Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

New project strengthens capacity to fight fall armyworm in Bangladesh

Hundreds of agricultural professionals in Bangladesh were trained in the latest fall armyworm management strategies as part of a new project that will strengthen efforts against this threat to farmers’ income, food security, and health. The new project, Fighting Back Against Fall Armyworm, is supported by USAID and the University of Michigan.

As part of the project, last November over 450 representatives from government, nonprofits and the private sector participated in three-day training to learn how to identify, monitor and apply integrated pest management approaches.

Fall armyworm presents an important threat to farmers’ income, food security and livelihoods as it continues to spread across the country, in addition to health risks if toxic insecticides are indiscriminately used, said Tim Krupnik, senior scientist and agronomist at the International Maize and Wheat Improvement Center (CIMMYT). It is anticipated the course participants will pass on knowledge about the pest and appropriate control practices to around 30,000 farmers in their respective localities.

“Participants were selected for their ability to reliably extend the strategies that can be sustainably implemented by maize farmers across the country,” explained Krupnik. “The immersive training saw participants on their hands and knees learning how to scout, monitor and collect data on fall armyworm,” he said. “They were also trained in alternatives to toxic chemical pesticides, and how and when to make decisions on biological control with parasitoids, bio-pesticides, and low-toxicity chemical pesticide use.”

Following its ferocious spread across Africa from the Americas, fall armyworm first attacked farms in Bangladesh during the winter 2018-2019 season. Combined with highly apparent damage to leaves, its resilience to most chemical control methods has panicked farmers and led researchers to promote integrated pest management strategies.

In this context, the 22-month Fighting Back Against Fall Armyworm project will build the capacity of the public and private sector for effective fall armyworm mitigation.

The hungry caterpillar feeds on more than 80 plant species, but its preferred host is maize — a crop whose acreage is expanding faster than any other cereal in Bangladesh. The pest presents a peculiar challenge as it can disperse over 200 kilometers during its adult stage, laying thousands of eggs along its way.

Once settled on a plant, larvae burrow inside maize whorls or hide under leaves, where they are partially protected from pesticides. In a bid to limit fall armyworm damage, farmers’ indiscriminate application of highly toxic and inappropriate insecticides can encourage the pest to develop resistance, while also presenting important risks to beneficial insects, farmers, and the environment.

Reaching every corner of the country

Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)
Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)

As part of the project, CIMMYT researchers supported Bangladesh’s national Fall Armyworm Task Force to develop an online resource to map the spread of fall armyworm. Scientists are working with the Ministry of Agriculture to digitally collect real-time incidents of its spread to build evidence and gain further insight into the pest.

“Working with farmers and agricultural agencies to collect information on pest population and incidence will assist agricultural development planners, extension agents, and farmers to make informed management decisions,” said Krupnik, who is leading the project.

A key objective is to support national partners to develop educational strategies to facilitate sustainable pest control while also addressing institutional issues needed for efficient response.

“In particular, the Government of Bangladesh has been extremely responsive about the fall armyworm infestation and outbreak. It developed and distributed two fact sheets — the first of which was done before fall armyworm arrived — in addition to arranging workshops throughout the country. Initiatives have been taken for quick registration of microbial pesticides and seed treatments,” commented Syed Nurul Alam, Entomologist and Senior Consultant with CIMMYT.

“It is imperative that governmental extension agents are educated on sustainable ways to control the pest. In general, it is important to advise against the indiscriminate use of pesticides without first implementing alternative control measures, as this pest can build a resistance rendering many chemicals poorly effective,” Krupnik pointed out.

To this end, the project also consciously engages members of the private sector — including pesticide and seed companies as well as agricultural dealers — to ensure they are able to best advise farmers on the nature of the pest and suggest sustainable and long-term solutions. To date, the project has advised over 755 agricultural dealers operating in impacted areas of Bangladesh, with another 1,000 being trained in January 2020.

Project researchers are also working alongside the private sector to trial seed treatment and biologically-based methods of pest control. Biocontrol sees researchers identify, release, and manage natural predators and parasitoids to the fall armyworm, while targeted and biologically-based pesticides are significantly less of a health risk for farmers, while also being effective.

The 22-month project, funded by USAID, has 6 key objectives:

  • Develop educational materials to aid in reaching audiences with information to improve understanding and management of fall armyworm.
  • Assist the Department of Agricultural Extension in deploying awareness raising and training campaigns.
  • Prepare the private sector for appropriate fall armyworm response.
  • Standing task force supported.
  • Generate data and evidence to guide integrated fall armyworm management.

The Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.

To achieve synergies and scale, the project will also be supported in part by in-kind staff time and activities, through linkages to the third phase of the USAID-supported Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Centre (CIMMYT). CSISA and CIMMYT staff work very closely with Bangladesh’s Department of Agricultural Extension and the Bangladesh Maize and Wheat Research Institute (BWMRI) in addition to other partners under the Ministry of Agriculture.

