Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Stress-resilient maize, a big relief for Indian farmers

District agricultural officers listen to feedback from a maize farmer who grows MHM4070 in drought conditions. (Photo: UAS-R)
District agricultural officers listen to feedback from a maize farmer who grows MHM4070 in drought conditions. (Photo: UAS-R)

Small-scale maize farmers beset by erratic rainfall in the state of Karnataka, India, who adopted a new, drought- and heat-tolerant maize hybrid are harvesting nearly 1 ton more of grain per hectare than neighboring farmers who sow other maize varieties.

The climate-resilient hybrid RCRMH2 was developed in 2015 by the University of Agriculture Sciences, Raichur (UAS-R), Karnataka, as part of the Heat Tolerant Maize for Asia (HTMA) project. It was marketed in 2018 under the commercial name MRM4070 by Maharashtra Hybrid Seeds Company (Mahyco) in hot and dry areas of Karnataka, where crops are watered exclusively by rainfall.

“This hybrid is made for our stress-prone areas, as it gives guaranteed yields in a bad year and is inferior to none under good rainfall conditions,” said Hanumanthappa, a farmer and adopter of the variety in Gadag District. “In bad years, it can not only feed my family but also my cattle,” he added, referring to the hybrid’s “stay-green” trait, which allows use of the leaves and stems as green fodder for livestock, after harvesting the cobs.

A pack of MHM4070 seed marketed by Mahyco.
A pack of MRM4070 seed marketed by Mahyco.

Droughts and high temperatures are a recurring problem in Karnataka, but suitable maize varieties to protect yields and income loss in the state’s risk-prone agroecologies had been lacking.

Mahyco marketed some 60 tons of hybrid seed of MRM4070 in Karnataka in 2018 and, encouraged by the overwhelming response from farmers, increased the seed offering to 140 tons — enough to sow about 7,000 hectares.

A 2018-19 farmer survey in the contrasting Gadag District — with poor rainfall — and Dharwad District — good rainfall — found that farmers in Gadag who grew MRM4070 harvested 0.96 tons more grain and earned $190 additional income per hectare than neighbors who did not adopt the hybrid. In Dharwad under optimal rainfall, MRM4070 performed on a par with other commercial hybrids.

In addition to providing superior yields under stress, MRM4070 had larger kernels than other hybrids under drought conditions, bringing a better price for farmers who sell their grain.     

Agriculture officers and scientists from the University of Agricultural Sciences observe the performance of MHM4070 in drought-stressed field in Gadag district of Karnataka, India. (Photo: UAS-R)
Agriculture officers and scientists from the University of Agricultural Sciences observe the performance of MRM4070 in drought-stressed field in Gadag district of Karnataka, India. (Photo: UAS-R)

Led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with national maize programs, agriculture universities, and seed companies, and with funding from the United State Agency for International Development (USAID) Feed the Future Initiative, HTMA was launched in 2012 to develop stress-resilient maize hybrids for the variable weather conditions and heat and drought extremes of Bangladesh, India, Nepal and Pakistan. 

Healthy diets feature both whole- and refined-grain foods, new study shows

Freshly baked rye bread is displayed next to wheat spikes and grains. (Photo: Marco Verch/Flickr)
Freshly baked rye bread is displayed next to wheat spikes and grains. (Photo: Marco Verch/Flickr)

Grain-based foods — both whole-grain and refined, from which the bran has been removed — are a key part of healthy diets, according to a study published in the science journal Advances in Nutrition.

The study, co-authored by Julie Miller Jones of St. Catherine University, Carlos Guzman of the Universidad de Córdoba and Hans-Joachim Braun of the International Maize and Wheat Improvement Center (CIMMYT), reviewed findings of more than 100 research papers from nutrition and medical journals as well as national health recommendations. It presents evidence for positive health impacts from diverse diets that include not more than 50% carbohydrates and the right mix of grain-based foods.

“Epidemiological studies consistently show that eating three 30-gram portions of whole-grain foods — say, half a cup of oats — per day is associated with reduced chronic disease risk,” said Miller Jones, Professor Emerita at St. Catherine University and first author of the study. “But refined-grain foods — especially staple, enriched or fortified ones of the ‘non-indulgent’ type — also provide key vitamins and minerals that are otherwise lacking in people’s diets.”

“Cereal grains help feed the world by providing millions of calories per hectare and large amounts of plant-based protein,” said Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “They are affordable, shelf stable, portable, versatile, and popular, and will play a key role as the world transitions to plant-based diets to meet future food needs.”

Folate fortification of refined grains has helped reduce the incidence of spina bifida, anencephaly, and other birth defects, according to Miller Jones. “And despite contributing to high sugar intake, ready-to-eat breakfast cereals are typically consumed with nutritious foods such as milk, yogurt, and fruit,” she added.

All grain-based foods, refined and whole, are good sources of dietary fiber, which is essential for sound health but critically lacking in modern diets. “Only 4 percent of the U.S. population, for example, eats recommended levels of dietary fiber,” she said.

Obesity, Type 2 diabetes, high blood pressure, and other illnesses from unbalanced diets and unhealthy habits are on the rise in countries such as the U.S., driving up health care expenditures. The annual medical costs of obesity alone there have been estimated at nearly $150 billion.

