As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.
Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.
A study by the International Maize and Wheat Improvement Center (CIMMYT), carried out in collaboration with Stanford and Cornell Universities, has shown that there is a sustainable way to increase food production already in the fields: microsatellites. Read more here (in Italian).
Norman Borlaug was awarded the Nobel Peace Prize in 1970 in recognition of his contributions to world peace through increasing food production. In the latest episode of the BBC radio show Witness History, Rebecca Kesby interviews Ronnie Coffman, student and friend of Norman Borlaug.
Among other stories, Coffman recalls the moment when Borlaug was notified about the Nobel Prize — while working in the wheat fields in Mexico — and explores what motivated Borlaug to bring the Green Revolution to India.
Simon N. Groot is the winner of the 2019 World Food Prize. With this award, food and agriculture leaders recognize his work to increase vegetable production in more than 60 countries, through the development of high-quality seeds and training programs for farmers.
Groot’s efforts were crucial in leading millions of farmers to become horticulture entrepreneurs, resulting in improved incomes and livelihoods for them, and greater availability of nutritious vegetables for hundreds of millions of consumers.
Like small-town Iowa farm boy Norman Borlaug, Groot comes from a small town in the Netherlands, where he learned the value of seeds at a young age. Both shared the same vision to feed the world and succeeded.
“I think I was born to be a vegetable seedsman.”
– Simon N. Groot
Groot devoted his whole life to the seed and plant breeding industry. After 20 years in the industry in Europe and North America, Groot travelled to southeast Asia at the age of 47 with a vision to set up the region’s first vegetable seed breeding company. Frustrated by the poor quality seeds he found and noticing a total lack of commercial breeding activities in the region, Groot decided to set up his own company, using his own capital, partnering with Benito Domingo, a Philippines local with a passion for seeds and local connections to the traditional seed trade, agriculture industry and universities.
The company, named East-West Seed Company, started out as a small five-hectare farm outside Lipa City, Philippines. Groot brought over well-trained plant breeders from the Netherlands to begin plant breeding and help train locals as breeders and technicians. Groot was the first to introduce commercial vegetable hybrids in tropical Asia: varieties which were high-yielding, fast-growing and resistant to local diseases and stresses. Today, East-West Seed Company has over 973 improved varieties of 60 vegetable crops which are used by more than 20 million farmers across Asia, Africa and Latin America.
Inspired by Borlaug
Groot described meeting Dr. Borlaug at a conference in Indonesia in the late 1980s as “a pivotal moment” for him, writing that “his legacy has continued to serve as an inspiration for everything I have done at East-West Seed.”
In response to being awarded the 2019 World Food Prize, Groot wrote: “Bringing about the ‘Vegetable Revolution’ will be a fitting tribute to the work of Dr. Borlaug.”
The World Food Prize has been referred to as the “Nobel Prize for food and agriculture.” Awarded by the World Food Prize Foundation, it recognizes individuals who have advanced human development by improving the quality, quantity or availability of food in the world. Winners receive $250,000 in prize money.
The World Food Prize was founded in 1986 by Norman Borlaug, recipient of the 1970 Nobel Peace Prize.
“We are talking about testing whether it is possible to use information available in the genome to predict how productive a variety of wheat will be, if it will be drought- or heat-resistant and what quality its grain will have,” explains Carlos Guzmán from the University of Cordoba who participated in the study via his work as head of the Chemistry and Wheat Quality Laboratory at CIMMYT in Mexico.
Pioneering research on our three most important cereal grains — maize, rice, and wheat — has contributed enormously to global food security over the last half century, chiefly by boosting the yields of these crops and by making them more resilient in the face of drought, flood, pests and diseases. But with more than 800 million people still living in chronic hunger and many more suffering from inadequate diets, much remains to be done. The challenges are complicated by climate change, rampant degradation of the ecosystems that sustain food production, rapid population growth and unequal access to resources that are vital for improved livelihoods.
In recent years, a consensus has emerged among agricultural researchers and development experts around the need to transform global food systems, so they can provide healthy diets while drastically reducing negative environmental impacts. Certainly, this is a central aim of CGIAR — the world’s largest global agricultural research network — which views enhanced nutrition and sustainability as essential for achieving the Sustainable Development Goals. CGIAR scientists and their many partners contribute by developing technological and social innovations for the world’s key crop production systems, with a sharp focus on reducing hunger and poverty in low- and middle-income countries of Africa, Asia and Latin America.