One-minute science: Carolina Rivera explains wheat physiology

Wheat provides, on average, 20% of the calories and protein for more than 4.5 billion people in 94 developing countries. To feed a growing population, we need both better agronomic practices and to grow wheat varieties that can withstand the effects of climate change and resist various pests and diseases.

Watch CIMMYT Wheat Physiologist Carolina Rivera discuss — in just one minute — choosing and breeding desirable wheat traits with higher tolerance to stresses.

CIMMYT scientists join fellow experts in San Diego for world’s largest plant and animal genomics conference

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) presented last week at the International Plant and Animal Genome Conference (PAG) in San Diego, USA.

PAG is the largest agricultural genomics meeting in the world, bringing together over 3,000 leading genetic scientists and researchers from around the world to present their research and share the latest developments in plant and animal genome projects. It provides an important opportunity for CIMMYT scientists to highlight their work translating the latest molecular research developments into wheat and maize breeding solutions for better varieties.

To meet global food demand by 2050, agricultural production must increase by 60% — while at the same time minimizing harm to the environment. This is the process of sustainable intensification, recommended by organizations like the United Nations and the EAT Lancet Commission as a key strategy for transforming our struggling global food systems.

Genomics is crucial to sustainable intensification. By studying a plant or animal’s genetic architecture, researchers can better understand what drives crop or livestock productivity, quality, climate resilience, and resistance to pests and diseases. With this information scientists can speed up efforts to develop better varieties and stay ahead of climate- and disease-related threats.

Philomin Juliana stands next to the logo of the PAG conference. (Photo: CIMMYT)
Philomin Juliana stands next to the logo of the PAG conference. (Photo: CIMMYT)

At the conference, wheat scientist Philomin Juliana shared her findings on successfully identifying significant new chromosomal regions for wheat yield and disease resistance using the full wheat genome map. Juliana and her colleagues have created a freely-available collection of genetic information and markers for more than 40,000 wheat lines which will accelerate efforts to breed superior wheat varieties. She also discussed the value of genomic and high-throughput phenotyping tools for current breeding strategies adopted by CIMMYT to develop climate-resilient wheat.

Principal scientist Sarah Hearne discussed the smarter use of genebank exploration for breeding. Germplasm banks are reserves of native plant variation representing the evolutionary history of the crops we eat. They are a vital source of genetic information, which can accelerate the development of better, more resilient crops. However, it is not easy for breeders and scientists to identify or access the genetic information they need. Using the whole genebank genotypic data, long-term climate data from the origins of the genebank seeds and novel analysis methods, Hearne and her colleagues were able to identify elite genetic breeding material for improved, climate resilient maize varieties. They are now extending this approach to test the value of these data to improve breeding programs and accelerate the development of improved crops.

Distinguished scientist Jose Crossa discussed the latest models and methods for combining phenomic and genomic information to accelerate the development of climate-resilient crop varieties. He highlighted the use of the Artificial Neural Network — a model inspired by the human brain — to model the relationship between input signals and output signals in crops. He also discussed a phenotypic and genomic selection index which can improve response to selection and expected genetic gains for all of an individual plant’s genetic traits simultaneously.

Sarah Hearne presents on the smart use of germplasm banks to accelerate the development of better wheat and maize varieties. (Photo: Francisco Gomez)
Sarah Hearne presents on the smart use of germplasm banks to accelerate the development of better wheat and maize varieties. (Photo: Francisco Gomez)

Principal scientist Kanwarpal Dhugga gave a presentation on approaches to improve resistance against maize lethal necrosis (MLN) in Africa. MLN is an aggressive disease that first appeared in Kenya in 2011, devastating maize production. It has since spread to neighboring countries. Under a grant from the Bill & Melinda Gates Foundation, Dhugga and his colleagues at CIMMYT and Corteva Agriscience have identified a small genomic region explaining more than 50% of variation in MLN resistance. They are currently validating a few candidate genes in this region. Once done, they will use gene editing directly in elite lines from eastern Africa to accelerate the development of improved, disease resistant maize hybrids.

Genomic breeder Umesh Rosyara demonstrated the genomic selection pipeline and other tools at a workshop using the online Galaxy software. Galaxy is an open-source software that allows users to access powerful computational analysis tools. The CGIAR Excellence in Breeding Platform (EiB) has set up an instance of Galaxy that contains a suite of bioinformatics analysis tools, R-packages — a free software environment for statistical computing and graphics — and visualization tools to manage routine genomic selection (GS) and genome wide association studies (GWAS) analysis. This allows crop breeders and genomic scientists without a programming background to conduct these analyses and create crop-specific workflows.