“Dietary choices are determined partly by lifestyle but also co-vary with daily habits and personal traits,” Miller Jones explained. “People who eat more whole-grain foods are more likely to exercise, not smoke, and have normal body weights, as well as attaining higher levels of education and socioeconomic status.”

According to the study, recommendations for grain-based foods need to encourage a healthy number of servings and replacing half of refined-grain foods with whole-grain products, as well as providing clearer and unbiased definitions of both types of grain-based foods.


RELATED RESEARCH PUBLICATIONS:

Perspective: Whole and Refined Grains and Health — Evidence Supporting “Make Half Your Grains Whole”

INTERVIEW OPPORTUNITIES:

Hans Braun – Director of the Global Wheat Program, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT.
m.macneil@cgiar.org, +52 (55) 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT.
r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

This research is supported by CGIAR Fund Donors.

CIMMYT is ready to support Ethiopia’s move toward — and beyond — wheat self-sufficiency

Ethiopia has huge potential and a suitable agroecology for growing wheat. However, its agriculture sector, dominated by a traditional farming system, is unable to meet the rising demand for wheat from increasing population and urbanization. Wheat consumption in Ethiopia has grown to 6.7 million tons per year, but the country only produces about 5 million tons per year on 1.7 million hectares. As a result, the country pays a huge import bill reaching up to $700 million per year to match supply with demand.

A new initiative is aiming to change this scenario, making Ethiopia wheat self-sufficient by opening new regions to wheat production.

“We have always been traditionally a wheat growing country, but focusing only in the highlands with heavy dependence on rain. Now that is changing and the government of Ethiopia has set a new direction for import substitution by growing wheat in the lowlands through an irrigated production system,” explained Mandefro Nigussie, director general of the Ethiopian Institute of Agricultural Research (EIAR). Nigussie explained that several areas are being considered for this initiative: Awash, in the Oromia and Afar regions; Wabeshebelle, in the Somali Region; and Omo, in the Southern Nations, Nationalities and Peoples Region (SNNPR).

A delegation from the International Maize and Wheat Improvement Center (CIMMYT) recently met Ethiopian researchers and policymakers to discuss CIMMYT’s role in this effort. Ethiopia’s new Minister of Agriculture and Natural Resources, Oumer Hussien, attended the meeting.

“We understand that the government of Ethiopia has set an ambitious project but is serious about it, so CIMMYT is ready to support you,” said Hans Braun, director of the Global Wheat Program at CIMMYT.

Hans Braun (center), director of CIMMYT’s Global Wheat Program, speaks at the meeting. (Photo: Simret Yasabu/CIMMYT)
Hans Braun (center), director of CIMMYT’s Global Wheat Program, speaks at the meeting. (Photo: Simret Yasabu/CIMMYT)

Strong collaboration

CIMMYT and the Ethiopian government have identified priority areas that will support the new government initiative. These include testing a large number of advanced lines to identify the right variety for the lowlands; developing disease resistant varieties and multiplying good quality and large quantity early generation initial seed; refining appropriate agronomic practices that improve crop, land and water productivity; organizing exposure visits for farmers and entrepreneurs; implementing training of trainers and researchers; and technical backstopping.

CIMMYT has been providing technical support and resources for wheat and maize production in Ethiopia for decades. As part of this support, CIMMYT has developed lines that are resistant to diseases like stem and yellow rust, stress tolerant and suitable for different wheat agroecologies.

“This year, for example, CIMMYT has developed three lines which are suitable for the lowlands and proposed to be released,” said Bekele Abeyo, wheat breeder and CIMMYT Country Representative for Ethiopia. “In India, the green revolution wouldn’t have happened without the support of CIMMYT and we would also like to see that happen in Ethiopia.”

“With our experience, knowledge and acquired skills, there is much to offer from the CIMMYT side,” Abeyo expressed. He noted that mechanization is one of the areas in which CIMMYT excels. Through a business service providers model, CIMMYT and its partners tested the multipurpose two-wheel tractors in Oromia, Amhara, Tigray and the southern regions. Good evidence for impact was generated particularly in Oromia and the south, where service providers generated income and ensured food security.

“Import versus export depends on a comparative advantage and for Ethiopia it is a total disadvantage to import wheat while having the potential [to grow more],” said Hussien. “The Ministry of Agriculture is thus figuring out what it can do together with partners like CIMMYT on comparative advantages.”

Hussien explained that the private sector has always been on the sidelines when it comes to agriculture. With the new initiative, however, it will be involved, particularly in the lowlands where there is abundant land for development under irrigation and available water resources, with enormous investment potential for the private sector. This, he noted, is a huge shift for the agricultural sector, which was mainly taken care of by the government and smallholder farmers, with support from development partners.

Ethiopia’s Minister of Agriculture, Oumer Hussien, speaks about the new initiative. (Photo: Simret Yasabu/CIMMYT)
Ethiopia’s Minister of Agriculture, Oumer Hussien, speaks about the new initiative. (Photo: Simret Yasabu/CIMMYT)

Thinking beyond the local market

As it stands now, Ethiopia is the third largest wheat producing country in Africa and has great market potential for the region. With more production anticipated under the new initiative, Ethiopia plans to expand its market to the world.