The importance of transforming food systems is also the message of the influential EAT-Lancet Commission report, launched in early 2019. Based on the views of 37 leading experts from diverse research disciplines, the report defines specific actions to achieve a “planetary health diet,” which enhances human nutrition and keeps the resource use of food systems within planetary boundaries. While including all food groups — grains, roots and tubers, pulses, vegetables, fruits, tree nuts, meat, fish, and dairy products — this diet reflects important shifts in their consumption. The major cereals, for example, would supply about one-third of the required calories but with increased emphasis on whole grains to curb the negative health effects of cheap and abundant supplies of refined cereals.
This proportion of calories corresponds roughly to the proportion of its funding that CGIAR currently invests in the major cereals. These crops are already vital in diets, cultures, and economies across the developing world, and the way they are produced, processed and consumed must be a central focus of global efforts to transform food systems. There are four main reasons for this imperative.
Aneli Zárate Vásquez (left), in Mexico’s state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)
1. Scale and economic importance
The sheer extent of major cereal production and its enormous value, especially for the poor, account in large part for the critical importance of these crops in global food systems. According to 2017 figures, maize is grown on 197 million hectares and rice on more than 167 million hectares, mainly in Asia and Africa. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these crops amounts to about 2.5 billion tons of grain.
Worldwide production had an estimated annual value averaging more than $500 billion in 2014-2016. The prices of the major cereals are especially important for poor consumers. In recent years, the rising cost of bread in North Africa and tortillas in Mexico, as well as the rice price crisis in Southeast Asia, imposed great hardship on urban populations in particular, triggering major demonstrations and social unrest. To avoid such troubles by reducing dependence on cereal imports, many countries in Africa, Asia and Latin America have made staple crop self-sufficiency a central element of national agriculture policy.
Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
2. Critical role in human diets
Cereals have a significant role to play in food system transformation because of their vital importance in human diets. In developing countries, maize, rice, and wheat together provide 48% of the total calories and 42% of the total protein. In every developing region except Latin America, cereals provide people with more protein than meat, fish, milk and eggs combined, making them an important protein source for over half the world’s population.
Yellow maize, a key source of livestock feed, also contributes indirectly to more protein-rich diets, as does animal fodder derived from cereal crop residues. As consumption of meat, fish and dairy products continues to expand in the developing world, demand for cereals for food and feed must rise, increasing the pressure to optimize cereal production.
In addition to supplying starch and protein, the cereals serve as a rich source of dietary fiber and nutrients. CGIAR research has documented the important contribution of wheat to healthy diets, linking the crop to reduced risk of type 2 diabetes, cardiovascular disease, and colorectal cancer. The nutritional value of brown rice compared to white rice is also well known. Moreover, the recent discovery of certain genetic traits in milled rice has created the opportunity to breed varieties that show a low glycemic index without compromising grain quality.
Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)
The major cereals have undergone further improvement in nutritional quality during recent years through a crop breeding approach called “biofortification,” which boosts the content of essential vitamins or micronutrients. Dietary deficiencies of this kind harm children’s physical and cognitive development, and leave them more vulnerable to disease. Sometimes called “hidden hunger,” this condition is believed to cause about one-third of the 3.1 million annual child deaths attributed to malnutrition. Diverse diets are the preferred remedy, but the world’s poorest consumers often cannot afford more nutritious foods. The problem is especially acute for women and adolescent girls, who have unequal access to food, healthcare and resources.
It will take many years of focused effort before diverse diets become a reality in the lives of the people who need them most. Diversified farming systems such as rice-fish rotations that improve nutritional value, livelihoods and resilience are a step in that direction. In the meantime, “biofortified” cereal and other crop varieties developed by CGIAR help address hidden hunger by providing higher levels of zinc, iron and provitamin A carotenoids as well as better protein quality. Farmers in many developing countries are already growing these varieties.