“PAG is currently the main international meeting touching both crop and livestock genomics, so it’s an invaluable chance to connect and share insights with research and breeding colleagues around the world,” said Hearne. “It’s also an important forum to highlight how we are linking upstream and field, and help others do the same.”

Kanwarpal Dhugga (left) takes a selfie with his colleagues in the background during the PAG conference. (Photo: Kanwarpal Dhugga/CIMMYT)
Kanwarpal Dhugga (left) takes a selfie with his colleagues in the background during the PAG conference. (Photo: Kanwarpal Dhugga/CIMMYT)

New international partnership to identify and develop resistance to dangerous wheat disease

CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.
CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.

The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA), recently announced a partnership with the Jiangsu Academy of Agricultural Sciences (JAAS) in China to open a new screening facility for the deadly and fast-spreading fungal wheat disease Fusarium head blight, or FHB.

The new facility, based near the JAAS headquarters in Nanjing, aims to capitalize on CIMMYT’s world-class collection of disease-resistant wheat materials and the diversity of the more than 150,000 wheat germplasm in its Wheat Germplasm Bank to identify and characterize genetics of sources of resistance to FHB and, ultimately, develop new FHB-resistant wheat varieties that can be sown in vulnerable areas around the world.

“The participation of JAAS in the global FHB breeding network will significantly contribute to the development of elite germplasm with good FHB resistance,” said Pawan Singh, head of wheat pathology for CIMMYT.

“We expect that in 5 to 7 years, promising lines with FHB resistance will be available for deployment by both CIMMYT and China to vulnerable farmers, thanks to this new station.”

Fusarium head blight is one of the most dangerous wheat diseases. It can cause up to 50% yield loss and produce severe mycotoxin contamination in food and feed, which affects farmers in the form of increased health care and veterinary care costs, and reduced livestock production.

Even consuming low to moderate amounts of Fusarium mycotoxins may impair intestinal health, immune function and fitness. Deoxynivalenol (DON), a mycotoxin the fungus inducing FHB produces, has been linked to symptoms including nausea, vomiting, and diarrhea. In livestock, Fusarium mycotoxin consumption exacerbates infections with parasites, bacteria and viruses — such as occidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry and swine respiratory disease.

In China, the world’s largest wheat producer, Fusarium head blight is the most important biotic constraint to production.

The disease is extending quickly beyond its traditionally vulnerable wheat growing areas in East Asia, North America, the southern cone of South America, Europe and South Africa — partly as a result of global warming, and partly due to otherwise beneficial, soil-conserving farming practices such as wheat-maize rotation and reduced tillage.

“Through CIMMYT’s connections with national agricultural research systems in developing countries, we can create a global impact for JAAS research, reaching the countries that are expected to be affected the expansion of FHB epidemic area,” said Xu Zhang, head of Triticeae crops research group at the Institute of Food Crops of the Jiangsu Academy of Agricultural Sciences.

The new collaborative effort will target Fusarium head blight research but could potentially expand to research on other wheat diseases as well. Wheat blast, for example, is a devastating disease that spread from South America to Bangladesh in 2016. Considering the geographical closeness of Bangladesh and China, a collaboration with CIMMYT, as one of the leading institutes working on wheat blast, could have a strong impact.

Although the platform is new, the two institutions have a longstanding relationship. The bilateral collaboration between JAAS and CIMMYT began in early 1980s with a shuttle breeding program between China and Mexico to speed up breeding for Fusarium head blight resistance. The two institutions also conducted extensive germplasm exchanges in the 1980s and 1990s, which helped CIMMYT improve resistance to Fusarium head blight, and helped JAAS improve wheat rust resistance.

Currently, JAAS and CIMMYT are working on Fusarium head blight under a project funded by the National Natural Science Foundation of China called “Elite and Durable Resistance to Wheat Fusarium Head Blight” that aims to deploy resistance genes/QTL in Chinese and CIMMYT germplasm and for use in wheat breeding.

This research is supported by CGIAR Fund Donors.


INTERVIEW OPPORTUNITIES:

Xinyao He, Wheat Pathologist and Geneticist, Global Wheat Program, CIMMYT. x.he@cgiar.org, +52 55 5804 2004 ext. 2218

FOR MORE INFORMATION, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat. m.macneil@cgiar.org, +52 55 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 55 5804 2004 ext. 1167.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT JAAS:

Jiangsu Academy of Agricultural Sciences (JAAS), a comprehensive agricultural research institution since 1931, strives to make agriculture more productive and sustainable through technology innovation. JAAS endeavors to carry out the Plan for Rural Vitalization Strategy and our innovation serves agriculture, farmers and the rural areas. JAAS provide more than 80% of new varieties, products and techniques in Jiangsu Province, teach farmers not only to increase yield and quality, but also to challenge conventional practices in pursuit of original ideas in agro-environment protection. For more information, visit home.jaas.ac.cn/.

