety, which Bangladesh’s national seed board approved for dissemination in 2017. In the 2017-18 season, the Bangladesh Wheat Research Council provided seed for multiplication and the country’s Department of Agricultural Extension established on-farm demonstrations in blast prone districts.

However, the process of providing improved seed for all farmers can be a long one. In a normal release scenario, it can take up to five years for a new wheat variety to reach those who need it, as nucleus and breeder seeds are produced, multiplied and certified before being disseminated by extension agencies. Given the severity of the threat to farmer productivity and the economic and nutritional benefits of the seed, scientists at CIMMYT argue that additional funding should be secured to expedite this process.

According a new study on the economic benefits of BARI Gom 33, 58 percent of Bangladesh’s wheat growing areas are vulnerable to wheat blast. The rapid dissemination of seed can help resource-poor farmers better cope with emerging threats and changing agro-climatic conditions, and would play a significant role in combatting malnutrition through its increased zinc content. It could also have a positive effect on neighboring countries such as India, which is alarmingly vulnerable to wheat blast.

“Our simulation exercise shows that the benefits of disseminating BARI Gom 33 far exceed the seed multiplication and dissemination costs, which are estimated at around $800 per hectare,” explains Khondoker Mottaleb, CIMMYT socioeconomist and lead author of the study. Even in areas unaffected by wheat blast, scaling out BARI Gom 33 could generate a net gain of $8 million for farmers due to its 5 percent higher average yield than other available varieties. These benefits would nearly double in the case of an outbreak in blast-affected or blast-vulnerable districts.

More than 50 percent of Bangladesh’s wheat growing areas are vulnerable to wheat blast. (Source: Mottaleb et al.)

Based on these findings, the authors urge international development organizations and donor agencies to continue their support for BARI Gom 33, particularly for government efforts to promote the blast-resistant variety. The minimum seed requirement to begin the adoption and diffusion process in the 2019-20 wheat season will be 160 metric tons, which will require an initial investment of nearly $1 million for seed multiplication.

Read more study results and recommendations:
“Economic Benefits of Blast-Resistant Biofortified Wheat in Bangladesh: The Case of BARI Gom 33” in Crop Protection, Volume 123, September 2019, Pages 45-58.

This study was supported by the CGIAR Research Program on wheat agri-food systems (CRP WHEAT), the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Agriculture for Nutrition and Health (CRP-A4NH), and the HarvestPlus challenge program (partly funded by the Bill and Melinda Gates Foundation).

Annual Report 2018 launched

Read or download the full report in PDF format

Read the web version of the report

In 2018, CIMMYT continued to innovate and forge strategic alliances to combat malnutrition, tackle the effects of climate change and respond to emerging threats.

Building on the release of a new wheat genome reference map, our researchers more precisely tagged genes for valuable traits, including disease resistance, heat tolerance, and grain quality, in more than 40,000 CIMMYT wheat lines.

In collaboration with our partners, CIMMYT released 81 maize and 48 wheat varieties. More than 40,000 farmers, scientists and technical workers across the world took part in over 1,500 training and capacity development activities. CIMMYT researchers published 338 journal articles.

As the maize-hungry fall armyworm spreads from Africa to Southeast Asia, CIMMYT joined with more than 40 partners in an international consortium to advance research against the devastating insect pest.

CIMMYT used a scaling approach to extend the benefits of crop research to more farmers and consumers in developing countries in transformative and lasting ways. Smallholder farmers in Mexico, Pakistan and Zimbabwe are benefitting from the use of appropriate machinery and implements for efficient and climate-smart agriculture. A manual developed with the Food and Agriculture Organization (FAO) of the United Nations offers technical and business advice for local entrepreneurs offering mechanized services, such as sowing or threshing, to smallholder farmers.

As part of taste tests in Ethiopia, Kenya, and Tanzania, consumers indicated their willingness to pay a premium for quality protein maize (QPM), which contains enhanced levels of the amino acids needed to synthesize protein.

A CIMMYT-led study on gender has explored the lives and viewpoints of 7,500 men and women from farming communities in 26 countries, providing invaluable information that will lead to better productivity and food security.

2018 showed us that the passion and values of staff and partners help CIMMYT to have major impact on the livelihoods of smallholders and the poor. This Annual Report pays tribute to them.

