Skip to main content

Theme: Nutrition, health and food security

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization. CIMMYT scientists tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices, ensuring that those who most depend on agriculture have enough to make a living and feed their families. The U.N. projects that the global population will increase to more than 9 billion people by 2050, which means that the successes and failures of wheat and maize farmers will continue to have a crucial impact on food security. Findings by the Intergovernmental Panel on Climate Change, which show heat waves could occur more often and mean global surface temperatures could rise by up to 5 degrees Celsius throughout the century, indicate that increasing yield alone will be insufficient to meet future demand for food.

Achieving widespread food and nutritional security for the world’s poorest people is more complex than simply boosting production. Biofortification of maize and wheat helps increase the vitamins and minerals in these key crops. CIMMYT helps families grow and eat provitamin A enriched maize, zinc-enhanced maize and wheat varieties, and quality protein maize. CIMMYT also works on improving food health and safety, by reducing mycotoxin levels in the global food chain. Mycotoxins are produced by fungi that colonize in food crops, and cause health problems or even death in humans or animals. Worldwide, CIMMYT helps train food processors to reduce fungal contamination in maize, and promotes affordable technologies and training to detect mycotoxins and reduce exposure.

Ethiopian wheat farmers adopt quality seed and a vision for a more profitable future

Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)
Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)

High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.

These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.

“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”

Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.

“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”

The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.

Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.

A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.

Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).

Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.

“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”

RELATED RESEARCH PUBLICATIONS:

Achievements in fast-track variety testing, seed multiplication and scaling of rust resistant varieties: Lessons from the wheat seed scaling project, Ethiopia.

INTERVIEW OPPORTUNITIES:

Bekele Abeyo, Senior Scientist, CIMMYT.

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Simret Yasabu, Communications officer, CIMMYT. s.yasabu@cgiar.org, +251 911662511 (cell).

PHOTOS AVAILABLE:

Seed scaling in Ethiopia

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

In the best possible taste

The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.

They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.

In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.

In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.

Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.

Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.

Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Tastes differ

“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”

For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.

A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.

“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.

Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)

That’s the way I like it

For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.

Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.

While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.

“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”

Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.

“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.

New crop varieties set to address drought, malnutrition

Test plot in Malawi includes drought-tolerant maize varieties developed by the International Maize and Wheat Improvement Center (CIMMYT); other maize varieties that are both drought-tolerant and high in vitamin A, developed by the HarvestPlus program and CIMMYT; and a high-iron bean variety developed by HarvestPlus and the International Center for Tropical Agriculture (CIAT).

Through thirty of these test plots established in the current growing season, the Clinton Development Initative, HarvestPlus and CIMMYT partners are reaching 30 000 farmers in 10 districts of Malawi.

Read more here: https://www.mwnation.com/new-crop-varieties-set-to-address-drought-malnutrition/

CIMMYT and Pakistan: 60 years of collaboration

A new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

Cover photo: A wheat field in Pakistan, ready for harvest. (Photo: Kashif Syed/CIMMYT)

CGIAR is receiving applications to join the One CGIAR Common Board

Sita Kumari, a farmer, stands on a maize field in Nepal. (Photo: C. de Bode/CGIAR)
Sita Kumari, a farmer, stands on a maize field in Nepal. (Photo: C. de Bode/CGIAR)

The world is changing, and so is CGIAR. To achieve the Sustainable Development Goals by 2030, food systems — the way we grow, catch, transport, process, trade, and consume food — must be transformed, while meeting the challenges of climate change, and restoring the natural environment. The global pandemic further highlights the need for an integrated approach to food systems, and human, animal and environmental health.

In the face of these interdependent challenges, CGIAR, as the world’s largest public research network on food systems, is undergoing a dynamic transformation of its partnerships, knowledge, assets and global presence. Emerging as One CGIAR, it is sharpening its mission and impact focus to 2030, in line with the Sustainable Development Goals. CGIAR is integrating management, policies, and services; finding new, more impactful ways of doing research; sharing and investing more, pooled funding; and unifying its governance, including creation of the One CGIAR Common Board.