Seed systems in Nepal are going digital

In Nepal, it takes at least a year to collate the demand and supply of a required type and quantity of seed. A new digital seed information system is likely to change that, as it will enable all value chain actors to access information on seed demand and supply in real time. The information system is currently under development, as part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT).

In this system, a national database allows easy access to an online seed catalogue where characteristics and sources of all registered varieties are available. A balance sheet simultaneously gathers and shares real time information on seed demand and supply by all the stakeholders. The digital platform also helps to plan and monitor seed production and distribution over a period of time.

Screenshot of the DESIS portal, still under development.
Screenshot of the DESIS portal, still under development.

Challenges to seed access 

Over 2,500 seed entrepreneurs engaged in production, processing and marketing of seeds in Nepal rely on public research centers to get early generation seeds of various crops, especially cereals, for subsequent seed multiplication.

“The existing seed information system is cumbersome and the process of collecting information takes a minimum of one year before a seed company knows where to get the required amount and type of seed for multiplication,” said Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) and owner of a seed company in the far west of the country. Similarly, more than 700 rural municipalities and local units in Nepal require seeds to multiply under farmers cooperatives in their area.

One of the critical challenges farmers encounter around the world is timely access to quality seeds, due to unavailability of improved varieties, lack of information about them, and weak planning and supply management. Asmita Shrestha, a farmer in Surkhet district, has been involved in maize farming for the last 20 years. She is unaware of the availability of different types of maize that can be productive in the mid-hill region and therefore loses the opportunity to sow improved maize seeds and produce better harvests.

In Sindhupalchowk district, seed producer Ambika Thapa works in a cooperative and produces hybrid tomato seeds. Her problem is getting access to the right market that can provide a good profit for her efforts. A kilogram of hybrid tomato seed can fetch up to $2,000 in a retail and upscale market. However, she is not getting a quarter of this price due to lack of market information and linkages with buyers. This is the story of many Nepali female farmers, who account for over 60% of the rural farming community, where lack of improved technologies and access to profitable markets challenge farm productivity.

At present, the Seed Quality Control Center (SQCC), Nepal Agriculture Research Council (NARC), the Centre for Crop Development and Agro Bio-diversity Conservation (CCDABC) and the Vegetable Development Directorate (VDD) are using paper-based data collection systems to record and plan seed production every year. Aggregating seed demand and supply data and generating reports takes at least two to three months. Furthermore, individual provinces need to convene meetings to collect and estimate province-level seed demand that must come from rural municipalities and local bodies.

A digital technology solution 

CIMMYT and its partners are leveraging digital technologies to create an integrated Digitally Enabled Seed Information System (DESIS) that is efficient, dynamic and scalable. This initiative was the result of collaboration between U.S. Global Development Lab and USAID under the Digital Development for Feed the Future (D2FTF) initiative, which aimed to demonstrate that digital tools and approaches can accelerate progress towards food security and nutrition goals.

FHI 360 talked to relevant stakeholders in Nepal to assess their needs, as part of the Mobile Solutions Technical Assistance and Research (mSTAR) project, funded by USAID. Based on this work, CIMMYT and its partners identified a local IT expert and launched the development of DESIS.

The Digitally Enabled Seed Information System (DESIS) will help to create market and research linkages for Nepal's seed system.
The Digitally Enabled Seed Information System (DESIS) will help to create market and research linkages for Nepal’s seed system.

DESIS will provide an automated version of the seed balance sheet. Using unique logins, agencies will be able to place their requests and seed producers to post their seed supplies. The platform will help to aggregate and manage breeder, foundation and source seed, as well as certified and labelled seed. The system will also include an offline seed catalogue where users can view seed characteristics, compare seeds and select released and registered varieties available in Nepal. Users can also generate seed quality reports on batches of seeds.

“As the main host of this system, the platform is well designed and perfectly applicable to the needs of SQCC,” said Madan Thapa, Chief of SQCC, during the initial user tests held at his office. Thapa also expressed the potential of the platform to adapt to future needs.

The system will also link farmers to seed suppliers and buyers, to build a better internal Nepalese seed market. The larger goal of DESIS is to help farmers grow better yields and improve livelihoods, while contributing to food security nationwide.

DESIS is planned to roll out in Nepal in early 2020. Primary users will be seed companies, agricultural research centers, the Ministry of Agriculture and Livestock Development, agrovets, cooperatives, farmers, development partners, universities, researchers, policy makers, and international institutions. The system is based on an open source software and will be available on a mobile website and Android app.

“It is highly secure, user friendly and easy to update,” said Warren Dally, an IT consultant who currently oversees the technical details of the software and the implementation process.