“We want our partners to understand that our thinking and plan is not only to support the country but also to contribute to the global effort of food security,” Hussien explained. However, “with the current farming system this is totally impossible,” he added. Mechanization is one of the key drivers to increase labor, land and crop productivity by saving time and ensuring quality. The government is putting forward some incentives for easy import of machinery. “However, it requires support in terms of technical expertise and knowledge transfer,” Hussien concluded.

Cover photo: A wheat field in Ethiopia. (Photo: Apollo Habtamu/ILRI)

Can Wheat Save the World?

“If we can put a man on the moon, we can solve 800 million people going to bed hungry every day. Wheat is a crucial part of that challenge,” said Martin Kropff, director-general of the International Maize and Wheat Improvement Center (CIMMYT) at the first International Wheal Congress held in Saskatoon.

Read more here.

Seeds of hope

Seed of drought-tolerant maize developed through long-running global and local partnerships in Africa is improving nutrition and food security in northern Uganda, a region beset by conflicts and unpredictable rainfall.

The International Maize and Wheat Improvement Center (CIMMYT) has been working with Uganda’s National Agricultural Research Organization (NARO) and local seed companies to develop and disseminate maize seed of improved stress-tolerant varieties. Under the Drought Tolerant Maize for Africa (DTMA) and the Stress Tolerant Maize for Africa (STMA) projects, farmers are now using varieties such as the UH5051 hybrid, known locally as Gagawala, meaning “get rich.”

For two decades, most of the population in northern Uganda has lived in internally displaced people’s camps and depended on food aid and other relief emergencies for their livelihoods due to the insurgency by the Lord’s Resistance Army (LRA).

Gulu, one of the affected districts, has been on a path to recovery for the past few years. With the prevailing peace, Geoffrey Ochieng’ and his wife can now safely till their 4.5 acres of land to grow maize and other staples. They are able to feed their family and sell produce to meet other household needs.

However, farmers in this region, bordering South Sudan, are facing more erratic rains and the uncertain onset of rainfall. Thanks to new drought-tolerant and disease-resistant maize varieties, the Ochieng’ family can adapt to this variable climate and secure a good maize harvest even in unreliable seasons.

Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)
Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)

Tolerance is key

“The popularity of this drought-tolerant variety among the farmers has been growing thanks to its good yield and reliability even with poor rains and its resistance to common foliar diseases like northern corn leaf blight and gray leaf spot, plus good resistance to the maize streak virus,” explained Daniel Bomet, a NARO maize breeder. “Maturing in slightly over four months, Gagawala can produce two to three maize cobs, which appeals to farmers.”

Ochieng’ has been planting UH5051 maize since 2015. Before adopting the new hybrid, Ochieng’ was growing Longe 5, a popular open-pollinated variety that is less productive and not very disease-resistant.

“What I like about UH5051 is that even with low moisture stress, it will grow and I will harvest something,” Ochieng’ said. Under optimal conditions, he harvests about 1.2 metric tons of maize grain on one acre of UH5051 hybrid.

With the old Longe 5 variety, he would only harvest 700 kg. “If the rains were delayed or it didn’t rain a lot, I would be lucky to get 400 kg per acre with the Longe 5, while I get twice as much with the hybrid,” Ochieng’ explained.

Thanks to this tolerant maize variety, he can pay his children’s school fees and provide some surplus grain to his relatives.

A worker at the Equator Seeds production plant in Gulu displays packs of UH5051 maize seed. (Photo: Joshua Masinde/CIMMYT)
A worker at the Equator Seeds production plant in Gulu displays packs of UH5051 maize seed. (Photo: Joshua Masinde/CIMMYT)

Out with the old, in with the new

“One key strategy to improve our farmers’ livelihoods in northern Uganda is to gradually replace old varieties with new varieties that can better cope with the changing climate and problematic pests and diseases,” said Godfrey Asea, the director of the National Crops Resources Research Institute (NaCRRI) at NARO. “Longe 5 for instance, has been marketed for over 14 years. It has done its part and it needs to give way to new improved varieties like UH5051.”

The Gulu-based company Equator Seeds has been at the core of the agricultural transformation in northern Uganda. From 70 metrics tons of seed produced when it started operations in 2012, the company reached an annual capacity of about 7,000 to 10,000 metric tons of certified seed of different crops in 2018. Working with dedicated out-growers such as Anthony Okello, who has a 40-acre piece of land, and 51 farmer cooperatives comprising smallholder farmers, Equator Seeds produces seed of open-pollinated hybrid maize and other crops, which reaches farmers through a network of 380 agro-dealers.

 

“80% of farmers in northern Uganda still use farm-saved or recycled seed, which we consider to be our biggest competitor,” Tonny Okello, CEO of Equator Seeds remarked. “Currently, about 60% of our sales are in maize seed. This share should increase to 70% by 2021. We plan to recruit more agro-dealers, establish more demonstration farms, mostly for the hybrids, to encourage more farmers to adopt our high yielding resilient varieties.”