A 2018 study in India found that young children who ate zinc-biofortified wheat in flatbread or porridge became ill less frequently. Other studies have shown that consumption of provitamin A maize improves the body’s total stores of this vitamin as effectively as vitamin supplementation. Biofortified crop varieties are not a substitute for food fortification (adding micronutrients and vitamins during industrial food processing). But these varieties can offer an immediate solution to hidden hunger for the many subsistence farmers and other rural consumers who depend on locally produced foods and lack access to fortified products.
Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)
4. Wide scope for more sustainable production
Cereal crops show much potential not only for enhancing human heath but that of the environment as well. Compared to other crops, the production of cereals has relatively low environmental impact, as noted in the EAT-Lancet report. Still, it is both necessary and feasible to further enhance the sustainability of cereal cropping systems. Many new practices have a proven ability to conserve water as well as soil and land, and to use purchased inputs (pesticides and fertilizers) far more efficiently. With innovations already available, the amount of water used in current rice cultivation techniques, for example, can be significantly reduced from its present high level.
Irrigation scheduling, laser land leveling, drip irrigation, conservation tillage, precision nitrogen fertilization, and cereal varieties tolerant to drought, flooding and heat are among the most promising options. In northwest India, scientists recently determined that optimal practices can reduce water use by 40%, while maintaining yields in rice-wheat rotations. There and in many other places, the adoption of new practices to improve cereal production in the wet season not only leads to more efficient resource use but also creates opportunities to diversify crop production in the dry season. Improvements to increase cereal crop yields also reduces their environmental footprint; using less land, enhancing carbon sequestration and biodiversity and, for rice, reducing methane emissions per kilo of rice produced. Given the enormous extent of cereals cultivation, any improvement in resource use efficiency will have major impact, while also freeing up vast amounts of land for other crops or natural vegetation.
A major challenge now is to improve access to the knowledge and inputs that will enable millions of farmers to adopt new techniques, making it possible both to diversify production and grow more with less. Another key requirement consists of clear signals from policymakers, especially where land and water are limited, about the priority use of these resources — for example, irrigating low-value cereals to bolster food security versus applying the water to higher value crops and importing staple cereals.
Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)
Toward a sustainable dietary revolution
Future-proofing the global food system requires bold steps. Policy and research need to support a double transformation, centered on nutrition and sustainability.
CGIAR works toward nutritional transformation of our food system through numerous global partnerships. We give high priority to improving cereal crop systems and food products, because of their crucial importance for a growing world population. Recognizing that this alone will not suffice for healthy diets, we also strongly promote greater dietary diversity through our research on various staple crops and production systems and by raising public awareness of more balanced and nutritious diets.
To help achieve a sustainability transformation, CGIAR researchers and partners have developed a wide array of techniques that use resources more efficiently, enhance the resilience of food production in the face of climate change and reduce greenhouse gas emissions, while achieving sustainable increases in crop yields. At the same time, we are generating new evidence on which techniques work best under what conditions to target the implementation of these solutions more effectively.
The ultimate impact of our work depends crucially on the growing resolve of developing countries to promote better diets and more sustainable food production through strong policies and programs. CGIAR is well prepared to help strengthen these measures through research for development, and we are confident that our work on cereals, with continued donor support, will have high relevance, generating a wealth of innovations that help drive the transformation of global food systems.
Martin Kropff is the Director General of the International Maize and Wheat Improvement Center (CIMMYT).
Matthew Morell is the Director General of the International Rice Research Institute (IRRI).
As the calendar turns to October 16, it is time to celebrate World Food Day. At the International Maize and Wheat Improvement Center (CIMMYT), we are bringing you a few facts you should know about maize and wheat, two of the world’s most important crops.
According to 2017 figures, maize is grown on 197 million hectares. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these two crops amounts to about 1.9 billion tons of grain.
A little girl eats a freshly-made roti while the women of her family prepare more, at her home in the village of Chapor, in the district of Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
2. Of the 300,000 known edible plant species, only 3 account for around 60% of our calories and proteins: maize, wheat and rice.
Farmers Kanchimaya Pakhrin and her neighbor Phulmaya Lobshan weed rice seedling bed sown by machine in Purnabas, Kanchanpur, Nepal. (Photo: P. Lowe/CIMMYT)
3. CIMMYT manages humankind’s most diverse maize and wheat collections.
The organization’s germplasm bank, also known as a seed bank, is at the center of its crop-breeding research. This remarkable, living catalog of genetic diversity is comprised of over 28,000 unique seed collections of maize and 150,000 of wheat.