CGIAR’s Nominations Committee invites applications from qualified individuals to serve as members of the One CGIAR Common Board. The anticipated appointment date is September 1, 2020. Board members will be central to the transformation of CGIAR and its mission to deliver on global goals. The role presents opportunities to work with leaders across the CGIAR System, forging new linkages and partnerships in pursuit of an innovative, vital agenda.

For more details, please visit:
One CGIAR Common Board members (SRI Executive)

This notice was originally published on the CGIAR website:
Invitation to join the One CGIAR Common Board

CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services. Its research is carried out by 15 CGIAR Centers in close collaboration with hundreds of partners, including research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

Out of the classroom and into the field

When farmers in rural Kasungu, Malawi, are asked to list some of the challenges they face, much of what they say is to be expected. Crop pests, climate change, low soil fertility, and lack of improved seed and purchasing power — these are faced by smallholders across districts and the country as a whole.

But there is one surprising response. “Sometimes it’s difficult to get feedback from research centers on what does and doesn’t work,” says Maxwell Phiri.

Capacity building and knowledge transfer are key elements of agricultural development work, but there is often a gap between research, outreach and extension to farmers. New techniques and crop varieties tested at experimental stations can take a while to reach rural communities, who want solutions to the challenges they are facing in real time.

“But now it’s easier for us because the research is being done here.” Phiri points to the farmer field school in Msambafumu, a few hectares of communal land where 23 smallholders from the surrounding area meet regularly to learn about new technologies and farming techniques.

At the school they have been able to learn first-hand about improved and new agricultural practices and technologies. Following an introduction to climate-smart agriculture practices, they have moved on to agroforestry, learning about the benefits of intercropping drought-tolerant maize with pigeon peas and fruit trees. “We’ve even started practicing climate-smart agriculture in our own fields and planting agroforestry trees,” says Ntendeleza Mwale, a member of the field school in Msambafumu and chair of a network of 17 schools in the district. “Now everybody is growing fruit trees at home.”

“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)
“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)

Back to school

A farmer field school is a group of 25-30 farmers, led by a master trainer, who come together to solve common challenges faced in their local area, such as soil degradation or poor water availability. Since 2014, the Government of Malawi has been using this innovative approach to help farmers learn about and improve their production systems through the KULIMA project. With support from a CGIAR consortium led by the International Potato Center (CIP), 15 schools have been established across the districts of Kasungu, Mulanje and Mzuzu, including master training hubs and outreach centers run by NGOs.

The overall objective is to increase agricultural productivity and diversification by upscaling climate-smart technologies,” explains Mathinda Sopo, a monitoring and evaluation specialist and project manager at the International Maize and Wheat Improvement Center (CIMMYT). “Master trainer candidates are selected in each district and then invited to sit down with researchers and identify their core production challenges. The plans are then developed collaboratively and based on agroecological zone.”

In February 2020, a new cohort of trainees arrived at the Lisasadizi Regional Training Center in Kasungu, where the Ministry of Agriculture coordinates trainings on four key topics — soil health, climate change, pests and diseases and nutrition — in collaboration with the UN Food and Agriculture Organization (FAO) and the CGIAR consortium, supported by the German development agency GIZ.

The 13-week residential course is mostly practical but does include some classroom-based study and a community outreach component. Guided by a facilitator — usually a researcher or extension worker — participants are encouraged to learn from their experiences as they conduct experiments in their own fields, make observations and evaluate results throughout the cropping season. Outside of the core curriculum, they are free to investigate additional topics of their own choice.

After completing the course, master trainers move back to their respective areas to help train facilitators, who are ultimately responsible for running the field schools with support from NGO extension staff.

“The CGIAR centers bring in technologies they want to promote like improved crop varieties, but there are ongoing evaluations throughout the process to respond to newly emerging challenges such as fall armyworm,” says Sopo. “There’s also a review at the end of each season to discuss lessons learned and knowledge gaps.”