Farmers in Nepal show their most popular digital tool, a mobile phone, during a training. (Photo: Bandana Pradhan/CIMMYT)
Farmers in Nepal show their most popular digital tool, a mobile phone, during a training. (Photo: Bandana Pradhan/CIMMYT)

As part of the NSAF project, CIMMYT is also working to roll out digital seed inspection and a QR code-based quality certification system. The higher vision of the system is to create a seed data warehouse that integrates the seed information portal and the seed market information system.

Digital solutions are critical to link the agricultural market with vital information so farmers can make decisions for better production and harvest. It will not be long before farmers like Asmita and Ambika can easily access information using their mobile phones on the type of variety suitable to grow in their region and the best market to sell their products.

Fruitful year for wheat, maize varieties

Pakistan has released 20 new high-yielding, disease-resistant and climate change–resilient wheat and maize varieties during the year.

The achievement came mainly on the back of a partnership between the International Maize and Wheat Improvement Centre (CIMMYT) and the Pakistan Agricultural Research Council (PARC) with support from the US development agency USAID.

Read more here.

Breaking Ground: Mandeep Randhawa fights wheat diseases using genetic resistance tools

With new pathogens of crop diseases continuously emerging and threatening food production and security, wheat breeder and wheat rust pathologist Mandeep Randhawa and his colleagues at the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural and Research Organization (KALRO) are working tirelessly to identify new sources of rust resistance through gene mapping tools and rigorous field testing.

With wheat accounting for around 20% of the world’s calories and protein, outbreaks of disease can pose a major threat to global food security and farmer livelihoods. The most common and prevalent diseases are wheat rusts — fungal diseases that can be dispersed by wind over long distances, which can quickly cause devastating epidemics and dramatically reduce wheat yields.

To tackle the problem, Randhawa and his colleagues work on developing improved wheat varieties by combining disease-resistant traits with high yielding ones, to ensure that farmers can get the best wheat yields possible while evading diseases.

Screening for disease

A native of the Punjab state of India, Randhawa joined CIMMYT as a Post-doctoral Fellow in Wheat Rust Resistance Genetics in 2015. He now works as a CIMMYT scientist and manages the Stem Rust Screening Platform in Njoro, Kenya, which supports screening against stem rust of up to 50,000 wheat lines per year from as many as 20 countries. Over the last 10 years about 650,000 wheat lines have been evaluated for stem rust resistance at the facility.

“The platform’s main focus is on evaluation of wheat lines against the stem rust race Ug99 and its derivative races prevalent in Eastern to Southern Africa, the Middle East and Iran,” explains Randhawa. Ug99 is a highly virulent race of stem rust, first discovered two decades ago in Uganda. The race caused major epidemics in Kenya in 2002 and 2004.

“East African highlands are also a hotspot for stripe wheat rust so, at the same time, we evaluate wheat lines for this disease,” adds Randhawa.

The facility supports a shuttle breeding scheme between CIMMYT Mexico and Kenya, which allows breeders to plant at two locations, select for stem rust (Ug99) resistance and speed up the development of disease-resistant wheat lines.

“Wheat rusts in general are very fast evolving and new strains are continuously emerging. Previously developed rust-resistant wheat varieties can succumb to new virulent strains, making the varieties susceptible. If the farmers grow susceptible varieties, rust will take on those varieties, resulting in huge yield losses if no control measures are adopted,” explains Randhawa.

Helping and sharing

For Randhawa, helping farmers is the main goal. “Our focus is on resource-poor farmers from developing countries. They don’t have enough resources to buy the fungicide. Using chemicals to control diseases is expensive and harmful to the environment. So in that case we provide them solutions in the form of wheat varieties which are high yielding but they have long-lasting resistance to different diseases as well.”

Under the Borlaug Global Rust Initiative, Randhawa and his team collaborate with KALRO to facilitate the transfer of promising wheat lines with high yield potential and rust resistance to a national pipeline for soon-to-be-released wheat varieties.

When he is not screening for wheat rusts diseases, Randhawa  also organizes annual trainings on stem rust diagnosis and germplasm evaluation for young wheat breeders and pathologists from developing countries. More than 220 wheat researchers have been trained over the last decade.

Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)
Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)

A farmer at heart

Randhawa always had an interest in agricultural science. “Initially, my parents wanted me to be a medical doctor, but I was more interested in teaching science to school students,” he says. “Since my childhood, I used to hear of wheat and diseases affecting wheat crops, especially yellow rust — which is called peeli kungi in my local language.” This childhood interest led him to study wheat genetics at Punjab Agricultural University in Ludhiana, India.

His mentors encouraged him to pursue a doctorate from the Plant Breeding Institute (PBI) Cobbitty at the University of Sydney in Australia, which Randhawa describes as “the mecca of wheat rust research.” He characterized two new stripe rust resistance genes formally named as Yr51 and Yr57 from a wheat landrace. He also contributed to the mapping of a new adult plant stem rust resistance gene Sr56.