Read or download the full report in PDF format

Read the web version of the report

 

Are high land rental costs pricing African youth out of agriculture?

A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)

A new study shows that youth can face higher land rental prices than older farmers in Tanzania and other parts of sub-Saharan Africa.

“The rising importance of land rental markets reflects increasing rural population densities in many parts of the continent,” said Jordan Chamberlin, an agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and study co-author.

“Evidence that the effective costs of rental market participation are relatively higher for younger farmers suggests that the markets are not yet mature,” Chamberlin explained. “This appears to stem partly from weak contract enforcement norms that make land rental arrangements more sensitive to trust and reputation. That puts younger farmers, who have not yet built up such social capital stocks, at a disadvantage.”

As many as three-quarters of Tanzanian youth are employed in agriculture, and with rural populations in Africa expected to rise over the next several decades, the region will experience an increasing scarcity of land relative to labor.

Young people today are already inheriting less land than previous generations and waiting longer to obtain the land they do inherit, according to the authors, who observe as one result a rising dependence on labor markets.

“Wage income’s importance will continue to rise in rural areas of sub-Saharan Africa, but policymakers should also foster equitable access to land for young agricultural entrepreneurs,” said Chamberlin.

The authors recommend measures such as tenant-landlord “matchmaking” programs, arrangements that encourage land sales by older farmers to younger farmers, and clarifying and simplifying regulations and procedures for title conversions and land purchases.

“Local governments may also share information about land rental rates for different areas, to provide a reference for rental negotiations,” added Chamberlain.

Read the study:
“Transaction Costs, Land Rental Markets, and Their Impact on Youth Access to Agriculture in Tanzania”

Seeds of progress

 

The maize seed sector in east and southern Africa is male-dominated. However, there are women working in this sector who are breaking social barriers and helping to improve household food security, nutrition and livelihoods by providing jobs and improved seed varieties to farmers.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies.

Millions at lower risk of vitamin A deficiency after six-year campaign to promote orange-fleshed sweet potato

A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)
A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)

STOCKHOLM, Sweden — Millions of families in Africa and South Asia have improved their diet with a special variety of sweet potato designed to tackle vitamin A deficiency, according to a report published today.

A six-year project, launched in 2013, used a double-edged approach of providing farming families with sweet potato cuttings as well as nutritional education on the benefits of orange-fleshed sweet potato.

The Scaling Up Sweetpotato through Agriculture and Nutrition (SUSTAIN) project, led by the International Potato Center (CIP) and more than 20 partners, reached more than 2.3 million households with children under five with planting material.

The project, which was rolled out in Kenya, Malawi, Mozambique and Rwanda as well as Bangladesh and Tanzania, resulted in 1.3 million women and children regularly eating orange-fleshed sweet potato when available.

“Vitamin A deficiency (VAD) is one of the most pernicious forms of undernourishment and can limit growth, weaken immunity, lead to blindness, and increase mortality in children,” said Barbara Wells, director general of CIP. “Globally, 165 million children under five suffer from VAD, mostly in Africa and Asia.”

“The results of the SUSTAIN project show that agriculture and nutrition interventions can reinforce each other to inspire behavior change towards healthier diets in smallholder households.”

Over the past decade, CIP and partners have developed dozens of biofortified varieties of orange-fleshed sweet potato in Africa and Asia. These varieties contain high levels of beta-carotene, which the body converts into vitamin A.

Just 125g of fresh orange-fleshed sweet potato provides the daily vitamin A needs of a pre-school child, as well as providing high levels of vitamins B6 and C, manganese and potassium.

Under the SUSTAIN project, families in target communities received nutritional education at rural health centers as well as cuttings that they could then plant and grow.

For every household directly reached with planting material, an additional 4.2 households were reached on average through farmer-to-farmer interactions or partner activities using technologies or materials developed by SUSTAIN.

The project also promoted commercial opportunities for smallholder farmers with annual sales of orange-fleshed sweet potato puree-based products estimated at more than $890,000 as a result of the project.

Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)
Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)

Perspectives from the Global South

The results of the initiative were published during the EAT Forum in Stockholm, where CGIAR scientists discussed the recommendations of the EAT-Lancet report from the perspective of developing countries.

“The SUSTAIN project showed the enormous potential for achieving both healthy and sustainable diets in developing countries using improved varieties of crops that are already widely grown,” said Simon Heck, program leader, CIP.