CIMMYT, for example, is focusing on promoting drought-tolerant, quality protein maize (QPM), and provitamin A maize, as well as climate-smart agriculture practices. At Msambafumu, the group have been comparing five improved maize varieties with local ones. “So far we’ve seen that the new varieties have bigger yields and cob sizes,” says Mwale. “Varieties like Chitedze 2 QPM and MH43A are also early maturing and are more nutritious.”

Farmers at the field schools in Msambafumu and Tiyese, in Malawi, have been surprised to find that banana trees can be grown in their area. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)

Learning by doing

A few kilometers down the road, in Galika village, members of the Tiyese field school have been learning how to control a variety of pests and diseases. So far, they have been taught about different pesticides and the benefits of using inoculant on soya beans and ground nuts to improve soil fertility, and how to identify and mitigate disease in susceptible potato varieties. They have also been learning how to apply Aflasafe while crops are still in the field to reduce aflatoxins in maize and groundnuts.

But the most pressing challenge is fall armyworm, says Matolino Zimba, a member of the Tiyese field school. “We’ve been trying new methods for controlling it,” he explains. “Last year we planted mucuna beans in our banana orchard as a cover crop. Later we soaked mucuna leaves in water and poured the solution on the infested maize and noticed that the worms were dying.”

Zimba is satisfied with the learning methods at the field school. “This approach is better for us because we get to see the process, rather than just receiving an explanation.”

Emily Kaponda agrees. She first joined the group after noticing that participating farmers were getting higher yields by using new planting methods. “The school has a smaller plot of land than I do, but their bundles of maize were much larger,” she explains.

Since joining the field school, she has learned how to increase her yields, how to conserve moisture in the soil using zero-tillage farming and the importance of diversifying her family’s diets. “We’re learning how we can use cassava or sweet potato as a starch, instead of only using maize.”

Zimba and Kaponda are both excited to be trying out QPM and provitamin A maize varieties, as well as new varieties of cassava, orange-fleshed sweet potato, improved groundnuts, biofortified beans and bananas. Much like their peers at Msambafumu, they had not known that many of these could be grown in the area, and the group has already started planning to multiply planting materials to use in their own fields next year.

“These groups are really inspirational,” says Sopo. “Most members are already practicing things they’ve learned at their school and are getting positive results.”

Sopo is already seeing success stories from schools established one year ago, but collaboration will need to be sustained to ensure lasting progress. A new research initiative, Development-Smart Innovations through Research in Agriculture (DeSIRA), will help to maintain the positive feedback loop by investigating emerging issues raised during on-farm experiments. “We can take farmer observations from the study plots to DeSIRA for further research, and the outputs from that will complement KULIMA.”

Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)

IFPRI, IRRI, CIMMYT, WorldFish make joint call for measures to avert risk to food system

World’s leading food security think-tank and research centres have recommended Bangladesh to ensure transportation of food from rural to urban areas and the flow of crucial inputs to farmers through market systems so that risk to food system during Covid-19 pandemic can be averted.

Read more here: https://www.dhakatribune.com/business/2020/04/22/ifpri-irri-cimmyt-worldfish-make-joint-call-for-measures-to-avert-risk-to-food-system

Coronavirus lockdown diets look the same the world over: Bread, beans, and comfort food

Of the 6,000 plant species that have been cultivated by humans, just nine of them account for 66% of cultivated crops, according to the FAO’s 2019 report from the Commission on Genetic Resources for Food and Agriculture. Of the 7,774 local breeds of livestock worldwide, 26% are in danger of becoming extinct.

That poses dangers for the robustness of the environment, the safety of our food supply chain, and even our potential exposure to pandemics, due to diseases that jump from animals to humans. It also makes our food less nutritious, less interesting—and less unique.

The COVID-19 crisis could offer a chance to reassess the way we eat—to revamp the diversity of our diets and our food systems, revisiting local and forgotten foods, particularly when it comes to fruits and vegetables.

Read more here: https://fortune.com/2020/04/18/coronavirus-cooking-comfort-food-beans-bread-lockdown-diet-menu-yeast-covid-19/ 

Conservation agriculture key in meeting UN Sustainable Development Goals

During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)
During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)

An international team of scientists has provided a sweeping new analysis of the benefits of conservation agriculture for crop performance, water use efficiency, farmers’ incomes and climate action across a variety of cropping systems and environments in South Asia.