Coming from India, his move to Australia was a pivotal moment for him in his career and his identity — he now considers himself Indian-Australian.

If he had not become a scientist, Randhawa would be a farmer, he says. “Farming is my passion, as I like to grow crops and to have rich harvest using my scientific knowledge and modern technologies.”

At CIMMYT, Randhawa has a constant stream of work identifying and characterizing new sources of rust resistance. “Dealing with different types of challenges in the wheat field is what keeps me on my toes. New races of diseases are continuously emerging. As pests and pathogens have no boundaries, we must work hand-in-hand to develop tools and technologies to fight fast evolving pests and pathogens,” says Randhawa.

He credits his mentor Ravi Singh, Scientist and Head of Global Wheat Improvement at CIMMYT, for motivating him to continue his work. “Tireless efforts and energetic thoughts of my professional guru Dr. Ravi Singh inspire and drive me to achieve research objectives.”

Policy brief highlights opportunities to promote balanced nutrient management in South Asia

Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)
Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)

Over the last few decades, deteriorating soil fertility has been linked to decreasing agricultural yields in South Asia, a region marked by inequities in food and nutritional security.

As the demand for fertilizers grows, researchers are working with government and businesses to promote balanced nutrient management and the appropriate use of organic amendments among smallholder farmers. The Cereal Systems Initiative for South Asia (CSISA) has published a new policy brief outlining opportunities for innovation in the region.

Like all living organisms, crops need access to the right amount of nutrients for optimal growth. Plants get nutrients — like nitrogen, phosphorus, and potassium, in addition to other crucially important micronutrients — from soils and carbon, hydrogen, oxygen from the air and water. When existing soil nutrients are not sufficient to sustain good crop yields, additional nutrients must be added through fertilizers or manures, compost or crop residues. When this is not done, farmers effectively mine the soil of fertility, producing short-term gains, but undermining long-term sustainability.

Nutrient management involves using crop nutrients as efficiently as possible to improve productivity while reducing costs for farmers, and also protecting the environment by limiting greenhouse gas emissions and water quality contamination. The key behind nutrient management is appropriately balancing soil nutrient inputs — which can be enhanced when combined with appropriate soil organic matter management — with crop requirements. When the right quantities are applied at the right times, added nutrients help crops yields flourish. On the other hand, applying too little will limit yield and applying too much can harm the environment, while also compromising farmers’ ability to feed themselves or turn profits from the crops they grow.

Smallholder farmers in South Asia commonly practice poor nutrition management with a heavy reliance on nitrogenous fertilizer and a lack of balanced inputs and micronutrients. Declining soil fertility, improperly designed policy and nutrient management guidelines, and weak fertilizer marketing and distribution problems are among the reasons farmers fail to improve fertility on their farms. This is why it is imperative to support efforts to improve soil organic matter management and foster innovation in the fertilizer industry, and find innovative ways to target farmers, provide extension services and communicate messages on cost-effective and more sustainable strategies for matching high yields with appropriate nutrient management.

Cross-country learning reveals opportunities for improved nutrient management. The policy brief is based on outcomes from a cross-country dialogue facilitated by CSISA earlier this year in Kathmandu. The meeting saw researchers, government and business stakeholders from Bangladesh, India, Nepal, and Sri Lanka discuss challenges and opportunities to improving farmer knowledge and access to sufficient nutrients. Several key outcomes for policy makers and representatives of the agricultural development sector were identified during the workshop, and are included in the brief.

Extension services as an effective way to encourage a more balanced use of fertilizers among smallholder farmers. There is a need to build the capacity of extension to educate smallholders on a plant’s nutritional needs and proper fertilization. It also details how farmers’ needs assessments and human-centered design approaches need to be integrated while developing and delivering nutrient application recommendations and extension materials.

Nutrient subsidies must be reviewed to ensure they balance micro and macro-nutrients. Cross-country learning and evidence sharing on policies and subsidies to promote balanced nutrient application are discussed in the brief, as is the need to balance micro and macro-nutrient subsidies, in addition to the organization of subsidy programs in ways that assure farmers get access the right nutrients when and where they are needed the most. The brief also suggests additional research and evidence are needed to identify ways to assure that farmers’ behavior changes in response to subsidy programs.

Market, policy, and product innovations in the fertilizer industry must be encouraged. It describes the need for blended fertilizer products and programs to support them. A blend is made by mixing two or more fertilizer materials. For example, particles of nitrogen, phosphate and small amounts of secondary nutrients and micronutrients mixed together. Experience with blended products are uneven in the region, and markets for blends are nascent in Bangladesh and Nepal in particular. Cross-country technical support on how to develop blending factories and markets could be leveraged to accelerate blended fertilizer markets and to identify ways to ensure equitable access to these potentially beneficial products for smallholder farmers.