The two-decade unrest discouraged seed companies from venturing into northern Uganda but now they see its huge potential. “We have received tremendous support from the government, non-governmental organizations, UN and humanitarian agencies for buying seed from us and distributing it to farmers in northern Uganda and South Sudan, to aid their recovery,” Okello said.

Godfrey Asea (right), director of the National Crops Resources Research Institute (NaCRRI), and Uganda’s National Agricultural Research Organization (NARO) maize breeder, Daniel Bomet, visit an improved maize plot at NARO’s Kigumba Station, in central Uganda. (Photo: Joshua Masinde/CIMMYT)
Godfrey Asea (right), director of the National Crops Resources Research Institute (NaCRRI), and Uganda’s National Agricultural Research Organization (NARO) maize breeder, Daniel Bomet, visit an improved maize plot at NARO’s Kigumba Station, in central Uganda. (Photo: Joshua Masinde/CIMMYT)

Social impact

The Ugandan seed sector is dynamic thanks to efficient public-private partnerships. While NARO develops and tests new parental lines and hybrids in their research facilities, they have now ventured into seed production and processing at their 2,000-acre Kigumba Farm in western Uganda through NARO Holdings, their commercial arm.

“Because the demand for improved seed is not always met, NARO Holdings started producing certified seed, but the major focus is on production of early generation seed, which is often a bottleneck for the seed sector,” Asea said.

Aniku Bernard, Farm Manager, examines a maize cob at the foundation seed farm located inside the Lugore Prison premises. (Photo: Joshua Masinde/CIMMYT)
Aniku Bernard, Farm Manager, examines a maize cob at the foundation seed farm located inside the Lugore Prison premises. (Photo: Joshua Masinde/CIMMYT)

Another innovative collaboration has been to work with the Uganda Prisons Service (UPS) establishments to produce maize seed. “When we started this collaboration with UPS, we knew they had some comparative advantages such as vast farmland, ready labor, mechanization equipment and good isolation, which are important for high-quality hybrid maize seed production,” Asea explained. The UPS facility in Lugore, Gulu, which has 978 hectares of land, produces foundation seed of UH5051.

“Prisons offer a big potential to support the growing seed industry,” he said. “Together with CIMMYT, we should build further the capacity of UPS to produce foundation and certified seeds. It provides much-needed income for the institutions. The inmates, in addition to being remunerated for farm labor, are engaged in positive outdoor impactful activities. This skill is helpful for their future reintegration in the society.”

From left to right: Winnie Nanteza, National Crops Resources Research Institute (NaCCRI) communications officer; Daniel Bomet, NARO maize breeder; Byakatonda Tanazio, Assistant Superintendent of Prisons, Lugore Prison, Gulu; Aniku Bernard, Farm Manager at Lugore Prison; and Godfrey Asea, director of NaCRRI, stand for a group photo at the foundation seed production farm inside Lugore Prison. (Photo: Joshua Masinde/CIMMYT)
From left to right: Winnie Nanteza, National Crops Resources Research Institute (NaCCRI) communications officer; Daniel Bomet, NARO maize breeder; Byakatonda Tanazio, Assistant Superintendent of Prisons, Lugore Prison, Gulu; Aniku Bernard, Farm Manager at Lugore Prison; and Godfrey Asea, director of NaCRRI, stand for a group photo at the foundation seed production farm inside Lugore Prison. (Photo: Joshua Masinde/CIMMYT)

CIMMYT wheat scientists receive top honors from US agricultural scientists

CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)
CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)

Two scientists working in the world’s leading public wheat breeding program at the International Maize and Wheat Improvement Center (CIMMYT) have been recognized with awards and fellowships this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, has been honored with the American Society of Agronomy’s International Agronomy Award.

Alexey Morgunov, CIMMYT principal scientist and head of the Turkey-based International Winter Wheat Improvement Program (IWWIP) received the distinction of Fellow from the Crop Science Society of America. Braun was also distinguished with this fellowship.

Excellence in agronomy

The American Society of Agronomy’s International Agronomy Award recognizes outstanding contributions in research, teaching, extension, or administration made outside of the United States by a current agronomist. Braun received the distinction during an awards ceremony and lecture on November 12, 2019. The award committee made its selection based on criteria including degrees, professional positions, and contributions and service to the profession such as publications, patents, and efforts to develop or improve programs, practices, and products.

The award recognizes Braun’s achievements developing and promoting improved wheat varieties and cropping practices that have benefited hundreds of millions of farmers throughout Central Asia, South Asia and North Africa. Nearly half the world’s wheat lands overall — as well as 70 to 80% of all wheat varieties released in Central Asia, South Asia, West Asia, and North Africa — are derived from the research of CIMMYT and its partners.

“I am honored to be recognized by my fellow agronomists,” Braun said. “This award highlights the importance of international research collaboration, because the food security challenges we face do not stop at national borders.”

Braun began his 36-year CIMMYT career in Mexico in 1983. From 1985 to 2005, he led the International Winter Wheat Improvement Program in Turkey, implemented by CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA). As director of CIMMYT’s Global Wheat Program since 2004 and the CGIAR Research Program on Wheat since 2014, he is responsible for the technical direction and implementation of a program that develops and distributes wheat germplasm to more than 200 collaborators in more than 100 countries, grown on over half the spring wheat area in developing countries.

Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (center) receives the Crop Science Society of America Fellow certificate onstage. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (center) receives the Crop Science Society of America Fellow certificate onstage. (Photo: Johanna Franziska Braun/CIMMYT)
Detail of the Crop Science Society of America Fellow certificate for Hans-Joachim Braun. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)

Crop fellows

Braun and Morgunov were also chosen as Fellows, the highest recognition bestowed by the Crop Science Society of America. Members of the society nominate worthy colleagues based on their professional achievements and meritorious service. Fellows are a select group: only three out of every 1,000 of the society’s more than 4,000 active and emeritus members receive the honor.

Morgunov joined CIMMYT in 1991 as a spring wheat breeder, working with former Global Wheat Program Director and World Food Prize laureate Sanjaya Rajaram. In 1994, he moved to Turkey to work as winter wheat breeder, and then to Kazakhstan, where he worked to develop and promote new wheat varieties for the Central Asia and the Caucasus region. He has led the International Winter Wheat Improvement Program in Turkey since 2006. In this role, he has been responsible for the release of more than 80 varieties in the region. He also completed a national inventory for wheat landraces in Turkey.

“I am pleased to be recognized as [a Crop Science Society of America] Fellow,” Morgunov said. “I hope this award brings more attention to the importance of finding, saving and using the vast diversity of crop varieties in the world, for resilient crops and healthy food for all.”

Braun and Morgunov were formally recognized as Fellows on November 13.

The annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field. This year’s meeting was held in San Antonio, Texas.

How Haryana cut stubble burning this season

Delhi’s fight against air pollution has more failures than success. As the Supreme Court lashed out at Punjab, Haryana and Uttar Pradesh on November 6, 2019, for not taking enough measures to curb crop residue burning in their farms, it also asked these states to reward farmers who refrained from doing so with Rs 100 per quintal of crop.

So what is Haryana doing right? The state started early, says S Narayanan, member secretary, Haryana Pollution Control Board.

It identified villages where farm fires were rampant last year and just as the kharif season began in June, it started distributing machines that can eliminate crop residue burning. “We did quite well on the technological front and supplied machines like Super sms, Rotavator, Happy Seeder and Zero Till Seed Drill,” he says.

“Any new technology takes time to be adopted,” says Kailash Chand Kalwania of the non-profit CIMMYT (International Maize and Wheat Improvement Centre). Last year, many farmers were given such machines on subsidy. They used it in small patches.

This year, they saw that the overall cost was less and the yield was high. Read more here.

Closing the yield gap: Why localized analysis matters

General view of the experimental field in Lempira, Honduras. (Photo: Nele Verhulst/CIMMYT)
General view of the experimental field in Lempira, Honduras. (Photo: Nele Verhulst/CIMMYT)

Populations in Central America are rising rapidly, but staple crop production seems unable to keep up with increasing food demands.

Maize yields are particularly low compared to other regions. Cumulatively, farmers in El Salvador, Guatemala, Honduras and Nicaragua produce maize on nearly 2.5 million hectares, with a large proportion of these maize systems also including beans, either through relay cropping or intercropping. Though potential yields are estimated to be as high as 10 metric tons per hectare, average production remains low at around 2.28.

There is clearly immense opportunity for improvement, but it is not always obvious which issues need tackling.

Yield gap analysis — which measures the difference between potential and actual yield — is a useful starting point for addressing the issue and identifying intensification prospects. It is not a new concept in applied agronomy, but it has not been adequately applied in many regions. For example, Analyses of Central America tend to be grouped with the rest of Latin America, making it difficult to provide recommendations tailored to local contexts.

I see a more comprehensive understanding of the region’s specific crop production limitations as the first step towards improving food security.

Along with fellow researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other institutions, we set out to identify the main factors limiting production in these areas. We established field trials in six maize and bean producing regions in El Salvador, Guatemala and Honduras, which represent about three-quarters of the maize producing area. We assessed factors such as water stress, nutrient deficiency, pressure from pests and diseases, and inter-plant competition, hypothesizing that optimized fertilization and supplementary irrigation would have the greatest effects on yields.

A maize cob in La Libertad, El Salvador, shows kernels affected by tar spot complex which have not filled completely (Photo: Nele Verhulst/CIMMYT)
A maize cob in La Libertad, El Salvador, shows kernels affected by tar spot complex which have not filled completely (Photo: Nele Verhulst/CIMMYT)

We found that while improved fertilization improved maize yields by 11% on average, it did not have a significant effect on bean production. Irrigation had no effect, though this was mainly due to good rainfall distribution throughout the growing season in the study year. On average, optimized planting arrangements increased maize yields by 18%, making it the most promising factor we evaluated.

It was interesting though perhaps unsurprising to note that the contribution of each limiting factor to yield gaps carried across all sites and no single treatment effectively increased yields consistently across all sites. The trial results confirmed that production constraints are highly dependent on local management practices and agroecological location.

With this in mind, we recommend that development actors aiming to increase crop production begin by conducting multi-year, participatory experiments to understand the primary causes of yield gaps and identify the limitations specific to the areas in question, as this will allow for more effective research and policy efforts.