The analysis, published today in Nature Sustainability, is the first of its kind to synthesize existing studies on conservation agriculture in South Asia and allows policy makers to prioritize where and which cropping systems to deploy conservation agriculture techniques. The study uses data from over 9,500 site-year comparisons across South Asia.

According to M.L. Jat, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study, conservation agriculture also offers positive contributions to the Sustainable Development Goals of no poverty, zero hunger, good health and wellbeing, climate action and clean water.

“Conservation agriculture is going to be key to meet the United Nations Sustainable Development Goals,” echoed JK Ladha, adjunct professor at the University of California, Davis, and co-author of the study.

Scientists from CIMMYT, the Indian Council of Agricultural Research (ICAR), the University of California, Davis, the International Rice Research Institute (IRRI) and Cornell University looked at a variety of agricultural, economic and environmental performance indicators — including crop yields, water use efficiency, economic return, greenhouse gas emissions and global warming potential — and compared how they correlated with conservation agriculture conditions in smallholder farms and field stations across South Asia.

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Results and impact on policy

Researchers found that many conservation agriculture practices had significant benefits for agricultural, economic and environmental performance indicators, whether implemented separately or together. Zero tillage with residue retention, for example, had a mean yield advantage of around 6%, provided farmers almost 25% more income, and increased water use efficiency by about 13% compared to conventional agricultural practices. This combination of practices also was shown to cut global warming potential by up to 33%.

This comes as good news for national governments in South Asia, which have been actively promoting conservation agriculture to increase crop productivity while conserving natural resources. South Asian agriculture is known as a global “hotspot” for climate vulnerability.

“Smallholder farmers in South Asia will be impacted most by climate change and natural resource degradation,” said Trilochan Mohapatra, Director General of ICAR and Secretary of India’s Department of Agricultural Research and Education (DARE). “Protecting our natural resources for future generations while producing enough quality food to feed everyone is our top priority.”

“ICAR, in collaboration with CIMMYT and other stakeholders, has been working intensively over the past decades to develop and deploy conservation agriculture in India. The country has been very successful in addressing residue burning and air pollution issues using conservation agriculture principles,” he added.

With the region’s population expected to rise to 2.4 billion, demand for cereals is expected to grow by about 43% between 2010 and 2050. This presents a major challenge for food producers who need to produce more while minimizing greenhouse gas emissions and damage to the environment and other natural resources.

“The collaborative effort behind this study epitomizes how researchers, policy-makers, and development practitioners can and should work together to find solutions to the many challenges facing agricultural development, not only in South Asia but worldwide,” said Jon Hellin, leader of the Sustainable Impact Platform at IRRI.


Related publications:

Conservation agriculture for sustainable intensification in South Asia.

Interview opportunities:

M.L. Jat, Principal Scientist and Cropping Systems Agronomist, International Maize and Wheat Improvement Center (CIMMYT)

For more information, or to arrange interviews, contact:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

Funders of this work include the Indian Council of Agricultural Research (ICAR), the Government of India and the CGIAR Research Programs on Wheat Agri-Food Systems (CRP WHEAT) and Climate Change, Agriculture and Food Security (CCAFS).

About CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

The value of research on plant resistance to insects

Crop pest outbreaks are a serious threat to food security worldwide. Swarms of locusts continue to form in the Horn of Africa, threatening food security and farmer livelihoods ahead of a new cropping season. The devastating fall armyworm continues cause extensive damage in Africa and South Asia.

With almost 40% of food crops lost annually due to pests and diseases, plants resistance to insects is more important than ever. Last month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT) global headquarters outside Mexico City.

Watch Mike Smith, entomologist and distinguished professor emeritus at Kansas State University explain the importance of working with economists to document the value of plant insect resistance research, and why communication is crucial for raising awareness of the threat of crop pests and insect resistance solutions.