“Sweet potato should be included as the basis for a sustainable diet in many developing countries because it provides more calories per hectare and per growing month than all the major grain crops, while tackling a major nutrition-related health issue.”

At an EAT Forum side event, scientists highlighted that most food is grown by small-scale producers in low- and middle-income countries, where hunger and undernutrition are prevalent and where some of the largest opportunities exist for food system and dietary transformation.

“There are almost 500 million small farms that comprise close to half the world’s farmland and are home to many of the world’s most vulnerable populations,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Without access to appropriate technologies and support to sustainably intensify production, small farmers — the backbone of our global food system — will not be able to actively contribute a global food transformation.”

Matthew Morell, director general of the International Rice Research Institute (IRRI), added: “If the EAT-Lancet planetary health diet guidelines are to be truly global, they will need to be adapted to developing-world realities — such as addressing Vitamin A deficiency through bio-fortification of a range of staple crops.

“This creative approach is a strong example of how to address a devastating and persistent nutrition gap in South Asia and Africa.”


This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.


For more information or interview requests, please contact:

Donna Bowater
Marchmont Communications
donna@marchmontcomms.com
+44 7929 212 434

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweet potato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. CIP is a CGIAR research center. www.cipotato.org

CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services. Its research is carried out by 15 CGIAR centers in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

 

The recipe for better food systems

How food is produced, consumed, and how much is lost or wasted shapes the health of both people and planet. The EAT-Lancet Commission report, released in January 2019, brought together 30 interdisciplinary scientists from across the globe to propose a dietary pattern that meets nutritional requirements and promotes health but uses less environmental resources.

The report promotes diets consisting of a variety of plant-based foods, with low amounts of animal-based foods, refined grains, highly processed foods or added sugars, and with unsaturated rather than saturated fats.

The EAT Food Forum 2019 is taking place in Stockholm June 11-14, 2019. Natalia Palacios, maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT), will participate in a panel of agricultural research experts organized by CGIAR which will explore the implications of the EAT-Lancet report in the Global South, particularly for small farmers.

Palacios and her CIMMYT colleagues Santiago Lopez Ridaura, agronomist, and Jason Donovan, socioeconomist, got together for a conversation with CIMMYT editors to analyze how EAT-Lancet recommendations adapt to smallholder farmers’ realities.

Can nutrition bring the food system together?

Santiago Lopez Ridaura: Nutrition is the perfect setting to create system approaches to food. Nutrition involves everything: production quality, the genetics of the seed, input supply, output demand, as well as the purchasing power of farmers, dietary and cooking habits. It truly requires an interdisciplinary approach to look at food systems through a nutrition lens.

Natalia Palacios: We must stop thinking about the crop and think about the diet. Interdisciplinary and inter-institutional research is key to improve nutrition and agricultural sustainability in the context of smallholder farmers in Africa, Asia and Latin America.

Lopez-Ridaura: An economic analysis, a soil fertility study, or pest and disease breeding alone does not give us a holistic view of the food system. However, nutrition gives us the opportunity to have an integrated view. Equally, sustainability and avoiding food loss relate to all parts of the food system.

It’s a synergy of things. CIMMYT has been advocating for a systems approach to maize and wheat farming and nutrition, and sustainability fits right in with this.

Jason Donovan: It’s time to develop that dialogue, including specialists from different fields such as nutritionists, economists, agronomists, breeders and gender specialists when we investigate and form research questions on the health benefits and sustainability of our food systems and take holistic view of how all these things come together.

Palacios: A shift in our priority research is needed. It is important to integrate resilient production with nutrition. Focus only on productivity should no longer be the driver. We might not need big changes in the technologies and interventions, but we need to make sure nutrition and consumer demands are included.

There is no silver-bullet solution. You need to take action from different points, whether it is biofortified crops, intercropping for diversified diets or access to markets.

Is the EAT-Lancet report a recipe for a planetary diet?

Palacios: The report takes a global focus and is overwhelmingly targeted at high income nations. However, if we look at its five strategies, they are actually applicable for low- and middle-income countries as well: Seek international and national commitment to shift toward healthy diets; reorient agricultural priorities from producing high quantities of food to producing healthy food; sustainably intensify food production to increase high-quality output; strong and coordinated governance of land and oceans; and halve food losses at the production side and food waste at the consumption side.