From its breeding programs, CIMMYT sends half a million seed packages to 800 partners in 100 countries each year. With researchers and farmers, the center also develops and promotes more productive and precise maize and wheat farming methods and tools that save money and resources such as soil, water, and fertilizer.
Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. Disaster-proof features of the bank include thick concrete walls and back-up power systems. (Photo: Xochiquetzal Fonseca/CIMMYT)
4. Maize and wheat are critical to a global food system makeover.
High-yield and climate-resilient maize and wheat varieties, together with a more efficient use of resources, are a key component of the sustainable intensification of food production needed to transform the global food system.
Miguel Ku Balam (left), from Mexico’s Quintana Roo state, cultivates the traditional Mesoamerican milpa system. “My family name Ku Balam means ‘Jaguar God’. I come from the Mayan culture,” he explains. “We the Mayans cultivate the milpa for subsistence. We don’t do it as a business, but rather as part of our culture — something we inherited from our parents.” (Photo: Peter Lowe/CIMMYT)
5. We must increase maize and wheat yields to keep feeding the world.
By the year 2050, there will be some 9.7 billion people living on Earth. To meet the growing demand from an increasing population and changing diets, maize yields must go up at least 18% and wheat yields 15% by 2030, despite hotter climates and more erratic precipitation.
Farmers walk through a wheat field in Lemo district, Ethiopia. (Photo: P. Lowe/CIMMYT)
6. Climate-smart farming allows higher yields with fewer greenhouse gas emissions.
Decades of research and application by scientists, extension workers, machinery specialists, and farmers have perfected practices that conserve soil and water resources, improve yields under hotter and dryer conditions, and reduce the greenhouse gas emissions and pollution associated with maize and wheat farming in Africa, Asia, and Latin America.
Kumbirai Chimbadzwa (left) and Lilian Chimbadzwa stand on their field growing green manure cover crops. (Photo: Shiela Chikulo/CIMMYT)
7. Wholegrain wheat is good for your health.
An exhaustive review of research on cereal grains and health has shown that eating whole grains, such as whole-wheat bread and other exceptional sources of dietary fiber, is beneficial for human health and associated with a reduced risk of cancer and other non-communicable diseases.
According to this study, consumption of whole grains is associated with a lower risk of coronary disease, diabetes, hypertension, obesity and overall mortality. Eating whole and refined grains is beneficial for brain health and associated with reduced risk for diverse types of cancer. Evidence also shows that, for the general population, gluten- or wheat-free diets are not inherently healthier and may actually put individuals at risk of dietary deficiencies.
8. Biofortified maize and wheat are combating “hidden hunger.”
“Hidden hunger” is a lack of vitamins and minerals. More than 2 billion people worldwide are too poor to afford diverse diets and cannot obtain enough critical nutrients from their staple foods.
To help address this, CIMMYT — along with HarvestPlus and partners in 18 countries — is promoting more than 60 maize and wheat varieties whose grain contains more of the essential micronutrients zinc and provitamin A. These biofortified varieties are essential in the fight against “hidden hunger.”
A 2015 study published in The Journal of Nutrition found that vitamin A-biofortified orange maize significantly improves visual functions in children, like night vision. (Photo: Libby Edwards/HarvestPlus)
9. 53 million people are benefiting from drought-tolerant maize.
Drought-tolerant maize developed by CIMMYT and partners using conventional breeding provides at least 25% more grain than conventional varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average.
These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people.
One study shows that drought-tolerant maize varieties can provide farming families in Zimbabwe an extra 9 months of food at no additional cost.
10. Quality protein maize is helping reduce child malnutrition.
“The fields being currently burned mostly belong to farmers who harvested short-duration rice varieties. The slight rise in crop fire instances could be misleading as a much higher area than last year has been harvested so far, according to reports we are getting,” said M.L.Jat, principle scientist at CIMMYT, who is tracking farm fires. Read more here.
The Punjab government is working on war footing to curb farm fires ahead of the celebrations of 550 birth anniversary of Guru Nanak, but rising incidents of stubble burning in Pakistan, particularly near border areas of Punjab, have raised concern among scientists at Punjab remote sensing center (PRSC) and Punjab agricultural university (PAU).