Concerned experts ask world leaders to head off a global food security crisis from COVID-19

A farmer weeds a maize field in Pusa, Bihar state, India. (Photo: M. DeFreese/CIMMYT)
A farmer weeds a maize field in Pusa, Bihar state, India. The productivity and food security of small-scale farmers requires their presence and activity in the field and in markets, both of which could be off-limits under the COVID-19 pandemic. (Photo: M. DeFreese/CIMMYT)

Alarmed by the risk of global and regional food shortages triggered by the COVID-19 pandemic, a coalition of businesses, farmers’ groups, industry, non-governmental organizations, and academia has called on world leaders urgently to maintain open trade of their surplus food products.

Published by the Food and Land Use Coalition (FOLU) on April 9, 2020, and signed by 60 experts, the call to action urges world leaders to keep food supplies flowing, specially support vulnerable people, and finance sustainable, resilient food systems.

Covered by major world media, the declaration encourages governments to treat food production, processing, and distribution as an essential sector — similar to public health care — and thus to support continued, safe, and healthy activities by farmers and others who contribute to the sector, according to Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT) and a signatory of the call to action.

“Consumers in low-income countries face the greatest threat of food insecurity,” said Kropff. “Their tenuous access to nutritious food is jeopardized when surplus food-producing nations choose to close trade as a defensive measure.”

Kropff added that many households in low-income countries depend on agriculture or related activities for their food and livelihoods. Their productivity and food security are compromised by illness or restrictions on movement or working.

“The call to action resonates with the findings of a landmark 2015 study by Lloyd’s of London,” he explained. “That work highlighted the fragility of global food systems in the event of coinciding shocks, an outcome that seems entirely possible now, given the health, cultural, and economic impacts of the COVID-19 pandemic.”

At the same time, the work of CIMMYT, other CGIAR centers, and their partners worldwide helps to stabilize food systems, according to Kropff.

“Our research outputs include high-yielding, climate-resilient crop varieties and more productive, profitable and sustainable farming methods,” he said. “These give farmers — and especially smallholders — the ingredients for more efficient and effective farming. They are grounded in reality through feedback from farmers and local partners, as well as socioeconomic studies on markets and value chains for food production, processing, and distribution.”

Why Conserving Biodiversity Is Crucial to Prevent Future Pandemics

“Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates,” Frederic Baudron, a systems agronomist at the International Maize and Wheat Improvement Centre, said in an interview. For example, there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth. “We live on an increasingly ‘cultivated planet’, with new species assemblages and new opportunities for pathogens to move from one species to another.”

However, the biodiversity crisis is seldom considered a global issue and often not a pressing one, and conservationists say it isn’t written about as often as it should be. “Media coverage for the biodiversity crisis is eight-times lower than for the climate crisis”, according to Baudron. “We need to reduce the frequency of pandemics like COVID-19 by conserving and restoring biodiversity globally, most crucially in disease hotspots.”

Read more here: https://science.thewire.in/environment/why-conserving-biodiversity-is-crucial-to-prevent-future-pandemics/

Don’t forget about the impact of COVID-19 on the rural poor and on food security

A woman sells maize at the market in Sidameika Tura, Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)
A woman sells maize at the market in Sidameika Tura, Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While all eyes are on Lombardy, Madrid, New York and Wuhan, what do we know about the impact of COVID-19 on the rural poor and on food security in developing countries? How can the impact of the crisis be moderated? What positive breakthroughs could be provoked by this shock to move us into a better “new normal”? What can donors and implementing organizations do to support low- and middle-income countries during and beyond this crisis?

Members of the Agriculture and Rural Development working group of the international Scaling Up community of practice held a virtual meeting to discuss these questions and how scaling-up innovations could help to recover from the current crisis and mitigate future ones.

Poor rural communities are particularly vulnerable

When it comes to a highly contagious disease, being in a rural area sounds better than being in a busy city, but that is a deceptive impression. Smallholder farmers often are older than average and hence more vulnerable to the virus, and they have less access to health services.

They also depend on field laborers that are not able to travel from surrounding villages to help with planting, weeding and harvesting. To process crops, smallholder farmers need to transport crops to processing centers, which may be closed, as are the markets where they obtain agricultural inputs or sell farm products. Large international agrobusiness firms, which supply inputs and purchase local famers’ products may withdraw, at least temporarily, from the rural economies. There are already reports of farmers feeding cattle strawberries and broccoli in India, as they are unable to get their goods to the market.