Read the full article “Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions” in The Journal of Agricultural Science.

Thomas Payne honored at gathering of crop science peers

The Frank N. Meyer Medal for Plant Genetic Resources. (Photo: Kevin Pixley/CIMMYT)
The Frank N. Meyer Medal for Plant Genetic Resources. (Photo: Kevin Pixley/CIMMYT)

Thomas Payne, head of the Wheat Germplasm Bank at the International Maize and Wheat Improvement Center (CIMMYT), was awarded the Frank N. Meyer Medal for Plant Genetic Resources this morning at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America, held in San Antonio, Texas.

The Frank N. Meyer Medal recognizes contributions to plant germplasm collection and use, as well as dedication and service to humanity through the collection, evaluation or conservation of earth’s genetic resources. The award was presented by Clare Clarice Coyne, U.S. Department of Agriculture (USDA) research geneticist.

As an award recipient, Payne delivered a lecture that touched on the philosophy, history and culture surrounding plant genetic diversity and its collectors, and CIMMYT’s important role in conserving and sharing crop diversity.

The scientist has focused his career on wheat improvement and conservation. In addition to leading CIMMYT’s Wellhausen-Anderson Wheat Genetic Resources Collection, one of the world’s largest collection of wheat and maize germplasm, he manages the CIMMYT International Wheat Improvement Network. He is the current Chair of the Article 15 Group of CGIAR Genebank Managers, and has served as Secretary to the CIMMYT Board of Trustees. His association with CIMMYT began immediately after obtaining a PhD at the University of Nebraska–Lincoln in 1988, and he has held positions for CIMMYT in Ethiopia, Mexico, Syria, Turkey and Zimbabwe.

Thomas Payne delivers a presentation at the Crop Science Society of America’s annual Genetic Resources breakfast, where he received the award. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne delivers a presentation at the Crop Science Society of America’s annual Genetic Resources breakfast, where he received the award. (Photo: Kevin Pixley/CIMMYT)

“CIMMYT is the largest distributor of maize and wheat germplasm worldwide, with materials emanating from its research and breeding programs, as well as held in-trust in the germplasm bank. The Meyer Medal is a reflection of the impact CIMMYT makes in the international research community — and in farmers’ fields throughout the developing world,” Payne said.

Located at CIMMYT headquarters outside Mexico City, the CIMMYT Wheat Germplasm Bank contains nearly 150,000 collections of seed of wheat and related species from more than 100 countries. Collections preserve the diversity of unique native varieties and wild relatives of wheat and are held under long-term storage for the benefit of humanity, in accordance with the 2007 International Treaty on Plant Genetic Resources for Food and Agriculture. The collections are also studied and used as a source of diversity to breed for crucial traits such as heat and drought tolerance, resistance to crop diseases and pests, grain yield productivity, and grain quality. Seed is freely shared on request to researchers, students, and academic and development institutions worldwide.

In his remarks, Payne also highlighted the story of Frank N. Meyer, after whom the award is named. Meyer, an agricultural explorer for the USDA in the 1900s, spent a decade traveling under harsh conditions through China to collect new plant species suitable for production on the United States’s expanding farmland. Among more than 2,500 plants that he introduced to the U.S. — including varieties of soybeans, oats, wild pears, and asparagus — the Meyer lemon was named in his honor. As he pointed out, Meyer worked during a historical period of great scientific discoveries, including those by his contemporaries Marie Curie and the Wright brothers.

Among those attending the ceremony were Payne’s sister, Susan Payne, and CIMMYT colleagues Kevin Pixley, director of Genetic Resources; Denise Costich, head of the CIMMYT Maize Germplasm Bank; and Alexey Morgunov, head of the Turkey-based International Winter Wheat Improvement Program.

The head of CIMMYT’s Global Wheat Program Hans-Joachim Braun and CIMMYT scientist Alexey Morgunov are also receiving honors or awards this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. The meeting convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field.

Thomas Payne (right) celebrates the award with his sister Susan Payne (center) and CIMMYT scientist Alexey Morgunov. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne (left) stands for a photo with CIMMYT’s Director of Genetic Resources Kevin Pixley.
Thomas Payne (left) stands for a photo with CIMMYT’s Director of Genetic Resources Kevin Pixley.
Thomas Payne (left) with Head of CIMMYT’s Maize Germplasm Bank Denise Costich. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne (left) with Head of CIMMYT’s Maize Germplasm Bank Denise Costich. (Photo: Kevin Pixley/CIMMYT)

India pollution: How a farming revolution could solve stubble burning

As pollution in Delhi is soaring, agriculture is seen as a big contributor. Farmers are setting fire to their fields to clear excess crop residue in time for the wheat sowing season. CIMMYT scientist M.L. Jat argues that India now needs to undergo a second, “evergreen” revolution, driven by technology such as the happy seeder.

CIMMYT studies show that agricultural productivity can be improved with the use of happy seeders and super sms machines by between 10 and 15%, by reducing labor costs and time and allowing nutrients from the crop residue to be recycled back into the soil. Dr Jat sees it as a win-win situation: “On one side you are increasing your productivity with the happy seeder,” he says, “And on the other you are saving your resources.”

Read more here.