CIMMYT scientists Natalia Palacios (left), Santiago Lopez-Ridaura (center) and Jason Donovan discuss the implications of a "planetary health diet" for producers and consumers in low- and middle-income countries. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientists Natalia Palacios (left), Santiago Lopez-Ridaura (center) and Jason Donovan discuss the implications of a “planetary health diet” for producers and consumers in low- and middle-income countries. (Photo: Alfonso CortĂ©s/CIMMYT)

Lopez-Ridaura: Rather than a recipe, the commission proposes a “reference healthy diet” that will need to be adapted to different regions and cultures. More importantly, the trajectories towards such diet will probably be very different, depending on the region and culture, the current dietary habits of the population, and the production systems they are based on.

In some cases, consumption of meat and sugars will need to decrease, but in other regions it might need to be increased. It all depends on the current situation.

Donovan: The report highlighted the sustainability issues around our food production. Although it was focused toward high-income countries who consume a lot of proteins. One of the big questions I had after reading it was the “how” question. In a lot of countries where we work — in Africa, Asia and Latin America — the consumption of meat is increasing at a rapid pace.

So, the question that struck me was how do these societies with fast rural and urban transformations, and an increasing taste for animal-based food products, fit into the context of the report? How can we promote plant-based diets in these contexts?

Adjusting their diets towards a universal healthy reference diet would be difficult as there is little room for maneuver.

Is adaptation the key to success?

Lopez-Ridaura: Yes, adaptation is needed and I think the EAT-Lancet Commission colleagues are well aware of that. The healthy reference diet needs to be seen as such, as a reference, with some basic principles regarding food quantity and quality as well as sustainable use of resources.

Each region, sub-region or even families and individuals will need to adapt their dietary habits and production systems in order to attain healthy diets and halt the degradation of the resource base.

Palacios: It is important to look at smallholder farmers in the context of diet and sustainable agriculture. We need to ask, what are they growing? How are they growing it? How are they eating it? What do they sell?

Quite often smallholder farmers are already using agricultural practices that improve their nutrition and benefit the environment. For example, look at the milpa farm system: it combines maize, beans, squash, chili, tomatoes and seasonal fruits to provide a diverse plant-based diet. The milpa system, combined with crop residue retention and other conservation agriculture techniques can improve soil fertility.

Latin American farmers also use the traditional nixtamalization technique to prepare maize grain for cooking, which improves its nutritional value. Farmers in Africa are adopting green manure cover crops grown with maize as a way to improve soil health, diversify household diets and provide a cash crop to be sold at markets.

It is important that these initiatives are promoted through national and local government policy and supported by the private sector if they are to have real impact on the health of people and the planet.

Donovan: Local policies to promote healthy diets and diversification in the field are being put in place — Latin America is a good example. However, this is not at a scale where it can have real impact on the health of people and environments. There is pressure on the private sector to respond, especially considering the increasing consumption of processed foods. It is important to engage with the private sector on issues of nutrition and sustainability.

Solutions will be at multiple levels when we look at nutrition and food systems. Too often the actors in a food system act alone, for example many NGOs, universities, and government programs. There needs to be unity in action — players need to work together as creators of holistic solutions. This is currently a gap, as many nutritionists do not look at agriculture or food systems. Addressing this can have a significant impact on the health of family farmers in Africa, Asia and Latin America.

This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.

Top shelf: Who has access to the healthiest processed foods?

In 2013, Mexico had the fourth highest sales of ultra-processed products worldwide. This is indicative of one of the most important changes in food systems in middle-income countries in recent years: the shift away from meals prepared at home with fresh or minimally processed products towards meals that include ultra-processed foods.

“Typically, these products do not have any wholefood ingredient, are ready to eat, and are high in fat, sodium and sugar but low in fiber, protein and vitamins,” says Ana Gaxiola, a nutritionist consultant working with the International Maize and Wheat Improvement Center (CIMMYT). “The health risks associated with their consumption have important, long-term implications for the health and nutritional status of individuals, families and communities.”

Latin America has a sophisticated maize and wheat processing sector with the potential to segment urban markets according to income, preferences and knowledge. This has important implications for equity in access to food with higher nutritional value.