Most farmers also depend on non-farm and off-farm activities for their livelihoods, as they may be field laborers for other farmers, work in the processing industry or work in construction. Interrupted transportation and closures pose serious challenges to maintain safe business continuity throughout the rural economy. The risk is not only that immediate rural production, food deliveries, exports, employment and incomes will collapse, but also that planting for next year’s crops will be disrupted.

It is key to differentiate between global and local supply chains, which will suffer in different ways. For example, in Uganda, supermarkets are open but small, informal markets are closed. In past crises, governments have focused on the survival of global value chains over local ones. Small, rural businesses are more likely to close permanently than large international ones.

Globally, international support for agriculture and rural development has been lagging in recent years.  Today, the international support from aid agencies and NGOs is interrupted, as travels are restricted and community meetings are prohibited. With increased donor attention to a domestic and international health crisis, aid for rural communities may drop precipitously.

Men transport wheat straw on donkey karts in Ethiopia’s Dodula district. (Photo: Peter Lowe/CIMMYT)
Men transport wheat straw on donkey karts in Ethiopia’s Dodula district. (Photo: Peter Lowe/CIMMYT)

Opportunities for an improved “new normal” as we respond to the crisis

The short-term response to help minimize the impact of the COVID-19 crisis on the rural poor is critical, but we also need to support the shaping of a “new normal” where rural food systems are resilient, profitable and inclusive for poor rural communities. Members of the Scaling Up community of practice explored various ideas.

First, the COVID-19 pandemic could present opportunities to break silos and show how closely health and agriculture are related.

“COVID-19 cuts across sectors and jurisdictions in ways that single organizations and established governance structures are ill-equipped to accommodate,” said Larry Cooley, Scaling Expert and Founder and President Emeritus of Management Systems International (MSI)

For example, rural agricultural extension networks could be used to disseminate information on health awareness and education around COVID-19 and collect data on local impacts. This may cause and provide relief in the short term, but may also provide opportunities for collaboration in the long run.

“Our agricultural networks go deep into the rural areas and we are training our agri-entrepreneurs in India to disseminate health messages, products and services to help address COVID-19,” said Simon Winter, Executive Director of the Syngenta Foundation.

“At the African Development Bank we are providing emergency relief finance and re-purposing funding to have a link with COVID-19,” said Atsuko Toda, the bank’s Director of Agricultural Finance and Rural Development.

Second, a “new normal” could also mean an even stronger independence from externally funded projects, experts and solutions to more local ownership and expertise in rural areas, something that the community of practice has been promoting strongly. We could help to support more autonomy of the farmer, a strong local market and scale-up local value chains. Strengthening the capacity of small and medium enterprises linking farmers to urban markets could help ensure stability in future economic shocks.

“Governments and donor ‘projects’ looked too much at export and global value chains. I see great opportunities to scale up local and regional input and output value chains that benefit local farmers and small and medium enterprises,” said Margret Will, expert on value chains.

Third, the COVID-19 pandemic presents an opportunity to accelerate the scaling of innovations.

“Lack of access to labor could be disrupting harvesting and planting in our Feed the Future countries, accelerating an already predominant trend of migration, especially among the young, to urban areas. We see a looming need for mechanization of farms at scale, using mini-tillers, planters, harvesters and other time- and labor-saving equipment,” said Mark Huisenga, Senior Program Manager for the USAID Bureau for Resilience and Food Security.

Masimba Mawire collects bare maize cobs after removing the grain using a mechanized maize sheller in Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
Masimba Mawire collects bare maize cobs after removing the grain using a mechanized maize sheller in Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)

Rural communities that use more ecological intensive practices, such as conservation agriculture and push-pull farming or safe storage practices are less dependent on external inputs and labor.