Experts from Cornell and International Maize and Wheat Improvement Center (CIMMYT) in a recent study ‘Tradeoffs Between Groundwater Conservation and Air Pollution From Agricultural Fires in Northwest India’ stated that pollution, particularly caused by stubble burning, leads to an estimated 16,000 premature deaths caused every year in New Delhi capital region, with an aggregate reduction in life expectancy of 6 years.
Droughts affect crop production across the world. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production under this particular environmental stress.
Interdrought 2020 aims to facilitate the development of concepts, methods and technologies associated with plant production in water-limited environments.
The congress will take place from March 9 to 13, 2020, in Mexico City. Early-bird registration is open until October 31, 2019 and abstract submissions will be accepted until November 15, 2019.
The conference will focus on:
Optimizing dryland crop production – crop design
Water capture, transpiration, transpiration efficiency
Vegetative and reproductive growth
Breeding for water-limited environments
Managing cropping systems for adaptation to water-limited environments
This will be the 6th edition of Interdrought, which builds on the successful series of conferences in Montpellier (1995), Rome (2005), Shanghai (2009), Perth (2013) and Hyderabad (2017).
It will continue the philosophy of presenting, discussing and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.
If you encounter any difficulties in registration, or are interested in sponsoring the conference, please send an email to cimmyt-interdrought2020@cgiar.org.
Mexican and international researchers have joined with farmers and specialists from Jala, a scenic valley near the Pacific Coast of Mexico’s state of Nayarit, in a critical strategy to save and study an endangered, legendary maize race whose ears once grew longer than a man’s forearm.
Specialists from the International Maize and Wheat Improvement Center (CIMMYT) are analyzing the race’s genetic diversity, in hopes of preserving its qualities and, in concert with Jala farmers, safeguarding its future and merits.
Efforts include a new maize festival that reprises a yearly contest begun in 1981 to honor the community’s largest maize ear, but the outsize Jala maize race faces myriad hurdles to survive, according to Carolina Camacho, CIMMYT socioeconomics researcher and festival collaborator.
“The Jala maize landrace is unsuited to mechanization due to its size and agronomic requirements,” said Camacho. “It must be sown by hand and, because the plant can grow to several meters or taller, the ears must be harvested on horseback.”
Jala maize is also losing out to more competitive and profitable improved varieties, Camacho added. It is prized locally for its floury texture, but many farmers favor varieties more suited to milling and which yield more husks — in high demand as tamale wraps — as well as fodder and feed. The floury texture also means the grain is less dense and so fetches a lower price on external markets, where grain is sold by weight.
Youth panel discussion at the Feria de la Mazorca del Maize Nativo with Carolina Camacho, CIMMYT (third from right). (Photo: Denise Costich/CIMMYT)
A fair fight for preservation
The most recent “Feria de la Mazorca del Maíz Nativo,” or Landrace Maize Ear Festival, was held in December 2018. Under the boughs of a giant guanacaste tree in the town square of Coapan, Jala Valley, children, elders, cooks and dancers celebrated maize and its associated traditions. The festival culminated in the contest for the largest maize ear, with the winning farmer’s submission measuring nearly 38 centimeters in length.
The competition typically takes place in August as part of Jala’s two-week “Feria del Elote,” or green ear festival, first established to foster the appreciation and preservation of the native maize.
CIMMYT scientists helped the community set up a local genebank to store Jala landrace seed, according to Denise Costich, head of the CIMMYT maize germplasm bank and festival collaborator.
“This enhances the community’s role as custodians of landrace diversity and their access to the seed,” said Costich, adding that Jala seed from as far back as the early 1980s forms part of CIMMYT’s maize collections, which comprise 28,000 unique samples.
Under CIMMYT’s Seeds of Discovery project, scientists are analyzing the remaining genetic potential in the Jala maize population, particularly to understand the extent and effects of both inbreeding and outcrossing.
On the one hand, Costich said, Jala’s unique genetic pedigree appears to be diluted from mixing with other varieties in the valley whose pollen lands on Jala silks. At the same time, she worries about possible inbreeding in some small and isolated valley pockets where Jala is grown.