In 2018, CIMMYT researchers began a new investigative project in collaboration with two CGIAR research programs, Agriculture for Health and Nutrition (A4NH) and WHEAT, seeking to understand how affordability affects diets in different areas of Mexico City. “We want to better understand access to healthier maize- and wheat-based foods across differences in purchasing power,” explains CIMMYT senior economist Jason Donovan. “Part of that involves looking at what processed products are available at what price and in different neighborhoods and the dietary implications of that.”

A researcher captures nutritional information from a packet of tortillas. (Photo: Emma Orchardson/CIMMYT)
A researcher captures nutritional information from a packet of tortillas. (Photo: Emma Orchardson/CIMMYT)

This is relatively new territory for those involved. “This kind of research has been done before,” explains Gaxiola, “but only looking at supermarkets in Mexico City and without differentiating between socioeconomic levels.” Previous studies have also failed to include data from abarrotes, the small convenience stores ubiquitous throughout the city.

The study compares Polanco and San Vicente, two neighborhoods in Mexico City chosen to represent high- and low-income areas, respectively. Using economic data in combination with label and packaging information it analyzes the variation in availability of processed and ultra-processed maize and wheat products, taking into account ingredients, nutritional content, portion size, price and other added value. The study will later include a qualitative element, in which the team will conduct interviews with shop managers to find out how they decide which products to stock, and with consumers to discuss the products they buy and the factors influencing their decisions.

“We’re also interested in how the products are being promoted,” says Miriam Perez Luna, a CIMMYT research assistant involved in the study. “Do companies employ celebrity endorsements or cartoons to appeal to children? Do they have any special certifications based on where or how the products were produced? This information goes into our database so we can examine how products are being marketed, whether in stores or online and through social media.”

In a small food shop in San Vicente, a low-income area, snacks high in salt and sugar line the shelves. (Photo: Emma Orchardson/CIMMYT)
In a small food shop in San Vicente, a low-income area, snacks high in salt and sugar line the shelves. (Photo: Emma Orchardson/CIMMYT)

Now at the end of the data collection period, Gaxiola and a team of researchers have collected more than 20,000 images of packaging, bar codes and nutritional information for a variety of products including biscuits, breads, cakes, cereals, flours, pastas, soups and tortillas. Once the data has been cleaned, they will begin to analyze each individual product and create an index for how healthy they are. Preliminary results from the study will be made available later in the year, but the team are keen to share some of their initial observations.

They were unsurprised to note that many products were more expensive in the upscale Polanco neighborhood, and smaller convenience stores tended to charge more for certain products than larger supermarkets.

There have however, been some unexpected findings. For example, many of the discussions about lack of access to nutritious food options focus on the diets of the urban poor, but there may be reason to believe that affluent consumers face similar challenges. “You’ll be surprised to hear that a lot of what we found in Polanco was not that healthy, because most of it is heavily processed,” says Gaxiola.

Based on the Pan-American Health Organization’s classification system, a product containing more than one milligram of sodium per calorie, 10% refined sugar and 30% total fat is an unhealthy one. “We still need to carry out the analysis, but I’d say more than 70% of the products we’ve encountered could be deemed unhealthy, based on this classification system.”

In a small supermarket in San Vicente, the research team found nearly 50 different types of biscuits and around 80 savory maize-based snacks like chips and tortillas. (Photo: Emma Orchardson/CIMMYT)
In a small supermarket in San Vicente, the research team found nearly 50 different types of biscuits and around 80 savory maize-based snacks like chips and tortillas. (Photo: Emma Orchardson/CIMMYT)

The implications of this are significant for a country like Mexico, which currently faces an epidemic of obesity and overweight. “There’s a lot of advocacy now around nutritional information, but it can be hard to understand sometimes, even for me,” says Gaxiola. “It has to be become something that everyone can understand and use to make healthier choices.”

For this to happen it is important to close the data gap on how urban consumers interact with their food environments. Understanding how they choose among different types of maize- and wheat-based products and how much of this is shaped by socioeconomic disparities is a key first step towards engaging with the private and public sectors on options for promoting healthier processed wheat and maize products in fast-evolving food systems.

This study is being carried out by the International Maize and Wheat Improvement Center (CIMMYT) and supported by the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) and the CGIAR Research Program on Wheat (WHEAT).

This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.