The current crisis forces us to use digital communication systems, replace human work with digital tools where possible and use technology to help target interventions. Both the public and private sector could build on this opportunity to invest in increased access to internet, electricity and other digital resources, including in impoverished areas. All these technological innovations can help farmers to better cope with the constraints of COVID-19 and any future crises or stresses to the food system, while also making agriculture more productive and more attractive to the young.

“The pandemic creates an opportunity to accelerate the use of digital technologies in smallholder agriculture, not only for extension advice but to crowdsource information about COVID-19 impacts,” said Julie Howard, Senior Advisor for the Center for Strategic and International Studies (CSIS).

Finally, COVID-19 will change our global governance system, and the agriculture, research and development sector has a role to play in this transformation. A systems change must focus on dietary diversity and food safety and security, paying attention to the rural poor in low- and middle-income countries. We can work together to scale cross-sector platforms to build solid networks and scale-up innovations to strengthen sustainable and resilient food systems.

Systems change beyond the agricultural sector, sustainability through local ownership and uptake of innovations that support profitable and resilient agricultural and related rural activities are key components of how the Scaling Up Community of Practice approaches scaling. A systems change is imminent, and it is important to support a transformation in a direction where local markets, rural labor and regional economies come out stronger in the long term. This requires vision, expertise, mobilization of resources, information sharing and crowdsourced leadership, and the network of scaling experts can contribute to this.

The Agriculture and Rural Development working group of the international Scaling Up community of practice is made up of individuals from more than 100 official donors, foundations, think tanks, research and development organizations united by their interest in scaling the impact of innovations on food security and rural poverty. Areas of particular interest for the group include designing for scale, using scaling frameworks, learning about scaling, responsible scaling, sustainability and system thinking. Members of the working group include professionals with vast experience from the field, and the group explicitly tries to learn from the application of complex concepts such as sustainability, systems change and scaling in real world settings by local actors. In addition to quarterly virtual meetings, the working group encourages and supports exchanges among its members on a variety of subjects. Participation in, and management of, the Agriculture and Rural Development working group is done on a purely voluntary basis.

About the Authors:

Lennart Woltering — Scaling catalyst at CIMMYT and chair of the Agriculture and Rural Development working group.

Johannes Linn — Non-resident Senior Fellow at Brookings and former Vice President of the World Bank.

Maria Boa — Scaling coordinator at CIMMYT and secretary of the Agriculture and Rural Development working group

Mary Donovan — Communications Consultant at CIMMYT.

Safeguarding biodiversity is essential to prevent the next COVID-19

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While the world’s attention is focused on controlling COVID-19, evidence points at the biodiversity crisis as a leading factor in its emergence. At first glance, the two issues might seem unrelated, but disease outbreaks and degraded ecosystems are deeply connected. FrĂ©dĂ©ric Baudron, systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and Florian LiĂ©geois, virologist at the Institut de Recherche pour le DĂ©veloppement (IRD) share their insights on the current COVID-19 crisis and the link between biodiversity loss and emerging infectious diseases.

What trends are we seeing with infectious diseases like COVID-19?

We see that outbreaks of infectious diseases are becoming more frequent, even when we account for the so-called “reporting bias”: surveillance of such events becoming better with time and surveillance being better funded in the North than in the South.

60% of infectious diseases are zoonotic, meaning that they are spread from animals to humans and 72% of these zoonoses originate from wildlife. COVID-19 is just the last in a long list of zoonoses originating from wildlife. Other recent outbreaks include SARS, Ebola, avian influenza and swine influenza. As human activities continue to disturb ecosystems worldwide, we are likely to see more pathogens crossing from wildlife to humans in the future. This should serve as a call to better manage our relationship with nature in general, and wildlife in particular.

Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)
Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)

Why are we seeing more cases of diseases crossing from animals to humans? Where are they coming from?

Evidence points to bushmeat trade and consumption as the likely driver for the emergence of COVID-19. The emergence of SARS and Ebola was also driven by bushmeat consumption and trade. However, when looking at past outbreaks of zoonoses caused by a pathogen with a wildlife origin, land use changes, generally due to changes in agricultural practices, has been the leading driver.