Finally, the yearly contest, for which maize ears are harvested in the green stage before maturity, precludes use of the grain as seed and so may also remove inheritable potential for large ears from the local maize gene pool.
Farewell to small-scale farmers?
Setting up the contest entries in Coapan: (l-r) Cristian Zavala of the CIMMYT maize genebank recording data; Rafael Mier from Fundacion Tortillas de Maiz Mexicana; Victor Vidal, INIFAP collaborator and judge of the contest; and Alfredo Segundo of the CIMMYT maize genebank. (Photo: Denise Costich/CIMMYT)
Whatever the causes, Jala maize isn’t what it used to be. In 1924, a visiting scientist observed maize plants over 6 meters in height and with ears more than 60 centimeters long — far longer than today’s samples.
One grave challenge to the landrace’s continued existence is the steady disappearance of older farmers who grow it. As throughout rural Mexico, many youths are leaving farm communities like Jala in search of better opportunities and livelihoods in cities.
Camacho believes the festival and contest encourage farmers to continue growing Jala maize but cannot alone ensure the landrace’s preservation.
“The solutions need to encompass all aspects of Jala maize and be supported by the entire community, particularly young people,” said Camacho.
The festival in Coapan included a panel discussion with local youths, among them graduate students from the Autonomous University of Nayarit.
“The panelists highlighted the lack of opportunities in rural areas and the need for an economically secure future; things that Jala maize doesn’t offer,” Camacho said.
The festival is a collaboration among Costich, Camacho, Victor Vidal of INIFAP-Nayarit, and local partners including Gilberto González, Ricardo Cambero, Alondra Maldonado, Ismael Elías, Renato Olmedo (CIMMYT), and Miguel González Lomelí.
The meeting on the future of agriculture in Somalia, was attended by donors EU, USAID, JICA, UN agency FAO and CG centers CIFOR, ICRAF, CIAT, CIP, CIMMYT, ICRISAT, IITA, ILRI, IRRI, ICARDA and IFPRI.
William Penn University’s Health & Life Sciences Division welcomed students, staff, faculty, and community members at the annual World Food Prize lecture on Wednesday, Oct. 16.
This year’s speaker was Bram Govaerts, the global Director Innovative Business Strategies with CIMMYT. Read more here.
In July 2019 ICIMOD, along with its partners and the International Maize and Wheat Improvement Centre in Mexico, launched a web-based Regional Drought Monitoring and Outlook System for South Asia – an integrated information platform linking weather and climate data with agriculture practices in South Asia. The system provides multiple indices for droughts and seasonal weather outlooks, besides maps and baseline. Read more here.
Approaching the homestead of Joseph Maravire and his wife, Reason, on a warm late August afternoon in Bvukururu, Zaka district, Zimbabwe, heaps of dry straw in their farmyard are prominent. ‘’This is for mulching for the forthcoming cropping season,’’ explains Reason. Maize stalk residues from last harvest are also stored to feed their livestock and to mix into the manure or for bedding the herd of cattle. These practices have become the norm for the Maravire family as they prepare for the next maize planting season in Zaka, one of the hottest areas of southern Zimbabwe.
“We never knew of mulching until we interacted with CIMMYT scientists in 2009. Now I cannot imagine working in my field without applying mulch,” says Reason. As one of five families selected in their village to participate in the scaling out of climate-smart agricultural technologies since 2009, the Maravire family demonstrates the evident transformative power of climate-smart agriculture.
Joseph and Reason by their heap of dry straw which is collected in preparation for mulching in the forthcoming 2019-20 season. In this drought-prone region, the Maravire learned the benefits of mulching to protect crops from recurrent dry spells. (Photo: Shiela Chikulo/CIMMYT)
Climate-smart agriculture involves farming practices that improve farm productivity and profitability, help farmers adapt to the negative effects of climate change and mitigate climate change effects, e.g. by soil carbon sequestration or reductions in greenhouse gas emissions. Climate-smart practices, such as the locally practiced conservation agriculture, aim at conserving soil moisture, retaining crop residues for soil fertility, disturbing the soil as minimally as possible and diversifying through rotation or intercropping.