Scientists develop an early warning system that delivers wheat rust predictions directly to farmers’ phones

One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)
One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)

TEXCOCO, Mexico — Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported this week in Environmental Research Letters, the new early warning system, the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current situation and forecast wheat rust up to a week in advance.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT). It works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK).

This is complemented by crowd-sourced information from the ATA-managed Farmers’ Hotline. The University of Cambridge and the UK Met Office then provide automated 7-day advance forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and national authorities. The information also gets passed on to researchers and farmers.

Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)
Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)

Timely alerts

“If there’s a high risk of wheat rust developing, farmers will get a targeted SMS text alert from the Farmers’ Hotline. This gives the farmer about three weeks to take action,” explained Dave Hodson, principal scientist with CIMMYT and co-author of the research study. The Farmers’ Hotline now has over four million registered farmers and extension agents, enabling rapid information dissemination throughout Ethiopia.

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Wheat rusts are fungal diseases that can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time — a bit like the flu virus,” explained Hodson.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, but the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)
Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)

The cream of the crop

The early warning system puts Ethiopia at the forefront of early warning systems for wheat rust. “Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson. “It’s world-class science from the UK being applied to real-world problems.”

“This is an ideal example of how it is possible to integrate fundamental research in modelling from epidemiology and meteorology with field-based observation of disease to produce an early warning system for a major crop,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge and a co-author of the paper, adding that the approach could be adopted in other countries and for other crops.

“The development of the early warning system was successful because of the great collaborative spirit between all the project partners,” said article co-author Clare Sader-Allen, currently a regional climate modeller at the British Antarctic Survey.

“Clear communication was vital for bringing together the expertise from a diversity of subjects to deliver a common goal: to produce a wheat rust forecast relevant for both policy makers and farmers alike.”


RELATED PUBLICATIONS:

An early warning system to predict and mitigate wheat rust diseases in Ethiopia
https://doi.org/10.1088/1748-9326/ab4034

INTERVIEW OPPORTUNITIES:

Dave Hodson, Senior Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CIMMYT. m.macneil@cgiar.org, +52 (55) 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

ACKNOWLEDGEMENTS:

This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system. This research is supported by CGIAR Fund Donors.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE ETHIOPIAN INSTITUTE OF AGRICULTURAL RESEARCH (EIAR):

The Ethiopian Institute of Agricultural Research (EIAR) is one of the oldest and largest agricultural research institutes in Africa, with roots in the Ethiopian Agricultural Research System (EARS), founded in the late 1940s. EIAR’s objectives are: (1) to generate, develop and adapt agricultural technologies that focus on the needs of the overall agricultural development and its beneficiaries; (2) to coordinate technically the research activities of Ethiopian Agricultural Research System; (3) build up a research capacity and establish a system that will make agricultural research efficient, effective and based on development needs; and (4) popularize agricultural research results. EIAR’s vision is to see improved livelihood of all Ethiopians engaged in agriculture, agro-pastoralism and pastoralism through market competitive agricultural technologies.

Vietnam strengthens ties with CIMMYT

Visitors from the Embassy of Vietnam in Mexico and members of CIMMYT senior management stand for a group photograph next to the Norman Borlaug statue at CIMMYT's global headquarters. (Photo: Jose Luis Olin Martinez for CIMMYT)
Visitors from the Embassy of Vietnam in Mexico and members of CIMMYT senior management stand for a group photograph next to the Norman Borlaug statue at CIMMYT’s global headquarters. (Photo: Jose Luis Olin Martinez for CIMMYT)

Vietnamese officials expressed interest in increased future cooperation with the International Maize and Wheat Improvement Center (CIMMYT). A delegation from the Embassy of Vietnam in Mexico visited CIMMYT’s global headquarters in Texcoco, Mexico, on October 21, 2019. The delegation was composed of Hien Do Tat, First Secretary of Technology Science, and translator Cuc Doan Thi Thu.

CIMMYT sends germplasm to Vietnam and has previously collaborated with the country through several projects. More than twenty Vietnamese scientists have received training from CIMMYT.

The Vietnamese delegation was particularly interested in CIMMYT’s work with drought-tolerant maize and requested expert help with fall armyworm, which has appeared in Vietnam for the first time earlier this year. They also expressed surprise at the range of CIMMYT activities, as they were under the impression that the organization’s sole purpose was plant breeding.

CIMMYT Director General Martin Kropff reinforced interest in further cooperation with Vietnam, emphasizing the importance of appropriate mechanization and sustainable intensification in agricultural development.

Vietnam produced 5.1 million tons of maize a year, grown on more than one million hectares, according to the latest available figures.

Fight against fall armyworm in Asia benefits from experience in other regions

When the destructive fall armyworm arrived in Asia in the summer of 2018, scientists were not taken by surprise. They had been anticipating its arrival on the continent as the next stage of its aggressive eastward journey, driven by changing climatic conditions and international trade routes. The pest, native to North and South America, had invaded and spread throughout most of sub-Saharan Africa within two years, severely damaging billions of dollars of maize crops and threatening food security for millions of people. Asian countries would have to mobilize quickly to cope with this new threat.