Pathogens tends to emerge in well known “disease hotspots,” which tend to be areas where high wildlife biodiversity overlaps with high population density. These hotspots also tend to be at lower latitude. Interestingly, many of these are located in regions where CIMMYT’s activities are concentrated: Central America, East Africa and South Asia. This, in addition to the fact that agricultural changes are a major driver of the emergence of zoonoses, means that CIMMYT researchers may have a role to play in preventing the next global pandemic.

Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)
Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)

How exactly does biodiversity loss and land use change cause an increase in zoonotic diseases?

There are at least three mechanisms at play. First, increased contact between wildlife and humans and their livestock because of encroachment in ecosystems. Second, selection of wildlife species most able to infect humans and/or their livestock — often rodents and bats — because they thrive in human-dominated landscapes. Third, more pathogens being carried by these surviving wildlife species in simplified ecosystems. Pathogens tend to be “diluted” in complex, undisturbed, ecosystems.

The fast increase in the population of humans and their livestock means that they are interacting more and more frequently with wildlife species and the pathogens they carry. Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates: there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth! We live on an increasingly “cultivated planet,” with new species assemblages and new opportunities for pathogens to move from one species to another.

Wildlife trade and bushmeat consumption have received a lot of attention as primary causes of the spread of these viruses. Why has there been so little discussion on the connection with biodiversity loss?

The problem of biodiversity loss as a driver of the emergence of zoonoses is a complex one: it doesn’t have a simple solution, such as banning wet markets in China. It’s difficult to communicate this issue effectively to the public. It’s easy to find support for ending bushmeat trade and consumption because it’s easy for the public to understand how these can lead to the emergence of zoonoses, and sources of bushmeat include emblematic species with public appeal, like apes and pangolins. Bushmeat trafficking and consumption also gives the public an easy way to shift the blame: this is a local, rather than global, issue and for most of us, a distant one.

There is an inconvenient truth in the biodiversity crisis: we all drive it through our consumption patterns. Think of your annual consumption of coffee, tea, chocolate, sugar, textiles, fish, etc. But the biodiversity crisis is often not perceived as a global issue, nor as a pressing one. Media coverage for the biodiversity crisis is eight times lower than for the climate crisis.

The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)
The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)

Agriculture is a major cause of land use change and biodiversity loss. What can farmers do to preserve biodiversity, without losing out on crop yields?

Farming practices that reduce the impact of agriculture on biodiversity are well known and form the foundation of sustainable intensification, for which CIMMYT has an entire program. A better question might be what we can do collectively to support them in doing so. Supportive policies, like replacing subsidies by incentives that promote sustainable intensification, and supportive markets, for example using certification and labeling, are part of the solution.

But these measures are likely to be insufficient alone, as a large share of the global food doesn’t enter the market, but is rather consumed by the small-scale family farmers who produce it.

Reducing the negative impact of food production on biodiversity is likely to require a global, concerted effort similar to the Paris Agreements for climate. As the COVID-19 pandemic is shocking the world, strong measures are likely to be taken globally to avoid the next pandemic. There is a risk that some of these measures will go too far and end up threatening rural livelihoods, especially the most vulnerable ones. For example, recommending “land sparing” — segregating human activities from nature by maximizing yield on areas as small as possible —  is tempting to reduce the possibility of pathogen spillover from wildlife species to humans and livestock. But food production depends on ecosystem services supported by biodiversity, like soil fertility maintenance, pest control and pollination. These services are particularly important for small-scale family farmers who tend to use few external inputs.

How can we prevent pandemics like COVID-19 from happening again in the future?

There is little doubt that new pathogens will emerge. First and foremost, we need to be able to control emerging infectious diseases as early as possible. This requires increased investment in disease surveillance and in the health systems of the countries where the next infectious disease is most likely to emerge. In parallel, we also need to reduce the frequency of these outbreaks by conserving and restoring biodiversity globally, most crucially in disease hotspots.

Farming tends to be a major driver of biodiversity loss in these areas but is also a main source of livelihoods. The burden of reducing the impact of agriculture on biodiversity in disease hotspots cannot be left to local farmers, who tend to be poor small-scale farmers: it will have to be shared with the rest of us.

Cover photo: Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)