As CIMMYT research shows, these practices can boost production and make farmers more food secure. This is good news for Zimbabwean farmers such as the Maravires. During an episode of El Niño in the 2015-16 and 2018-19 cropping seasons, large parts of southern Africa experienced prolonged dry spells, erratic rainfall and high temperatures initially with floods towards the end of the cropping season. A recent humanitarian appeal indicated that at least 2.9 million people in Zimbabwe were severely food insecure due to poor or no harvests that year.
Under the “Out-scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe’’ project — funded by the German development agency GIZ and the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), and implemented under the leadership of the Zambian Agriculture Research Institute (ZARI) with technical oversight by CIMMYT and other collaborating partners from Malawi and Zimbabwe — farmers from 19 rural communities in the three target countries received training and guidance on climate-smart agriculture practices and technologies, such as mulching, rotation and the use of direct seeders and ripper tines to practice no tillage.
Mastering climate-smart techniques, season by season
On their 0.4-hectare plot dedicated to the project activities, Joseph and Reason practiced four different planting techniques: direct seeding (sowing directly into crop residue), ripline seeding (sowing in lines created by animal draft-powered rippers), basin planting (sowing manually into planting basins created by hand hoes), and the traditional ox drawn plowing and seeding. They then planted one traditional and three drought-tolerant maize varieties.
“It soon became clear to us that using a direct seeder or ripper tine, combined with mulching, was the best option, as these sections of the field retained more moisture and produced more maize than the conventional system,” explained Joseph Maravire. Beginning in 2013, the family also started rotating maize and cowpeas and observed a significant increase in their yields. They decided to apply climate-smart agriculture practices on the rest of their 2.5-hectare farm.
“We learned that cowpeas leave nitrogen in the soil and by the time of harvesting, the leaves from the cowpeas also fall to the ground as residue and add to the mulch for the soil. The shade of cowpea also reduces weed pressure and manual weeding,” said Maravire.
Yields and food security
With these practices, the family has harvested remarkably, even during the dry seasons. In 2015-16, the worst El Niño on record, they harvested 2 tons of maize, despite the severe drought, while other households barely got anything from their fields. In good years, like the last cropping season, the family harvests 3.5 to 4 tons of maize from their entire field, three times more than their annual family food needs of approximately 1.3 tons. The additional cowpea yields of both grain and leaves provide protein-rich complementary food, which improves the family’s nutrition. To share some of these benefits with their community, the Maravire family donates up to 10% of their produce to poor elderly households in their village.
Overcoming challenges and building resilience
However, the new farming practices did not come without challenges.
“In the early days of the project, the ripper tine was not simple to use because we could not get the right depth to put manure and the maize seeds,” said Joseph Maravire.
They found a solution by making rip lines around October or November, applying manure at the onset of the rains, ripping again and placing the seed to mix with the manure.
Fall armyworm was another devastating challenge for their plot, as was the case around Zimbabwe. Like other farmers in Zimbabwe, the Maravires had access to pesticides, but the caterpillar showed some resistance to one type of pesticide. Maravire expressed interest in learning biological control options to reduce the pest’s spread.
Scaling climate smart technologies beyond the Maravire homestead
After several years of consistently good harvests with climate-smart agriculture options, the Maravire family has become a model within their community. Working closely with their agricultural extension officer, they formed a CSA farmer support group of 20 families. Joseph Maravire provides services for direct seeding and ripping to the CSA group and ensures that all of their land is prepared using no-tillage planting techniques. The couple regularly demonstrates climate-smart practices to peers during field days, where an average of 300 villagers attend. They also share their knowledge about green manure cover crops — crops such as lablab, jackbean, sunhemp, and velvet bean which, retained on the soil surface, serve as organic fertilizer — a practice they learned from project activities.
For Reason and Joseph Maravire, the rewards for adopting climate-smart agriculture benefit the family beyond food security. The income earned from maize grain sales and cowpea marketing has helped them acquire assets and rebuild one of their homes that was destroyed by Cyclone Idai in March 2019.
Joseph is confident that his family will always produce well on the replenished soil and the technologies they have learned through the project will continue to define their farming practices.
The house of Maravire homestead was damaged by Cyclone Idai in March. Joseph is nearing completion of rebuilding the house using proceeds from recent cowpea sales. (Photo: Shiela Chikulo/CIMMYT)