Download the CSISA Policy and Research Note:
Development of Balanced Nutrient Management Innovations in South Asia: Lessons from Bangladesh, India, Nepal, and Sri Lanka.

The CSISA project is led by CIMMYT with partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI) and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

Prevention is better than cure

Whenever seed is transferred between countries, continents or regions there is an inherent risk that new plant pathogens could spread to previously non-infested areas — with potentially devastating consequences. FAO estimates that these pathogens are responsible for the loss of up to 40% of global food crops, and for trade losses in agricultural products exceeding $220 billion each year.

With old and new pests and diseases causing devastation across the world, it is becoming increasingly important to consider plant health. This is especially true at the International Maize and Wheat Improvement Center (CIMMYT), an organization which processes and distributes enormous quantities of seed each year and in 2019 alone sent over 10,000 tons to more than 100 partners in Africa, the Americas, Asia and Europe.

Amos Alakonya joined CIMMYT in July 2019, and as head of the organization’s Seed Health Unit he is acutely aware of the need to mitigate risk throughout the seed production value chain.

In the lead up to this year’s International Phytosanitary Awareness Week, the plant pathologist sits down to discuss pests, screening procedures, and explain why everyone should be talking about seed health.

Amos Alakonya, head of CIMMYT's Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)
Amos Alakonya, head of CIMMYT’s Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)

Can you start by telling us about the CGIAR Germplasm Health Unit consortium and what it does?

Within CGIAR we have a cluster called Genebank Platform whose main function is to support CGIAR efforts in conservation and distribution of germplasm.  Ten CGIAR Centers have germplasm banks that work closely with germplasm health units to ensure that they only distribute plant materials free from pests and diseases.

What is the procedure for introducing seed at CIMMYT?

At CIMMYT, researchers must follow the correct procedure when bringing in seed.  Once someone has identified the need to bring in seed, contacted a supplier and agreed on the genotypes and amount required, the responsibility is transferred to the Seed Health Unit. We take care of communication with the seed supplier and provide support in acquisition of the necessary phytosanitary documentation that will ensure compliance with host country rules.

For instance, we will process and provide a plant import permit allowing us to bring in the seed while also stipulating the conditions it must meet before entry into Mexico. This document is used as the standard guide by the authorities in the supplier country, commonly referred to us National Plant Protection Organization (NPPO). The NPPO will then perform a pre-shipment verification and issue a phytosanitary certificate if the seed meets the standards stated in the import permit.

Because we distribute our materials as public goods, we ensure that all seed sent out or received can be used and distributed without restrictions from the supplier or the recipient. This is achieved by the signing of a standard material transfer agreement that complies with International treaty on Plant Genetic Resources for Food and Agriculture. This is done through CIMMYT’s legal unit.

Petri dishes and a microscope in Amos Alakonya's lab. (Photo: Eleusis Llanderal/CIMMYT)
Petri dishes and a microscope in Amos Alakonya’s lab. (Photo: Eleusis Llanderal/CIMMYT)

Once we have received all the necessary documents, materials are cleared through customs and delivered to the lab, where we begin our analysis. The first thing we do is assess the material visually and confirm there is no discoloration and no foreign material like soil or seeds from other species. At the next stage, we set up several assays to detect fungi, bacteria and viruses. We only release seed to scientists or allow distribution after we’ve confirmed they are free from injurious pathogens. Overall, this process takes between 25 and 40 days, so scientists must plan ahead to avoid any inconvenience.

That sounds like a complex process. Do you face any challenges along the way?

There are several challenges but we work around them. One of the biggest ones is meeting up with time expectations. For example, every scientist wants to make sure that they’re on track, but sometimes the seed takes longer than expected to arrive or the documentation gets misplaced which means the seed cannot be released from customs in time.

Even after a delay, the seed has to still pass through the standard health testing procedure. Sometimes we find that the supplier’s NPPO hasn’t carried out the right tests, so we bring in seed that turns out to be non-compliant and may end up being destroyed as a result. However, we only recommend seed destruction in cases where we can’t mitigate.

That’s why it’s crucial that everyone — at all stages of the seed production value chain — is aware of the risks and appropriate mitigation processes. These include checking seed before planting, regular field inspections, and observing field hygiene and spraying regimes.

The theme for this year’s event focuses on transboundary threats to plant health. Are there any emerging ones that you’re concerned about?

Currently there are three main concerns. The first is Maize Lethal Necrosis. The disease was initially reported in the USA and Peru in 1977, but since 2011 the disease has been invading farms in east and central Africa. Because of this, maize breeders in the region cannot send seed directly to their partners in other regions of the world without going through a quarantine field station in Zimbabwe. This comes with additional costs and time burden to the program.