After reaching India in 2018, the pest spread to other parts of Asia, including Bangladesh, mainland China, Indonesia, Laos, Myanmar, Nepal, Philippines, Sri Lanka, Taiwan, Thailand and Vietnam.

Fall armyworm is a major threat to Asia’s maize farmers, many of whom derive a crucial source of household income by selling maize as feed grain for the growing poultry sector. What is not sold is paramount for subsistence and daily nutrition in communities in the hills of Nepal, in the tribal regions of India, in the mountainous provinces of southern China, and in parts of Indonesia and the Philippines.

The pest is here to stay

Fall armyworm cannot be eradicated — once it has arrived in an agro-ecosystem, farmers must learn how to cope with it. Farmers in the Americas have lived with this pest for the last two hundred years, but their tools and management techniques cannot be simply applied in Africa or Asia. Solutions need to be tailored to specific countries and local contexts, to account for the vast differences in local ecologies, practices, policies and other conditions.

Timothy J. Krupnik and B.M. Prasanna are two of the scientists responding to fall armyworm in Asia. Both are with the International Maize and Wheat Improvement Center (CIMMYT). As a long-established organization with global presence, CIMMYT had decades of experience managing fall armyworm in its native lands before the global spread started. These scientists see the enormous threat to maize crops in Asia, and the negative impact it could have on the income and wellbeing of smallholders and their families, but they also point to opportunities to develop, validate and deploy effective solutions.

In South Asia, farmers have developed intensive agricultural techniques to produce food for rapidly growing populations, meaning agricultural inputs such as seeds, fertilizer and pesticides are more readily available than in much of Africa. The private sector is generally good at getting solutions to farmers, who are often willing and able to adopt new ways of farming. “The private sector in South Asia is in a good position to exchange and transfer technologies across the region,” explains Prasanna, who leads CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

The accessibility of pesticides also has its risks, says Krupnik, a senior scientist based in Bangladesh. “If used incorrectly, pesticides can be unsafe, environmentally damaging and even ineffective,” he says. Krupnik’s team is currently engaging with pesticide companies in Bangladesh, helping them develop an evidence-based response to fall armyworm. “We want to encourage effective, environmentally safer solutions such as integrated pest management that cause least harm to people and ecosystems,” he explained.

A fall armyworm curls up among the debris of the maize plant it has just eaten at CIMMYT’s screenhouse in Kiboko, Kenya. (Photo: Jennifer Johnson/CIMMYT)
A fall armyworm curls up among the debris of the maize plant it has just eaten at CIMMYT’s screenhouse in Kiboko, Kenya. (Photo: Jennifer Johnson/CIMMYT)

A global effort

The global nature of the challenge may have a silver lining. “Over the last three years, we have learned important lessons on fall armyworm management in Africa, including what technologies work and why,” says Prasanna. “With the pest now a global problem, there is great potential for cooperation among affected countries, especially between Africa and Asia.”

Researchers emphasize that a collective effort is needed to respond to the fall armyworm in Asia. CIMMYT is working with partners around the world to help leverage and share expertise and technologies across borders.

China has as much acreage of maize as the whole African continent, and has tremendous institutional expertise and capacity to deal with new challenges, explains Prasanna. His team is in discussions with Chinese researchers to share knowledge and solutions across Asia.

Bangladesh and Nepal are among the countries seeking linkages with international experts and researchers in other countries.

In Africa, CIMMYT was part of a global coalition of scientists and governments who joined forces in 2017 to tackle the fall armyworm threat and develop scientific solutions. The researchers want to see this approach expand into Asia, supported by the donor community.

As the pest continues its relentless expansion in the region, extensive work is ahead for both research and development institutions. Researchers need to identify and promote best management practices. Technologies will have to be environmentally sustainable, durable and inclusive, says Prasanna.

Joining hands

“To achieve this, we need a multidisciplinary team including breeders, pest management experts, seed specialists, agronomists and socioeconomists, who can share science-based evidence with development partners, governments and farmers,” Prasanna says.

CIMMYT researchers are on the path towards developing improved maize varieties with native genetic resistance to fall armyworm. They are also engaging with farming communities to make sure other integrated pest management solutions are available.

In addition to developing agronomic practices and technologies, scientists are reaching out to farming communities with the right messages, Krupnik explains. “As well as being technical experts, our scientists are embedded in the countries where we work. We’ve lived here for a long time, and understand how to engage with local partners,” he says.

Cross-border collaboration and knowledge transfer is already happening. Partners in Laos enthusiastically adapted fall armyworm informational materials from Bangladesh for local dissemination. Krupnik and his team have also collaborated on a video with guidance on how to identify and scout for fall armyworm in a field, developed by Scientific Animations without Borders.

Fall armyworm will continue its spread across Asia, and researchers will have many questions to answer, such as how fall armyworm interacts with very diverse Asian agro-ecosystems, the pest population dynamics, and measuring the economic impacts of interventions. Solutions need to be developed, validated and deployed for the short, medium and long term. Krupnik and Prasanna hope that international cooperation can support these crucial research-for-development activities.

“Fall armyworm is here to stay. We are running a marathon and not a 100-meter sprint,” proclaimed Prasanna. “Let’s work collectively and strategically so that the farmer is the ultimate winner.”