We’re also very concerned about wheat blast, which is now present in Bangladesh where we have trials and share seed in both directions. We have therefore already put in place screening tools against wheat blast to ensure we do not introduce it into experimental fields in Mexico.

And finally, we have the fall armyworm. This pest is indigenous to South America where it is less ferocious, but ever since it reached Africa around 2016 it has been causing destruction to maize and costing farmers lots of money to control through application of chemicals. This emerging disease really undermines food security efforts.

This is obviously an important topic to raise global awareness about. Why do you think it is so crucial to discuss seed health within CIMMYT internally as well?

Amos Alakonya, head of CIMMYT's Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)
Amos Alakonya, head of CIMMYT’s Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)

It’s very important that everyone working at CIMMYT, and especially those working with seed, is aware of the potential risks because about 30% of maize and 50% of wheat grown worldwide can be traced to CIMMYT germplasm. And it’s even more important for Mexico because most of our wheat breeding program is based here and it is also the center of origin for maize. With partners in more than 100 countries we have to be extremely vigilant. If anything goes wrong here, many countries will be at risk.

Ultimately, we want people to be aware of the important role they play in ensuring phytosanitary compliance because prevention is better than cure. We would like to envisage a situation where everybody in CIMMYT is aware of the mitigation processes that have been put in place to ensure safe seed exchanges.

Will you continue working to raise awareness beyond this year’s event?

Yes. In December 2018, the United Nations declared 2020 the International Year of Plant Health. Everybody will be encouraged to take this opportunity to inform people about the importance of seed health, especially as it relates to food security, environmental conservation and economic empowerment.

It’s exciting because this event only happens every 30 to 50 years, so this is really a once in a lifetime opportunity to showcase the work we do every day, both as a unit and in collaboration with our global partners.

Cover photo:
A mixture of maize seeds seen in close-up. (Photo: Xochiquetzal Fonseca/CIMMYT)

Malawi farmers nurture soil grow incomes with conservation agriculture

The International Maize and Wheat Improvement Center (CIMMYT) introduced farmers Kassim Massi and Joyce Makawa to conservation agriculture, along with five other families in their community.

“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains.

Read more here.

What is wheat blast?

What is wheat blast disease?

Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in tropical areas in South America and South Asia. Directly striking the wheat ear, wheat blast can shrivel and deform the grain in less than a week from the first symptoms, leaving farmers no time to act.

The disease, caused by the fungus Magnaporthe oryzae pathotype triticum (MoT), can spread through infected seeds and survives on crop residues, as well as by spores that can travel long distances in the air.

Magnaporthe oryzae can infect many grasses, including barley, lolium, rice, and wheat, but specific isolates of this pathogen generally infect limited species; that is, wheat isolates infect preferably wheat plants but can use several more cereal and grass species as alternate hosts. The Bangladesh wheat blast isolate is being studied to determine its host range. The Magnaporthe oryzae genome is well-studied but major gaps remain in knowledge about its epidemiology.

The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.
The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.

Where is wheat blast found?

First officially identified in Brazil in 1985, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s. It continues to seriously threaten the potential for wheat cropping in the region.

In 2016, wheat blast spread to Bangladesh, which suffered a severe outbreak. It has impacted around 15,000 hectares of land in eight districts, reducing yield on average by as much as 51% in the affected fields.

Wheat-producing countries and presence of wheat blast.
Wheat-producing countries and presence of wheat blast.

How does blast infect a wheat crop?

Wheat blast spreads through infected seeds, crop residues as well as by spores that can travel long distances in the air.

Blast appears sporadically on wheat and grows well on numerous other plants and crops, so rotations do not control it. The irregular frequency of outbreaks also makes it hard to understand or predict the precise conditions for disease development, or to methodically select resistant wheat lines.

At present blast requires concurrent heat and humidity to develop and is confined to areas with those conditions. However, crop fungi are known to mutate and adapt to new conditions, which should be considered in management efforts.

How can farmers prevent and manage wheat blast?

There are no widely available resistant varieties, and fungicides are expensive and provide only a partial defense. They are also often hard to obtain or use in the regions where blast occurs, and must be applied well before any symptoms appear — a prohibitive expense for many farmers.

The Magnaporthe oryzae fungus is physiologically and genetically complex, so even after more than three decades, scientists do not fully understand how it interacts with wheat or which genes in wheat confer durable resistance.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) are partnering with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. Through the USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects, CIMMYT and its partners are developing agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.

CIMMYT works in a global collaboration to mitigate the threat of wheat blast, funded by the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Swedish Research Council (VetenskapsrĂ„det). Some of the partners who collaborate include the Bangladesh Wheat and Maize Research Institute (BWMRI), Bolivia’s Instituto Nacional de InnovaciĂłn Agropecuaria y Forestal (INIAF), Kansas State University and the Agricultural Research Service of the US (USDA-ARS).